On Sum Distinct Sets Of Integral Vectors

Dušan B. Jevtić

Department of Computer Engineering Santa Clara University Santa Clara, California 95053

ABSTRACT. We study bounds on the cardinality of sum-distinct sets of n-vectors with nonnegative integral components under component-wise real-number addition. A subclass of sum-distinct sets induced by an n by n integral matrix of rank n is studied as well.

1 Introduction

We will be dealing with elements from $\mathcal{K} \stackrel{\triangle}{=} \{0,1,\ldots,k\}$ where $k \in \mathcal{Z}^+$ and \mathcal{Z}^+ is the set of positive integers. Call a set $\{\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_m\},\,\bar{x}_i \in \mathcal{K}^n,\,sum$ distinct in $(\mathcal{K}^n,+)$ if all the 2^m possible sums

$$\alpha_1 \bar{x}_1 + \alpha_2 \bar{x}_2 + \dots + \alpha_m \bar{x}_m, \quad \alpha_i \in \{0, 1\}, \tag{1.1}$$

are distinct *n*-vectors in $\{0, 1, \ldots, mk\}^n$. In (1.1), + stands for a component-wise real-number addition. A *sum-distinct matrix* is any arrangement of the m sum-distinct n-vectors into an n by m \mathcal{K} -matrix (matrix whose all entries are from \mathcal{K}).

Let C be an n by m K-matrix and let \bar{u} be a vector from $\{0,1\}^m$. By the above definition, C is sum-distinct if

$$\bar{\epsilon} = C\bar{u},\tag{1.2}$$

has at most one solution in $\bar{u} \in \{0,1\}^m$ for any integral *n*-vector $\bar{\epsilon}$. For the lack of a better term, a procedure which recovers \bar{u} from $\bar{\epsilon}$ in (1.2) will be called *inverse mapping*. If C is sum-distinct, such an algorithm always exists (for example, an exhaustive search through $\mathcal{R}(C) \triangleq \{C\bar{u} \mid \bar{u} \in \{0,1\}^m\}$).

There are several obvious problems of immediate concern here. For example,

- a) given n and k, what is the largest value of m?
- b) how do we construct maximum cardinality sum-distinct sets for given n and k?
- c) how do we construct sum-distinct sets whose corresponding inverse mappings have low run-time complexity and modest memory requirements.
- d) how many different *m*-element sum-distinct sets are in K^n ?
- e) are there objects related to the above defined?

Sum-distinct sets were introduced in 1932 by P. Erdös where (a) was asked for n=1 and $k=2^{\ell}$, $\ell\in\mathcal{Z}^+$. Since then, except for k=1, only partial answers to (a) and (b) are known. For n=1, a current conjecture is $m< c+\log_2 k$ where c does not depend on k (some estimates of m may be found in [3] and [7]). For k=1, sum-distinct sets were investigated in relation to coin-weighing problem, e.g. [1], [7], [8], [12], where (b) was used to obtain a lower bound in (a). Also, related to sum-distinct sets are disjoint codes, e.g. [4] and [5], as well as superimposed codes, e.g. [2] and [6]. A partial answer to (c) is given in [5]. For n=1, (d) was addressed in [11]. This, of course, is only a partial compilation of results pertaining to the above questions.

In sections 2 and 3, we state and prove an upper and a lower bound on sum-distinct sets in $(K^n, +)$, respectively. Residue-type sum-distinct sets are discussed in Section 4. Relevant remarks are given in Section 5.

2 An upper bound

There are 2^m distinct sums (1.1) and no more than $(1+mk)^n$ n-vectors with components from $\{0,1,\ldots,mk\}$. Hence if $\{\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_m\}$, $\bar{x}_i\in\mathcal{K}^n$, is to be sum-distinct, we must have $2^m\leq (1+mk)^n$. Since $m<(1+k)^n$, it follows that $m<(n^2+n)\log_2(1+k)$. By using this upper bound on m and $2^m\leq (1+mk)^n$ once more, we have

$$m < n \log_2(1 + (n^2 + n)k \log_2(1 + k)).$$
 (2.1)

Clearly, (2.1) can be further improved by a repeated substitution of the most recent upper bound on m into $2^m \le (1 + mk)^n$. Next, we generalize a result from [8] to k > 1.

