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ABSTRACT. A division of a cake X = X, U..-UX,, among n
players with associated probablity measures u,...,4n on X is

said to be:
(a) exact in the ratios of a1 : @2: ... : aa provided whenever
1<4,5<n, B = (ay/(er + -+ +an))
(b) e-near exact in the ratios ay : az: ... : ay, provided when-
;5 $(X5)
ever 1 <4, <n, |55k - oot <e
(c) envy free in ratios ay: a2: ...: an provided whenever
. . (X .
1<4,j<n, 854 >

A moving knife exact division is described for two players
and it is shown there can be no finite exact algorithm for n > 2
players. A bounded finite e-near exact algorithm is given which
is used to produce a finite envy free, e-near exact algorithm.

1 Introduction

The problem of “fairly” dividing a cake has a growing literature since being
introduced by Steinhaus in 1948 [27]. “Fairly” has a number of interpreta-
tions and the focus of this work is on two interpretations of fair: exact and
envy free.

We will assume that the cake X is a Lebesgue measurable compact set
in E™, and players Py, ... , P, are to divide the cake. Associated with each
player is a probability measure y; on X and we assume Lebesgue measur-
able subsets of X are u; measurable. Further we assume each measure is
absolutely continuous with respect to Lebesgue measure. ( This assump-
tion insures that the g; value of cake under a moving knife is continuous
with respect to the position of the knife.) All measures used are assumed to
come from this class, and all pieces considered are assumed to be Lebesgue
measurable.
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Definition 1.1: A partition of a cake (or a piece of cake) X = X;U...UX,

is envy free in the ratios a; : ag... : an,(a; > 0), among Py,... , P,
. . (X o
provided whenever 1 <i, j <n, ﬁéﬁ% > &

In particular, this implies that p;(X:) > (ai/{o1 + ...+ an)) pi(X).
Also if X;U...UX,, and Y U...UY, are both envy free in ratios
ai:iag:...: a, on different cakes then so are pieces X1 UY;, ..., X,UY,
on X UY. In most cases we will assume Yo; = 1 but situations will arise
in proofs where that is not the case.

Definition 1.2: A partition of a cake (or piece of cake) X = X;U...UX,
is exact in the ratios o : a3 : ... : an, (a; > 0), among P4, ..., P, provided
foralll <3, j<n,

1i(X;5) = (ajf (a1 + ... + an)) m(X).

Definition 1.3: A partition of a cake (or piece of cake) X = X;U...UX,
is e-near exact in ratios a; : @2 : ... : an,(a; > 0) provided for all 1 <
i, j<n, o
3
| X3 () = S| <.

A finite algorithm for envy free division of a cake among three players
each getting a third has been given by Selfridge [32]. A continuous algo-
rithm accomplishing the same task is found in [29]. Brams, Taylor and
Zwicker have described an envy free moving knife solution for four players
[8]. A finite envy free algorithm for n players with equal shares has been
given by Brams and Taylor [9]. Below we describe a different finite envy
free algorithm for n players in any given ratios.

Existence theorems for envy free and exact partitions with equal ratios
have been given earlier [1, 10, 29, 32]. We will describe a moving knife type
algorithm for exact division among two players for any ratio, show that no
such finite algorithm exists, and also give a e-near exact algorithm for n
players in any ratios. The last result utilizes a theorem of Bergstrom from
1930 [4] and is used to produce the envy free algorithm.

A finite algorithm is understood to have the following properties.

1. At each step, any player, say P;, can cut an existing piece A into k
Lebesgue measurable pieces Ay, ... , Ax of specified sizes p:(A4;) = a;
such that a; + ...+ ax = pu;(A). (This can also be viewed as k — 1
steps in which only one cut is made.)

2. This cut is to be made without consulting with any other player as
to their opinion of any of the A; before it is cut.
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3. After the cut is made all of the other players evaluate Aj,..., Ag.
On the basis of these values and all previously known values, the
algorithm specifies the next cut.

