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ABSTRACT. We study bounds on the cardinality of sum-distinct
sets of n-vectors with nonnegative integral components under
component-wise real-number addition. A subclass of sum-distinct
sets induced by an n by n integral matrix of rank n is studied
as well.

1 Introduction

We will be dealing with elements from K £ {0,1,...,k} where k € Z* and
Z* is the set of positive integers. Call a set {Z;,Z2,...,Zm}, Z; € K", sum
distinct in (K™, +) if all the 2™ possible sums

1% + oz + - -+ 0mEm, o € {0,1}, (1.1)

are distinct n-vectorsin {0, 1, ... ,mk}™. In (1.1), + stands for a component-
wise real-number addition. A sum-distinct mairizis any arrangement of the
m sum-distinct n-vectors into an n by m K-matrix (matrix whose all entries
are from K).

Let C be an n by m K-matrix and let @ be a vector from {0,1}™. By
the above definition, C is sum-distinct if

€= Ca, (1.2)

has at most one solution in @ € {0,1}™ for any integral n-vector & For
the lack of a better term, a procedure which recovers @ from € in (1.2)
will be called inverse mapping. If C is sum-distinct, such an algorithm
always exists (for example, an exhaustive search through R(C) 2 {Cz |
@ € {0,1}™}).

There are several obvious problems of immediate concern here. For ex-
ample,
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a) given n and k, what is the largest value of m?

b) how do we construct maximum cardinality sum-distinct sets for given
n and k?

¢) how do we construct sum-distinct sets whose corresponding inverse
mappings have low run-time complexity and modest memory require-
ments.

d) how many different m-element sum-distinct sets are in K"?

e) are there objects related to the above defined?

Sum-distinct sets were introduced in 1932 by P. Erdés where (a) was
asked for n = 1 and k = 2¢, ¢ € Z*. Since then, except for k = 1, only
partial answers to (a) and (b) are known. For n =1, a current conjecture
is m < ¢+ logy k where ¢ does not depend on k (some estimates of m may
be found in [3] and [7]). For k = 1, sum-distinct sets were investigated
in relation to coin-weighing problem, e.g. [1], [7], [8], [12], where (b) was
used to obtain a lower bound in (a). Also, related to sum-distinct sets are
disjoint codes, e.g. [4] and (5], as well as superimposed codes, e.g. [2] and
[6]. A partial answer to (c) is given in [5]. For n =1, (d) was addressed in
[11). This, of course, is only a partial compilation of results pertaining to
the above questions.

In sections 2 and 3, we state and prove an upper and a lower bound on
sum-distinct sets in (", +), respectively. Residue-type sum-distinct sets
are discussed in Section 4. Relevant remarks are given in Section 5.

2 An upper bound

There are 2™ distinct sums (1.1) and no more than (1 + mk)™ n-vectors
with components from {0, 1,...,mk}. Hence if {Z,,Z2,...,Zmn}, Z; € K*,
is to be sum-distinct, we must have 2™ < (1 + mk)™. Since m < (1 + k)*,
it follows that m < (n? + n)logy(1 + k). By using this upper bound on m
and 2™ < (1 + mk)™ once more, we have

m < nlogy(1 + (n? +n)klogy(1 + k). (2.1)

Clearly, (2.1) can be further improved by a repeated substitution of the
most recent upper bound on m into 2™ < (1 + mk)™. Next, we generalize
a result from [8] to k > 1.

Theorem 1. 2™ < ()%k"m? for an m-element sum-distinct set in
k", +).
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Proof: Let i be a random m-vector with uniform distribution on {0, 1}™.

Then, . .
Ea= ) aP{u=a}=7o Y. a=3la,
ae{0,1}m ae{0,1}m
where 1, is the column m-vector of ones. Furthermore, let & = (cy, .. . , €m)

where ¢; € K for all i. Then,

Be-cBaf= Y (@8- ;7. P{a=a}
ae{0,1}m
m

a€{0,1}m i=1

W=

Denote by H(X) the entropy of a random variable X. It can be shown that
H(X) < g log2me(cios---a2)%, (2.3)

where X = (X1,...,X,) and 0? = B(X; — EX;)? fori =1,...,n. For
proof of (2.3) see, for example, [9].