Theorem 1. $2^m \leq (\frac{e\pi}{2})^{\frac{n}{2}} k^n m^{\frac{n}{2}}$ for an m-element sum-distinct set in $(\mathcal{K}^n, +)$.

Proof: Let \bar{u} be a random *m*-vector with uniform distribution on $\{0,1\}^m$. Then,

$$E\bar{u} = \sum_{\bar{a} \in \{0,1\}^m} \bar{a}P\{\bar{u} = \bar{a}\} = \frac{1}{2^m} \sum_{\bar{a} \in \{0,1\}^m} \bar{a} = \frac{1}{2}\bar{I}_m,$$

where \bar{l}_m is the column *m*-vector of ones. Furthermore, let $\bar{c} = (c_1, \ldots, c_m)$ where $c_i \in \mathcal{K}$ for all *i*. Then,

$$E(\bar{c}\bar{u} - \bar{c}E\bar{u})^{2} = \sum_{\bar{a}\in\{0,1\}^{m}} (\bar{c}\bar{a} - \frac{1}{2}\bar{c}\bar{1}_{m})^{2}P\{\bar{u} = \bar{a}\}$$

$$= \frac{1}{2^{m+2}} \sum_{\bar{a}\in\{0,1\}^{m}} [\bar{c}(2\bar{a} - \bar{1}_{m})]^{2} = \frac{1}{4} \sum_{i=1}^{m} c_{i}^{2} \qquad (2.2)$$

Denote by H(X) the entropy of a random variable X. It can be shown that

$$H(\bar{X}) \le \frac{n}{2} \log 2\pi e (\sigma_1^2 \sigma_2^2 \cdots \sigma_n^2)^{\frac{1}{n}}, \tag{2.3}$$

where $\bar{X} = (X_1, \dots, X_n)$ and $\sigma_i^2 = E(X_i - EX_i)^2$ for $i = 1, \dots, n$. For proof of (2.3) see, for example, [9].

If \bar{u} in (1.2) is a random variable, so is the subset-sum $\bar{\epsilon}$. Put $P\{\bar{\epsilon}=\bar{z}\}=0$ for $\bar{z}\not\in\mathcal{R}(C)$. Then, $P\{\bar{\epsilon}=\bar{\epsilon}_0\}=P\{\bar{\epsilon}=C\bar{x}_0\}=P\{\bar{u}=\bar{x}_0\}$ since C is sum-distinct. Thus $H(\bar{\epsilon})=H(\bar{u})$ for any distribution of \bar{u} . Denote by $\bar{c}_1,\bar{c}_2,\ldots,\bar{c}_n$ the row vectors of C. Put $X_i=\bar{c}_i\bar{u}$ and by (2.3)

$$H(\bar{u}) = H(\bar{c}_1\bar{u}, \bar{c}_2\bar{u}, \dots, \bar{c}_n\bar{u})$$

$$\leq \frac{n}{2}\log 2e\pi + \frac{1}{2}\sum_{i=1}^n \log E(\bar{c}_i\bar{u} - \bar{c}_iE\bar{u})^2.$$

If \bar{u} is assumed to have a uniform distribution on $\{0,1\}^m$, then $H(\bar{u}) = m \log 2$. Theorem follows from (2.2), the above inequality, and the fact that C is a K-matrix.

By (2.1) and Theorem 1, for an *m*-element set which is sum-distinct in $(\mathcal{K}^n, +)$,

$$n^{-1}m \le \log_2 k\sqrt{n} + \log_2 \sqrt{\frac{e\pi}{2}} + \frac{1}{2}\log_2 \log_2[1 + (n^2 + n)k\log_2(1 + k)]. \tag{2.4}$$

In the sequal, we will show that $n^{-1}m \ge \log_2 k\sqrt{n}$. Hence, $n^{-1}m$ behaves as $\log_2 k\sqrt{n}$ for large values of kn. (The ratio $n^{-1}m$ is an information-theoretic measure of the size of a set which is sum-distinct in $(\mathcal{K}^n, +)$.)