4. The above procedures are repeated a finite number of times to ac-
complish fair division.

We note that the definition above excludes any form of moving knife
which requires simultaneous and continuous evaluations by all of the play-
ers. Also, since no consultation is allowed, our class of measures is such
that after the cut (1) above is made, it may be the case that for £ # i and
any b; > 0 satisfying by + ... + bx = pe(A) that p.(A;) = b;.

Two possibilities arise. Some algorithms will have an absolute bound on
the number of cuts required to accomplish fair division independent of the
evaluations given in 3. Other algorithms will not have such an absolute
bound; although the algorithm will always terminate in a finite number
of steps, the number of steps required depends on the numbers given in
3. This paper contains algorithms of both types. In Section 2, continuous
variations of moving knife are utilized. In Sections 3 and 4 divisions are
given with finite algorithms, some bounded and some unbounded.

2 Cutting Portions On Which There Is Agreement

Although there are existence proofs for a partition of the cake on which
every player would agree that all n pieces are equal, producing algorithms
for such a division is another matter. The next two results address this
issue.

Theorem 2.1. Given a,8 > 0 with a + 8 = 1 and measures u; and ps
which are absolutely continuous with respect to Lebesgue measure, there
is a continuous algorithm which produces a partition X = X, U X which
is exact in the ratio o : B.

An outline of the proof is given. Player P, is asked to move two parallel
knives continuously across the cake so that an ath of the cake always lies
between the knives. At some point P> will agree.

With the cake X given in E™ we will cut by a pair of moving hyperplanes
perpendicular to the first axis. Thus it suffices to assume the y; measures,
i =1, 2, are distributed on [0, 1] of the real line with distribution functions
f1 and f, respectively. Extend each function periodically to all of Rt so
that for any @ > 0, [**' f; = 1.

Form all pairs (z;,z2) so that f::: ? fi = a. Since the measure is zero
on sets with Lebesgue measure zero, these pairs form a set containing a
continuous path in the plane on which z, is monotonically non-decreasing.
For example, Figure 1(a) shows a distribution function on [0, 1] which has
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been periodically extended to R*, and 1(b) shows the corresponding path
in the plane for & =1/3.

13

)

3

(a) (b)
Figure 1

For any (z1,z2) on the path with f:; ? fo = a the required agreement is
found. Assuming w.l.o.g. that for all such pairs f::' f2 < a =2 (where a

is rational) contradicts the fact that fom f2 = m. The cases for « irrational
can be established using a standard compactness argument on intervals
associated with a sequence of rational numbers which converges to a.

We remark in passing that one can also show by similar methods that
if parallel knives move across the cake with a fixed distance between the
knives, at some point the two players will agree on the amount of cake
between the knives.

We next show that no finite algorithm from the class described above
can produce the division accomplished in Theorem 2.1. We will think of
the algorithm as a tree and a path in the tree as a sequence of adjacent
vertices. At each vertex appears the pieces of X cut up to that point along
with the values placed by all players on those pieces. At a next vertex the
same sets appear except one previous piece is cut in two. Values of this
new collection of pieces are given there in agreement with conditions 1-3
above. At the top vertex appears the uncut set X on which all players place
value one. A branch will terminate when the pieces can be partitioned into
n subsets and assigned to the n players with their assessments providing
their prescribed share.

In the proof which follows, given an algorithm we show how to move from
one non-termintating vertex to a next prescribed by the algorithm where
the procedure also fails to terminate. Thus an infinite path can be traced
and the algorithm is not finite.

We show later in Theorem 4.3, using near exact divisions of Theorem 4.2,
that if a piece A is ever cut so that u;(A) = 0 while u2(A) > 0, using that
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piece a finite exact division can be accomplished between the two players.

Theorem 2.2. There is no finite algorithm which accomplishes exact fair
division for n > 2 players in the ratios oy, @y, ... ,0n, & > 0.