If @ in (1.2) is a random variable, so is the subset-sum & Put P{é =
Z} =0 for z ¢ R(C). Then, P{e = &} = P{e = Czo} = P{& = Zo} since
C is sum-distinct. Thus H(€) = H(&) for any distribution of #. Denote by
€1,82,...,Cn the row vectors of C. Put X; = & and by (2.3)

H(u) = H(¢,4, &1, ... ,Cnli)

n 1« oo = g2
< 3 log 2er + 3 ; log E(¢;u — c; Eu)*.
If @ is assumed to have a uniform distribution on {0,1}™, then H(a) =
mlog2. Theorem follows from (2.2), the above inequality, and the fact
that C is a K-matrix. a

By (2.1) and Theorem 1, for an m-element set which is sum-distinct in
(K™, +),

n~'m < logy kv/n + log, ‘/e—;r- + %Iogg logy[1 + (n? + n)klog,(1 + k).
(2.4)

In the sequal, we will show that n~!m > log, k/n. Hence, n~!m behaves

as log, kv/n for large values of kn. (The ratio n~!m is an information-
theoretic measure of the size of a set which is sum-distinct in (X", +).)
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3 A lower bound

A lower bound on the size of sum-distinct sets from K™ will be obtained by
generalizing the construction in [7] to ¥ > 1. In the sequal, N will stand
for the set of nonnegative integers, b(z) for the binary equivalent of z € N,
and d(Zz) for the decimal equivalent of a binary number z. The number of
1s in b(z) will be denoted by a(z) and A(n) £ Yinia(i). Let n be the
smallest integer such that max (z,y) < 2" —1 and let

zNy = d(b(z) Ab(y)),

where A stands for bit-by-bit logical AND. For example, 3N 5 = d((110) A
(101)) = d(100) = 1. Write z C y if zNy = z. For example, 1 C 3 and
1 C 5 but 3 ¢ 5. The following result was proved in [7, p. 482].
Lemma 1. Let by, b; ... , b, be a sequence of numbers and r a nonnegative
integer such that b,n, = b,. If t ¢ T, then Zact(—l)"‘(”b, =0for1<t<
n. 0
To any integer r from {1,...,n} we associate an n by ¢(r, k) submatrix
D) = (d(')), i=1,...,nand j =1,...,t(r, k), where t(r, k) = [logs k| +
a(r). For any fixed r either ¢ C ror i ¢ r. If ¢ C r, choose the ¢t(r, k)
entries d(') € K so that ) =0and

S (=)o@ =971 j=1,2,...,4(r, k). (3.1)
icr
If i  r, define dg) = dinr,j for j =1,2,...,t(r, k). Note that the entries
d{?) € K required in (3.1) can always be found since 2:mF)-1 < k2a()-1
ij
and afi) is an odd integer for 2%(")~! indices i, i C r, in the sum (3.1).

We will show that each submatrix D(") is sum-distinct. Moreover, the n
by m matrix

D, a (D(I)ID(z)I ... | D)y (3.2)

is sum-distinct. The number, m, of sum-distinct column-vectors of Dy, is
given by

m= Z t(r, k) = n|logs k| + A(n). (3.3)

r=1

Let @ € {0,1}™ and &€ € 2". We will show that D,% = & has a unique
solution in %. Let dy, ... ,d, be the row vectors of D,. If we multiply each



d; by (—1)1+e® and add them up for all i C r, due to Lemma 1, equation
(3.1) and definition (3.2), we have

3 (1)o@ = (Z( 1)°(')+1d¢)

iCt iCt
= (20, 2l ... ,2‘("’0-1)«:, + 6, (34)

where 1, is a subvector of @ that corresponds to submatrix D) and §, is
a known integer. Since (20,2!,...,24"%)1) is a sum-distinct vector, the
t(r, k) components of i are determined uniquely by (3.4).

We illustrate the construction with an example where n =4 and k = 5.
There are at least 4|log, 5] + A(4) = 13 sum-distinct vectors. A matrix

1 2 40 0 0 5 0 2 5 000

Di = 0 0012 405 2 4000
““11 2 41244301000

0 0 000 0O 0 OO0 1 2 4

obtained by the above procedure, should be sum-distinct. Indeed, let
@ = (uy,...,u13)T and € = (e, €2, €3,€4)T. If we premultiply Dsz = &
by (1,1,-1,0), then €; + €2 — e3 = (1,1,—1,0)D4@ = (0% |1,2,4,8/|03)a
and u, ug, ug and uyg are determined uniquely since (1, 2,4, 8) is a sum-
distinct vector. To obtain the remaining nine components of @ we use
vectors (0,0,0,1), (1,0,0,0) and (0, 1,0,0) in the above described way.
Note that 27~! in (3.1) is taken for the simplicity of notation. Instead
of 29~ we can take any positive integer qy) < k2%(")~1 such that the set

{q("), qg') s qf:;)} is sum-distinct. For certain values of r there are classes

of sum-dlstmct sets for which h, exceeds t(r, k). From A(2¢ - 1) = £2¢-!
and (3.3), the estimate

n~lm > |loga k) + (14+nlogavVi+n, n=20—1, (3.5)

follows at once. It was shown in [10] that A(n) > 21 log, 32+2 and that
this lower bound is met infinitely often for all n such that |3n —-2¢ =1
where k € V.