3 A lower bound

A lower bound on the size of sum-distinct sets from \mathcal{K}^n will be obtained by generalizing the construction in [7] to k > 1. In the sequal, \mathcal{N} will stand for the set of nonnegative integers, b(x) for the binary equivalent of $x \in \mathcal{N}$, and $d(\bar{z})$ for the decimal equivalent of a binary number \bar{z} . The number of 1s in b(x) will be denoted by $\alpha(x)$ and $A(n) \stackrel{\triangle}{=} \sum_{i=1}^n \alpha(i)$. Let n be the smallest integer such that max $(x,y) \leq 2^n - 1$ and let

$$x \cap y \stackrel{\triangle}{=} d(b(x) \wedge b(y)),$$

where \wedge stands for bit-by-bit logical AND. For example, $3 \cap 5 = d((110) \wedge (101)) = d(100) = 1$. Write $x \subset y$ if $x \cap y = x$. For example, $1 \subset 3$ and $1 \subset 5$ but $3 \not\subset 5$. The following result was proved in [7, p. 482].

Lemma 1. Let b_0, b_1, \ldots, b_n be a sequence of numbers and r a nonnegative integer such that $b_{s \cap r} = b_s$. If $t \not\subset r$, then $\sum_{s \subset t} (-1)^{\alpha(s)} b_s = 0$ for $1 \leq t \leq n$.

To any integer r from $\{1,\ldots,n\}$ we associate an n by t(r,k) submatrix $D^{(r)}=(d_{ij}^{(r)}), i=1,\ldots,n$ and $j=1,\ldots,t(r,k)$, where $t(r,k) \stackrel{\triangle}{=} \lfloor \log_2 k \rfloor + \alpha(r)$. For any fixed r either $i \in r$ or $i \not\subset r$. If $i \in r$, choose the t(r,k) entries $d_{ij}^{(r)} \in \mathcal{K}$ so that $d_{0j}^{(r)}=0$ and

$$\sum_{i \in r} (-1)^{\alpha(i)+1} d_{ij}^{(r)} = 2^{j-1}, \quad j = 1, 2, \dots, t(r, k).$$
 (3.1)

If $i \not\subset r$, define $d_{ij}^{(r)} = d_{i\cap r,j}$ for $j = 1, 2, \ldots, t(r, k)$. Note that the entries $d_{ij}^{(r)} \in \mathcal{K}$ required in (3.1) can always be found since $2^{t(r,k)-1} \leq k2^{\alpha(r)-1}$ and $\alpha(i)$ is an odd integer for $2^{\alpha(r)-1}$ indices $i, i \in r$, in the sum (3.1).

We will show that each submatrix $D^{(r)}$ is sum-distinct. Moreover, the n by m matrix

$$D_n \stackrel{\triangle}{=} (D^{(1)}|D^{(2)}|\cdots|D^{(n)}) \tag{3.2}$$

is sum-distinct. The number, m, of sum-distinct column-vectors of D_n is given by

$$m = \sum_{r=1}^{n} t(r, k) = n \lfloor \log_2 k \rfloor + A(n).$$
 (3.3)

Let $\bar{u} \in \{0,1\}^m$ and $\bar{\epsilon} \in \mathbb{Z}^n$. We will show that $D_n \bar{u} = \bar{\epsilon}$ has a unique solution in \bar{u} . Let $\bar{d}_1, \ldots, \bar{d}_n$ be the row vectors of D_n . If we multiply each

 \bar{d}_i by $(-1)^{1+\alpha(i)}$ and add them up for all $i \subset r$, due to Lemma 1, equation (3.1) and definition (3.2), we have

$$\sum_{i \subset t} (-1)^{\alpha(i)+1} \epsilon_i = \left(\sum_{i \subset t} (-1)^{\alpha(i)+1} \bar{d}_i \right) \bar{u}$$
$$= \left(2^0, 2^1, \dots, 2^{t(r,k)-1} \right) \bar{u}_r + \delta_r, \tag{3.4}$$

where \bar{u}_r is a subvector of \bar{u} that corresponds to submatrix $D^{(r)}$ and δ_r is a known integer. Since $(2^0, 2^1, \dots, 2^{t(r,k)-1})$ is a sum-distinct vector, the t(r, k) components of \bar{u} are determined uniquely by (3.4).