Proof: It suffices to consider the simplest case wheren =2 and oy = ag =
1/2. At step k (after k — 1 cuts) there are k pieces Aix, A2k, ..., Axk. Let
a;j = p1(Asi;) and by; = pa(Aij), so a1 = by = 1 since Aj; is the whole
cake. By renumbering when necessary we may assume that at step k the
piece Ax_j1x—1 is cut into the new pieces Ax_jx and Agx. In particular this
means that a;; = ajx_1 and by = bjx—1 for 1 <i < k— 2. A branch will
terminate at step k if and only if for some S C {1,...,k}

Zaik =1/2= bu. (2.1)

i€s icS
The algorithm cannot terminate at k = 1. Assume we are at a vertex at
which we have k — 1 pieces and values a1x—_1,...,2—1k—1 and bix—1,...,

br_1x—1 such that the algorithm does not terminate. We may suppose Pa
cuts Ax_1x—1. The algorithm can specify the values bx_1; and bgx, and the
branches depend on the values ai—1x and axx. We may assume that bx—_1x
and by are neither zero. If P» is told to cut a piece of measure 0, P, may
agree and nothing has changed. We will see that ax_1x and ay. are always
chosen non-zero along our path. It follows that all a;; and b;; are non-zero
along the path.

Suppose along a path the process first stops at a vertex where there is a
set S for which (2.1) holds. Then we may assume k—1 € S but k & S since
if S contains neither (or equivalently both by considering its complement)

then 1

Zaik—l = Zaik =3= Zbik = Ebc‘k—l

iES €S icS i€ES
which contradicts the fact that the algorithm did not terminate at step
k-1.

We now describe how to follow the algorithm from one nonterminating
vertex to a next that also fails to terminate. If T C {1,...,k — 2} the sum
Y ier Gik—1 may or may not equal 1/2. Let g = min [1/2 — 3;cp aik—1]
where the minimum is over all such T for which the sum is not 1/2. So
7>0. (Fork=2let n=1/2.)

Regardless how the algorithm prescribes bx—_1x and by there is (in ac-
cordance with the comment following 1-4) a next vertex where ax_1x =
%min(ak_m_l,n). Then for any S as described above with k —1 € S and

kds, .
1 1

ies i€S—{k—1}
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is ag—1x > 0if Y aik-1 =3 L and at least 1 otherwise.
Hence, there is no set S satisfying (2. 1) at this next vertex. Continuing
in this way we produce an infinite path in the tree.

3 Cutting Portions On Which There Is Near Agreement

In this section we give an e-near exact finite algorithm for dividing a cake
among n players and arbitrary ratios. Furthermore, once ¢ is set, the algo-
rithm has an absolute bound on the numbers of steps required. The process
utilizes a theorem originally given by V. Bergstrom [4] and later generalized
[16] concerning rearrangement of vector sums.! The work of this section
also provides the tools for an envy free algorithm described in Section 4.

Theorem 3.1. Given a set of vectors V = {v;}¢_, in E? such that for all
i, |lvil] < M, and Z 1% = 0, there is & permutation II of {1,2,...,t}
such that all of the vectors we=3Y1_, L have magnitude ||w,| < Md.

For a proof see [16] pages 15 and 16.

With Bergstrom'’s theorem we can now describe a finite algorithm accom-
plishing near exact division. We can also observe that for a fixed e there is
an absolute bound on the number of steps required by the algorithm.

Theorem 3.2. Let py, po,...,un be probability measures on a cake X.
Given € > 0 and positive numbers ay, ... ,a, With > a; = 1, there is a
bounded finite algorithm which produces a partition X = X;UX,U...UX,,
which is e-near exact.

Proof: Assume p1(X) = ... = p,(X) = 1. First have P, cut X into
k pieces with equal y; measure, where k will be chosen later, then have
P, reduce (by no more than k — 1 cuts) those pieces so that no piece
has a po measure exceeding 1/k. Repeat for all n players to produce the
partition X = A U AU ... U A, t < nk, with p;(A;) < 1/k for all
i, J. Set 25 = nz,__l p.(A,) and define e,, by pi(4;) = z; + &5, We
see that 3°° i1 Ti = E,-l Y mi(4y) = 2 X0, Ej—l #i(4;) =1 and
i€ = ZJ_I (#i(Aj) — ;) = 0. Also, |e;;| < % since both z; and
1{A;) are bounded by 1/k.