4 Residue-type sum-distinct sets

Let B be a regular square matrix of rank »n and denote by Ag the lattice
generated by its column vectors by,bs,...,3,. The subset of R™ defined
by 6151 + 822 + - -+ + 0,5, where 0 < 6; < 1 for all %, is a fundamental
parullelotope of B, written as IIg. Let L be an n by (m —n) K-matrix and
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put C = (B|L). Denote by Ac a lattice of rank n generated by column-
vectors of C. Ap is then a sublattice of the lattice A¢. If £ and 3 are
vectors from Ac, then Z is congruent to §j modulo Ag, written as z = §
(mod Ap), if the vector Z—j belongs to Ag. Two vectors in A¢c which are

congruent modulo Ag belong to the same residue class modulo Ag. The
number of different residue classes modulo Ap is the indez of Ag in Ag
and is denoted by [A¢ : Ag]. By a well known result in geometric number
theory, |det B| = [A¢c : AB).

It is easy to see that C is sum-distinct if and only if Cz = 0 implies
z =0 for any z € {-1,0,1}™. If 2T = (z],—-2%), where z; € {-1,0,1}"
and z; € {-1,0,1}™ ", then Cz = 0 implies BZ; = Lz indicating that
sum-distinctness can be viewed as a vector congruence problem in lattices
generated by column-vectors of B and (B|L). The idea here is to choose
n ‘long’ column-vectors in B such that |det B| is as large as possible and
(m — n) ‘short’ column-vectors in L such that Lz; # 0. Then, it is likely
to have Bz; # Lz;. The existence of short vectors in L follows from a
result in geometric number theory, which says that there exists a linear
transformation ¥ = BZ such that £ € Z" is a non-zero vector and § =
(¥1, ... ,n)7T satisfies 3; < |det B|* for all i.

Let t = m — n and C = (B|L) and denote by Z,,Zs,...,Z; the column-
vectors of an n by ¢ K-matrix L. If {,... ,bn, %1 ... ,%:} is sum-distinct,
then none of the 2¢ sums

aZ +efr+---+ei, €€{0,1}, (4.1)

is congruent (mod Apg) to sums from {by,... ,bs}. Since sums (4.1) are also
incongruent (mod Ap) to each other, they must represent different residue
classes modulo Ap. Each of the 2 sums (4.1) comes from a different residue
class and thus 2! < [A¢: Ap]or

2! <|det B|. (4.2)

Unfortunately, the above reasoning is wrong. The smallest counterex-
ample ! is obtained for n = 1, k = 7 and B = (7). Then 2! < 7 gives
t < 2 which is incorrect since {3, 5,6, 7} is sum-distinct. The point is that
3¢; + 5e2 + 6eg do not represent different residue classes modulo 7. (Take
¢ =0forall i and ¢; =1 for all i.)

Let B be a regular square K-matrix of order n. We will say that C =
(B|L) is of residue type if C is sum-distinct and if ¢ column vectors of L are
inside Ilp.

Theorem 2. Let C = (B|L) be of residue type and let ¢ be the number
of column vectors in L. Then, t712¢ < |det B|. If |det B| is a prime or a
power of two, then t > |log, | det B|].

1 Any set from class  in [5] can be used as a counter example.
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Proof: If the 2¢ sumsin (4.1) are inside I1p, then 2¢ < | det B| since | det B)|
is the volume of IIg. Else, since each vector Z; in (4.1) is inside IIg and
there are at most ¢ such vectors, by pigeonhole principle, the number of
sums in (4.1) cannot exceed t|det B.