We illustrate the construction with an example where n = 4 and k = 5. There are at least $4|\log_2 5| + A(4) = 13$ sum-distinct vectors. A matrix

obtained by the above procedure, should be sum-distinct. Indeed, let $\bar{u}=(u_1,\ldots,u_{13})^T$ and $\bar{\epsilon}=(\epsilon_1,\epsilon_2,\epsilon_3,\epsilon_4)^T$. If we premultiply $D_4\bar{u}=\bar{\epsilon}$ by (1,1,-1,0), then $\epsilon_1+\epsilon_2-\epsilon_3=(1,1,-1,0)D_4\bar{u}=(\bar{0}_6^T|1,2,4,8|\bar{0}_3^T)\bar{u}$ and $u_7,\ u_8,\ u_9$ and u_{10} are determined uniquely since (1,2,4,8) is a sum-distinct vector. To obtain the remaining nine components of \bar{u} we use vectors $(0,0,0,1),\ (1,0,0,0)$ and (0,1,0,0) in the above described way.

Note that 2^{j-1} in (3.1) is taken for the simplicity of notation. Instead of 2^{j-1} we can take any positive integer $q_j^{(r)} \leq k2^{\alpha(r)-1}$ such that the set $\{q_1^{(r)}, q_2^{(r)}, \ldots, q_{h_r}^{(r)}\}$ is sum-distinct. For certain values of r there are classes of sum-distinct sets for which h_r exceeds t(r, k). From $A(2^{\ell} - 1) = \ell 2^{\ell-1}$ and (3.3), the estimate

$$n^{-1}m \ge |\log_2 k| + (1+n^{-1})\log_2 \sqrt{1+n}, \quad n = 2^{\ell} - 1,$$
 (3.5)

follows at once. It was shown in [10] that $A(n) \ge \frac{n+1}{2} \log_2 \frac{3n+3}{4}$ and that this lower bound is met infinitely often for all n such that $|3n-2^k|=1$ where $k \in \mathcal{N}$.

4 Residue-type sum-distinct sets

Let B be a regular square matrix of rank n and denote by Λ_B the lattice generated by its column vectors $\bar{b}_1, \bar{b}_2, \ldots, \bar{b}_n$. The subset of R^n defined by $\theta_1 \bar{b}_1 + \theta_2 \bar{b}_2 + \cdots + \theta_n \bar{b}_n$, where $0 \le \theta_i < 1$ for all i, is a fundamental parallelotope of B, written as Π_B . Let L be an n by (m-n) K-matrix and

put C = (B|L). Denote by Λ_C a lattice of rank n generated by column-vectors of C. Λ_B is then a sublattice of the lattice Λ_C . If \bar{x} and \bar{y} are vectors from Λ_C , then \bar{x} is congruent to \bar{y} modulo Λ_B , written as $\bar{x} \equiv \bar{y} \pmod{\Lambda_B}$, if the vector $\bar{x} - \bar{y}$ belongs to Λ_B . Two vectors in Λ_C which are congruent modulo Λ_B belong to the same residue class modulo Λ_B . The number of different residue classes modulo Λ_B is the index of Λ_B in Λ_C and is denoted by $[\Lambda_C : \Lambda_B]$. By a well known result in geometric number theory, $|\det B| = [\Lambda_C : \Lambda_B]$.

It is easy to see that C is sum-distinct if and only if $C\bar{z}=\bar{0}$ implies $\bar{z}=\bar{0}$ for any $\bar{z}\in\{-1,0,1\}^m$. If $\bar{z}^T=(\bar{z}_1^T,-\bar{z}_2^T)$, where $\bar{z}_1\in\{-1,0,1\}^n$ and $\bar{z}_2\in\{-1,0,1\}^{m-n}$, then $C\bar{z}=\bar{0}$ implies $B\bar{z}_1=L\bar{z}_2$ indicating that sum-distinctness can be viewed as a vector congruence problem in lattices generated by column-vectors of B and (B|L). The idea here is to choose n 'long' column-vectors in B such that $|\det B|$ is as large as possible and (m-n) 'short' column-vectors in L such that $L\bar{z}_2\neq\bar{0}$. Then, it is likely to have $B\bar{z}_1\neq L\bar{z}_2$. The existence of short vectors in L follows from a result in geometric number theory, which says that there exists a linear transformation $\bar{y}=B\bar{x}$ such that $\bar{x}\in\mathcal{Z}^n$ is a non-zero vector and $\bar{y}=(y_1,\ldots,y_n)^T$ satisfies $y_i\leq |\det B|^{\frac{1}{n}}$ for all i.