Then whenever 1 < j < ¢, the vector v; = (ey,...,€n;) satisfies [lv;|| <
ﬁ Assume the vectors v; are ordered (which can be done using a number
of steps depending on nk) so that 3.1 applies. 'I‘hen Il E]—O vl < :/z
whenever 1 < r < ¢. Since for all p, 0 < zp, < k, there is an mcreasmg
sequence 0 =ty <ty <it2 <...<t, =t so that IZF,‘_‘_H zp—a| < 1,
1<i<n SetX;= U:,’;g,_,.H Ap. Then |ui(X;)—aj] = |E;j=t,--1+l(zp+

1The authors are indebted to Paul Erdés for calling this theorem to our attention.
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275’/ 3

€ip) — | <+ + =11+ 2n3/2). The proof is complete by choosing

k> 21+ 2n3/2)

4 Cutting Envy Free Portions

The following theorem produces a division which is both envy free and
near exact. It is proved by induction on the number of players, which
introduces a complicating factor that as a piece is being shared in an envy
free manner by a subset of the players, the remaining players who don’t get
a share of this piece must remain satisfied with the overall scheme. This is
accomplished by proving an even stronger result which allows for observers
who don’t get any cake but must view the division as near exact. Although
we may assume that the measures are normalized so that ;(X) = 1 on the
whole cake, we will not do so for the piece X in the theorem below in order
to be able to apply the induction hypothesis to smaller pieces. We may
assume however that X and consequently all subpieces of X have measure
at most one.

Theorem 4.1. Given any piece of cake X, any € > 0, players Py, P, ... , Py,
Q1,...,Qm, and any ratio of positive numbers a;: ag: ---: on, there is a

finite algorithm which assigns pieces Xi,..., Xy to the players Py,...,Pn

respectively which is

(1) envy free among P,,... ,P, and
(2) e-near exact among Py,...,P, and Qy,...,Qm.

Proof: The theorem is trivial for n = 1 and any m, P; gets all of X.
Assume the theorem is true any time less than n players share X.

Using Theorem 3.2 we can produce an e-near exact partition Xj,..., X,
intheratiosa: asg: ..., : a, where all n+m players Pi, ..., P, Q1,...,0m
view the division as e-near exact. (The proof of Theorem 3.2 is carried out
in E™*t™ but only n pieces are cut.) Moreover, by allowing P; to make a
last series of cuts we may assume p1(X;) = ozp1(X) for 1 < ¢ < n. If all of
the players Py, ..., P, agree with Py, that is if p;(X;) = a;u;(X) whenever
1 <i < nand 2 <j < n, then the partition of X is also envy free and we
are done.

Otherwise there is a piece A which has been cut, on which there is dis-
agreement among some of Py, ..., P,. But cutting A into smaller pieces if
necessary, we may assume that A is such that u(A)/u(X) < €¢/4 where p
without a subscript denotes the measure of any of the players Py,..., P, or
@Q1,...,Qm throughout the proof. Also, since there is some disagreement,
there is a k, 1 < k < n such that:

m(4) _ p(4) oy = m:+1(A) S>> pn(4) _
mX) - u(X) T e (X) T pn(X)




In particular we may also assume a/(1 — a) < €/4.

We then divide the remaining cake X — A into pieces B and C in a near
exact manner, have Py, ..., P; share AU B in an envy free manner, have
Pyy1, ..., P, share C in an envy free manner and maintain a close enough
degree of near exactness to guarantee envy freeness among all of Py, ..., P,
as well as e-near exactness. This is possible since Py,..., P, view A as
larger than any of Pi41,..., P,.

To this end, scale the o; so that ay+- - -+ay, = 1, and let a1+ - -+ag = a.
If we set m; = min{a;} and my = min{u(X)}, A = min{e/4, m;(a - b)/2}
we can choose €; so that 0 < ¢; < min{mz¢/8, mm,A (1 —a)/2}.

We will write z = y + Q(e;) only if |z — y| < . In particular, if z =
¥+ Qe1) and |8] < 1 then Bz = By + Q(ey).