Let B be the lower triangular equivalent form of B. That is, B = BU,
where Y is a unimodular matrix. Denote by 5y, /s,..., /8, the co]umn
vectors of B and by Ig the corresponding fundamental pa.rallelotope. Then,
Ap = Ag and IIg = IIg. To each diagonal element B;, i =1,...,n,of B
we associate a sum-distinct set

L= 040208 A9 =8,

such that |y{")| < | for all j =1,... .k — 1 and all elements of T; have
the same sign. Let I,, be the ldentlty matrix of order » and denote by
&1,8y,...,8&y its column vectors. To each set I'; we associate éﬁ‘ = f; and
the (k; — 1) residual vectors

where rfj_,_)h are integers such that |r, +z:| < |Bites| and (i_h and Fiye;:
have the same sign. This is necessary to keep each 5(;) inside IIg. Then
the (X2_,k;)-element set U,_l{o(‘) | 7= ., k;} is sum-distinct. In
other words, the 2% possible sums of the zth component e10() + egé(')
-+ ek‘_10£‘)_l + €, Bi, & € {0,1}, are distinct and each of these sums is
incongruent (mod Ag) to any other sum from a different component. Hence,
we have t +n > Y, |[';|. For any positive integer & < logy(1 + |Bi|), the
set {29,2,...,2%1|B;|} is sum-distinct. From |[;| > & + 1 we have
t >3 ";|log, |Bi:|] and thus the theorem. o

5 Remarks

Residue-type sum-distinct sets form a subclass of all sum-distinct sets and
thus the lower bound in Theorem 2 holds in general. If, for example B, in
= (By|L) is a K-matrix obtained from an Hadamard matrix 2 H,y; as

Bn = £(1,1T - C,) where C,, is the core of Hy.,,, i.e.,

1 IT
Hn+1 = (iﬂ C?';) ’

then n+log, | det B,| = nlogy k+ (n+ 1) logy v/ + 1. It is easy to see that
D,, in (3.2) is of residue type such that for n = 2¢ —1 its n ‘longest vectors’
are column vectors of By,.

2An Hadamard matrix Hy, of order n is an n by n matrix with elements 41 and —1
such that HT Hy, = nl,. A necessary condmon for the existence of Hy, is that n is either
2 or a multiple of 4.
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By Theorem 2, bounds on m are as good as bounds on |det B|. A well
known and frequently used one,

n n
jdes B < [T(3%). B = o,
i=1 “k=1
is due to Hadamard. Since |b;k| < k, from (2.1) and Theorem 2 we find

1+ (n? +n)klogy(1 + k)

n-lm s 10g2 k\/’f_l‘l‘l +'n._1 10g2 n+n_1 10g2 !0g2 2

Thus, for large kn the ratio n~!m behaves as log, k+/7 in the case of residue-
type sum-distinct sets as well. (Note that log, /5 ~ 1 in (24).)

Conjecture 1: Let B be a square KX-matrix of order n such that | det B|
is maximum for given k and n. Then, there exists a residue type matrix
C = (B]L) whose column vectors form a maximum cardinality sum-distinct
set in (K", +). (n}

By the construction in Theorem 2, the vector congruence problem in
Ap was translated into a componentwise vector congruence problem in a
geometrically equivalent lattice Ag. It is possible, however, to use this con-
struction to obtain sum-distinct sets with elements from K™. For example,
if n =3 and k =1, from Hjy: we obtain

-1 41 -1 1 01
Ci3=|+1 -1 -1 and B3=|0 1 1]}.
-1 -1 +1 110

By using Bslis = Bs, the column-equivalent representation Bs of Bj is

found as
10 O 1 0 -1
Bs3=|0 1 0 for Ug=(0 1 -1}.
11 -2 00 1

Clearly, the only residual vector in Ag, is 8> = —&; = (0 0 —1)T. The
corresponding residual vector in Ap, is obtained as B+ 5(18) = &, or as

Bo+ 0 =eyoras 8 ~Ba=e30ras By + o+ 0 =& +& +é&. So,
from B3 we obtain four sum-distinct matrices,

1 011 1 010 1 010 1 011
6011090}, 0111}, {01 10), [O1 1 1]}.
1100 1100 1101 1101

The example suggests a general approach in design of sum-distinct K-
matrices. Let O be an (m — n) by n matrix whose all elements are zero.
If L and £ are matrices of residual column-vectors in lattices Ag and Ap,
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respectively, then there exist an n by (m — n) integral matrix Wg and an
(m — n) by (m — n) unimodular matrix U such that

G1o=@10(5 ).

As illustrated in the example above, vectors in L are obtainable from the
ones in B and £ by means of a unimodular transformation of order m.
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