Let t=m-n and C=(B|L) and denote by $\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_t$ the column-vectors of an n by t \mathcal{K} -matrix L. If $\{\bar{b}_1,\ldots,\bar{b}_n,\bar{x}_1\ldots,\bar{x}_t\}$ is sum-distinct, then none of the 2^t sums

$$\epsilon_1 \bar{x}_1 + \epsilon_2 \bar{x}_2 + \dots + \epsilon_t \bar{x}_t, \quad \epsilon_i \in \{0, 1\},$$
 (4.1)

is congruent (mod Λ_B) to sums from $\{\bar{b}_1,\ldots,\bar{b}_n\}$. Since sums (4.1) are also incongruent (mod Λ_B) to each other, they must represent different residue classes modulo Λ_B . Each of the 2^t sums (4.1) comes from a different residue class and thus $2^t \leq [\Lambda_C : \Lambda_B]$ or

$$2^t \le |\det B|. \tag{4.2}$$

Unfortunately, the above reasoning is wrong. The smallest counterexample ¹ is obtained for n=1, k=7 and B=(7). Then $2^t \le 7$ gives $t \le 2$ which is incorrect since $\{3,5,6,7\}$ is sum-distinct. The point is that $3\epsilon_1 + 5\epsilon_2 + 6\epsilon_3$ do not represent different residue classes modulo 7. (Take $\epsilon_i = 0$ for all i and $\epsilon_i = 1$ for all i.)

Let B be a regular square K-matrix of order n. We will say that C = (B|L) is of *residue type* if C is sum-distinct and if t column vectors of L are inside Π_B .

Theorem 2. Let C = (B|L) be of residue type and let t be the number of column vectors in L. Then, $t^{-1}2^t \leq |\det B|$. If $|\det B|$ is a prime or a power of two, then $t \geq |\log_2|\det B|$.

¹Any set from class Ω in [5] can be used as a counter example.

Proof: If the 2^t sums in (4.1) are inside Π_B , then $2^t \le |\det B|$ since $|\det B|$ is the volume of Π_B . Else, since each vector \bar{x}_i in (4.1) is inside Π_B and there are at most t such vectors, by pigeonhole principle, the number of sums in (4.1) cannot exceed $t|\det B|$.

Let $\mathcal B$ be the lower triangular equivalent form of B. That is, $\mathcal B=B\mathcal U$, where $\mathcal U$ is a unimodular matrix. Denote by $\bar\beta_1,\bar\beta_2,\ldots,\bar\beta_n$ the column vectors of $\mathcal B$ and by $\Pi_{\mathcal B}$ the corresponding fundamental parallelotope. Then, $\Lambda_B=\Lambda_B$ and $\Pi_B=\Pi_B$. To each diagonal element $\beta_{ii},\ i=1,\ldots,n$, of $\mathcal B$ we associate a sum-distinct set

$$\Gamma_i = \{\gamma_1^{(i)}, \gamma_2^{(i)}, \dots, \gamma_{k_i-1}^{(i)}, \gamma_{k_i}^{(i)}\}, \quad \gamma_{k_i}^{(i)} = \beta_{ii},$$

such that $|\gamma_j^{(i)}| < |\beta_{ii}|$ for all $j = 1, \ldots, k_i - 1$ and all elements of Γ_i have the same sign. Let I_n be the identity matrix of order n and denote by $\bar{e}_1, \bar{e}_2, \ldots, \bar{e}_n$ its column vectors. To each set Γ_i we associate $\bar{\theta}_{k_i}^{(i)} = \bar{\beta}_i$ and the $(k_i - 1)$ residual vectors

$$\bar{\theta}_{j}^{(i)} = \gamma_{j}^{(i)} \bar{e}_{i} + r_{i+1,i}^{(j)} \bar{e}_{i+1} + \dots + r_{n,i}^{(j)} \bar{e}_{n}, \quad j = 1, \dots, k_{i} - 1,$$