We now partition X — A = BUC in ¢;-near exact ratio 2=24+A: 1=a_A

1—a l1-a
so we know;
wB) _a-a
wWBUC) 1-a A+ )
MC) _1-a
WBUC) - 1-a A +Q(ey).
Fianlly, by induction P;,..., P, can share AUB = X, U.-.U X, envy
free and ¢;-near exact in the ratio a;: ... : a, and Piiy,. .., P, can share
C = Xi41U---UX,, envy free and ¢;-near exact in the ratio Ok41: .. ! Qp.

l-a

Thus, )L{J'B =% 4+ Q) for 1 < i <k, and %{%‘))' = % 4 Q(¢;) for

It must be shown that no player P;, ..., P envys a piece given to any of
the players Py, ..., P, or vise versa, and that the division is e-near exact.
Whenever 1 <4, j<k<h,I<n

(X5)2(AU B) + 9(er)

a
= a0+ m(BUO)

x —

a, A) +0(e)] + 0er)

l—a

= ZlomX) + m(X)(1 - 0) ($2 +4)1+ 2006
and so
1(X5) = eps(X) = Zp(X)(1 - a)A +20(e1). M
Similarly, ‘
m(Xn) — anps(X) = — 72— p(X)1 - )A +20e1),  (2)
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w(Xi) — angu(X) = angu ()3 =~ & (T2 1+ 20%), - @)

l1—a 1
m(X;) — ogm(X) = o:m(x) a- ?_(z— W
+ %(1 — b (X)A + 20(ey). )

Also, for any measure p, including those associated with the Q;, and any
Hhlsjsn

W) = ) = (@ (12

1—-a

) + QAU(X) + Qu(A)) + 22(er). (5)

The proof is completed by verifying that with the choices of a, A and ¢,
above that the right hand sides of (1) and (3) are positive, (2) and (4) are
negative making the division envy free, and the right hand side of (5) has
magnatude less than ex(X) guaranteeing e-near exactness.

To accomplish envy free fair division in ratios a; : ... : o, among
P,..., P, apply the theorem with m = 0. Thus we have:

Theorem 4.2. There is a finite algorithm which accomplishes envy free
and e-near exact division among n players in given ratios a; 1 a2 : ... : ay.

In [33] Woodall showed how to use a cut piece of cake on which two
players disagree to accomplish a division of the cake in which each of n
players felt they received strictly more than 1/'nth of the cake. We give
a similar result in the spirit of the serendipity of disagreement. Contrast
this result with that of Theorem 2.2 where we know there are two measures
where the following hypothesis cannot be satisfied.

Theorem 4.3. Given a piece A of a cake X such that py(A) = 0 and
u2(A) = a, 0 < a < 1, there is a finite algorithm which produces exact fair
division of X in the ratio oy : as, a; > 0, @y + g = 1.

Proof: Set aside A and divide X — A = Y; UY}; in e-near exact portions

in the ratio a; — 2¢ : ap + 2¢ (where € will be chosen sufficiently small as
described below). Then

r1(Y1)

X —A) - 2€)| = [p1(%1) = (1 —2¢)| <¢

_and
a1—3e<m(Y1)<a1—e.

It follows that x;(Y2) > a2 + €. Also I“—:‘Egé%y — (a2 + 26)| < € and since
p2(X — A) =1 — a we have (a2 + €)(1 — @) < u2(¥2) < (az + 3¢)(1 — a).
Thus for € sufficiently small we know 6e < pua(Y2) < az.
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Now P, can divide Y2 into 2 or more pieces all of which have us measure
between 3¢ and 6e. At least one of the pieces, say Yy, satisfies u; (YY) > 3e
since p1(Y2) > az > pa(Y2). Let Py cut a piece Y§ from Y so that
#1(Y1UY3") = ;. Furthermore, a2 > p2(Y2 —Y3') > (az+¢€)(1 —a) —6e =
a2 —ale+az) —5¢ > ag —a for e sufficiently small. This insures that P, can
cut A= A; U A3 so that p» ((Yg_Yz”) U Al) = ag while y, (Yl UY2”U Az) =
aj. (]
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