where $r_{i+\ell,i}^{(j)}$ are integers such that $|r_{i+\ell,i}^{(j)}| \leq |\beta_{i+\ell,i}|$ and $r_{i+\ell,i}^{(j)}$ and $\beta_{i+\ell,i}$ have the same sign. This is necessary to keep each $\bar{\theta}_j^{(i)}$ inside $\Pi_{\mathcal{B}}$. Then the $(\Sigma_{i=1}^n k_i)$ -element set $\bigcup_{i=1}^n \{\bar{\theta}_j^{(i)} \mid j=1,\ldots,k_i\}$ is sum-distinct. In other words, the 2^{k_i} possible sums of the ith component $\epsilon_1 \bar{\theta}_1^{(i)} + \epsilon_2 \bar{\theta}_2^{(i)} + \cdots + \epsilon_{k_i-1} \bar{\theta}_{k_i-1}^{(i)} + \epsilon_{k_i} \bar{\beta}_i$, $\epsilon_i \in \{0,1\}$, are distinct and each of these sums is incongruent (mod $\Lambda_{\mathcal{B}}$) to any other sum from a different component. Hence, we have $t+n \geq \sum_i |\Gamma_i|$. For any positive integer $\ell_i \leq \log_2(1+|\beta_{ii}|)$, the set $\{2^0, 2^1, \ldots, 2^{\ell_{i-1}}, |\beta_{ii}|\}$ is sum-distinct. From $|\Gamma_i| \geq \ell_i + 1$ we have $t \geq \sum_i \lfloor \log_2 |\beta_{ii}| \rfloor$ and thus the theorem.

5 Remarks

Residue-type sum-distinct sets form a subclass of all sum-distinct sets and thus the lower bound in Theorem 2 holds in general. If, for example, B_n in $C = (B_n|L)$ is a \mathcal{K} -matrix obtained from an Hadamard matrix $^2H_{n+1}$ as $B_n = \frac{k}{2}(\bar{1}_n\bar{1}_n^T - C_n)$ where C_n is the core of H_{n+1} , i.e.,

$$H_{n+1} = \begin{pmatrix} 1 & \bar{\mathbf{I}}_n^T \\ \bar{\mathbf{I}}_n & C_n \end{pmatrix},$$

then $n + \log_2 |\det B_n| = n \log_2 k + (n+1) \log_2 \sqrt{n+1}$. It is easy to see that D_n in (3.2) is of residue type such that for $n = 2^{\ell} - 1$ its n 'longest vectors' are column vectors of B_n .

²An Hadamard matrix H_n of order n is an n by n matrix with elements +1 and -1 such that $H_n^T H_n = nI_n$. A necessary condition for the existence of H_n is that n is either 2 or a multiple of 4.

By Theorem 2, bounds on m are as good as bounds on $|\det B|$. A well known and frequently used one,

$$|\det B|^2 \le \prod_{i=1}^n \left(\sum_{k=1}^n b_{ik}^2\right), \quad B = (b_{ik})_1^n,$$

is due to Hadamard. Since $|b_{ik}| \leq k$, from (2.1) and Theorem 2 we find

$$n^{-1}m \leq \log_2 k\sqrt{n} + 1 + n^{-1}\log_2 n + n^{-1}\log_2\log_2\frac{1 + (n^2 + n)k\log_2(1 + k)}{2}.$$

Thus, for large kn the ratio $n^{-1}m$ behaves as $\log_2 k\sqrt{n}$ in the case of residue-type sum-distinct sets as well. (Note that $\log_2 \sqrt{\frac{e\pi}{2}} \approx 1$ in (2.4).)

Conjecture 1: Let B be a square K-matrix of order n such that $|\det B|$ is maximum for given k and n. Then, there exists a residue type matrix C = (B|L) whose column vectors form a maximum cardinality sum-distinct set in $(K^n, +)$.

By the construction in Theorem 2, the vector congruence problem in Λ_B was translated into a componentwise vector congruence problem in a geometrically equivalent lattice Λ_B . It is possible, however, to use this construction to obtain sum-distinct sets with elements from K^n . For example, if n=3 and k=1, from H_{2^2} we obtain

$$C_3 = \begin{pmatrix} -1 & +1 & -1 \\ +1 & -1 & -1 \\ -1 & -1 & +1 \end{pmatrix}$$
 and $B_3 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

By using $B_3U_3=B_3$, the column-equivalent representation B_3 of B_3 is found as

$$\mathcal{B}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -2 \end{pmatrix} \quad \text{for} \quad \mathcal{U}_3 = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Clearly, the only residual vector in $\Lambda_{\mathcal{B}_3}$ is $\bar{\theta}_1^{(3)} = -\bar{e}_3 = (0 \ 0 \ -1)^T$. The corresponding residual vector in $\Lambda_{\mathcal{B}_3}$ is obtained as $\bar{\beta}_1 + \bar{\theta}_1^{(3)} = \bar{e}_1$ or as $\bar{\beta}_2 + \bar{\theta}_1^{(3)} = \bar{e}_2$ or as $\bar{\theta}_1^{(3)} - \bar{\beta}_3 = \bar{e}_3$ or as $\bar{\beta}_1 + \bar{\beta}_2 + \bar{\theta}_1^{(3)} = \bar{e}_1 + \bar{e}_2 + \bar{e}_3$. So, from \mathcal{B}_3 we obtain four sum-distinct matrices,

$$\begin{pmatrix}1&0&1&1\\0&1&1&0\\1&1&0&0\end{pmatrix},\quad\begin{pmatrix}1&0&1&0\\0&1&1&1\\1&1&0&0\end{pmatrix},\quad\begin{pmatrix}1&0&1&0\\0&1&1&0\\1&1&0&1\end{pmatrix},\quad\begin{pmatrix}1&0&1&1\\0&1&1&1\\1&1&0&1\end{pmatrix}.$$

The example suggests a general approach in design of sum-distinct \mathcal{K} -matrices. Let \mathcal{O} be an (m-n) by n matrix whose all elements are zero. If L and \mathcal{L} are matrices of residual column-vectors in lattices $\Lambda_{\mathcal{B}}$ and $\Lambda_{\mathcal{B}}$,

respectively, then there exist an n by (m-n) integral matrix \mathcal{W}_B and an (m-n) by (m-n) unimodular matrix \mathcal{U}_R such that

$$(\mathcal{B}\mid\mathcal{L}) = (B\mid L)\begin{pmatrix}\mathcal{U} & \mathcal{W}_B\\ \mathcal{O} & \mathcal{U}_R\end{pmatrix}.$$

As illustrated in the example above, vectors in L are obtainable from the ones in \mathcal{B} and \mathcal{L} by means of a unimodular transformation of order m.

References

- [1] D.G. Cantor and W.H. Mills, Determination of a subset from certain combinatorial properties, *Canad. J. Math.*, 18 (1966), 42-48.
- [2] T. Ericson and L. Györfi, Superimposed codes in Rⁿ, IEEE Trans. Info. Theory, IT-34 no. 4 (1988), 877-880.
- [3] P. Erdös, Problems and results in additive number theory, Colloque sur la Théorie des nombres, Bruxelles, 1955, Liege and Paris, 1956, pp. 127–137.
- [4] P. Erdös and D. Jevtić, Problem 91-2: partial solution, SIAM Review, 34, no. 2 (1992), 309-310.
- [5] D. Jevtić, Disjoint uniquely decodable codebooks for noiseless synchronized multiple-access adder channels generated by integer sets, *IEEE Trans. Info. Theory*, IT-38, no. 2 (1992), 1142-1146.
- [6] W.K. Kautz and R.C. Singleton, Nonrandom binary superimposed codes, IEEE Trans. Info. Theory, IT-10 (1964), 363-377.
- [7] B. Lindström, On a combinatorial problem in number theory, Canad. Math. Bull., 8, no. 4 (1965), 477-490.
- [8] B. Lindström, On a combinatory detection problem, *Publ. Hung. Acad. Sci.*, 9 (1964), 195–207.
- [9] R.J. McEllice, The Theory of Information and Coding, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1977.
- [10] M.D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. on Computing, 3, no. 4 (1974), 255-261.
- [11] P. Smith, Problem E 2536:, Amer. Math. Monthly, 82, no. 3 (1975), 300. Solutions and comments, 83, no. 6 (1976), 484.
- [12] S. Söderberg and H.S. Shapiro, A combinatory detection problem, Amer. Math. Monthly, 70 (1963), 1066-1070.