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ABSTRACT. A graph G having n vertices is called a chordal ring
if its vertices can be arranged in a Hamiltonian cycle 0,1,2,...,
n—1 and there is a proper divisor d of n such that for all vertices
i and j, 7 adjacent to j in G if and only if i+d is adjacent to j+d.
(addition modulo n) We consider here the efficacy of coloring
the vertices of such a graph by the greedy algorithm applied to
the vertices in the order of their appearance on the cycle. For
any positive integer n let L, denote the set of all permutations
of the set {1,2,...,n} together with the adjacency relation ~
defined as follows: for o and 7in £,,, 0 ~ T + there is an integer
i such that ¢ — i = 7 —i. (here o — i denotes the permutation
of length n — 1 obtained by deleting i from o.) In this paper
we study some of the properties of the graph (X,,~). Two of
the results obtained are the following: Theorem (i) (Xn,~) is
a chordal ring for every positive integer n; (ii) the chromatic
number of T is 5 but the greedy algorithm colors X5 in 9 colors.

1 Introduction

The classes of graphs known as chordal rings and generalized chordal rings
have been studied in (1] and [2] with respect to the construction of graphs
having a large number of vertices for a given degree and diameter. In this
paper we will consider a natural coloring problem associated with chordal
rings. The chromatic number of a graph is an important parameter which
occurs in many contexts and applications involving graphs such as schedul-
ing. Since the determination of the chromatic number of a graph can be, in
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general, a large and difficult problem computationally (and is well-known
to be NP-complete [4]), it is important to attempt to find efficient methods
for such calculations for commonly occuring, significant classes of graphs. A
common and useful way to color the vertices of a graph is to list the vertices
in some natural linear order and then color them one by one in this order
by the “greedy algorithm” in which a vertex is assigned the first available
color not already assigned to any of its neighbors which precede it in the
ordering. The efficacy of this method depends completely on the particular
ordering chosen, and as is well-known, the number of colors used by this
method may far exceed the actual chromatic number of the graph. As a re-
sult, one might try to find, for particular graphs or classes of graphs, “good”
orderings of the vertices for which the greedy algorithm does color the graph
in the minimum (or at least a small) number of colors. This point of view
has been amplified and pursued by the work of many other authors; we
cite [3], [7], and [8] as useful references in this context. Now, since the
defining structure of chordal rings presents the vertices in a natural order
(in a cycle), and because of the underlying symmetry with respect to this
order, it is an obvious idea to color such graphs using the greedy method in
conjunction with this natural order. The family of graphs studied in this
paper shows that this method will not always color a chordal ring in the
minimum number of colors. These graphs, which are permutation graphs,
also have many other interesting properties, and are the main focus of this
paper.

We will now set down the basic concepts, notation, and terminology to
be employed in the sequel, for which our basic reference is [5)].

Throughout this paper the term graph refers to a finite, undirected graph
with no loops and no multiple edges. We often denote a graph G by writing
G = (V, E), where V denotes the set of vertices of G and E denotes the set
of edges of G. If W C V, when we wish to regard W itself as a graph, it is
always as an induced subgraph of G. Following [2] we say that a graph G
is a chordal ring if the vertices of G can be ordered as vp,v1,v2,... ,¥n_1,
where n = |V|, such that v, is adjacent to v;;; forall i =0,1,2,...,n—1,
and there is a proper divisor d of n such that, for all 0 <4, j <n -1, v
is adjacent to v; in G if and only if v;4q is adjacent to vj4q in G. (here
addition is modulo ») Such a number d will be called a period for G (with
respect to the given ordering of the vertices of G).

Let G = (V, E) be a graph and let k be a positive integer. A k-coloring
of G is an assignment, to each of the vertices of G, of one of k given colors,
so that no two adjacent vertices of G are assigned the same color. Such a
coloring is equivalently described as a function f: V — {1,2,..., k} having
the property that, for any vertices v, w of G, if v is adjacent to w in G then
f(v) # f(w). In this latter formulation, f(v) is the “color” assigned to v.
When it is more appropriate. we will use letters like a,b,c, ..., instead of
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numbers, to denote colors. The smallest positive integer k for which G has
a k-coloring is called the chromatic number of G and is denoted as usual
by x(G). A subset S of V is cliqgue in G (also called a complete subgraph
of G), if every pair of vertices of S are adjacent in G. The largest size of a
clique in G is denoted by w(G) and is called the cliqgue number of G. The
clique cover number of G is the smallest positive integer r such that V' is
the union of r cliques; this number is denoted by k(G). A subset S of V'
is called an independent set in G (also called a stable set in G) if no two
vertices of S are adjacent in G. The largest size of an independent set in
G is denoted by a(G) and is called the stability number of G. Note that
x(G) can also be described as the smallest positive integer k such that V' is
the union of k independent sets. Two obvious inequalities concerning these
notions are that w(G) < x(G) and |V| £ x(G)(G).

In a graph G = (V, E), for any vertex v of G, we let Ng(v) = {w e V:w
is adjacent to v in G}. Ng(v) is known as the set of neighbors of v in G, or
as the neighborhood of v in G. The number |Ng(v)| is called the degree of v
in G and is denoted by dg(v). When the graph G is understood from the
context, these will be denoted by N(v) and d(v) respectively. The largest
of the numbers d(v), for v in G, is denoted by A(G). If all the vertices of
G have the same degree k, we say that the graph G is regular (of degree
k). The well-known inequality x(G) < A(G) + 1 is an elementary, useful
connection between the concepts of degree and chromatic number.

Let ! be a positive integer with { > 3. A cycle of length l in G is a
sequence of distinct vertices v;,vs, ... ,% of G such that v; is adjacent for
alli=1,2,...1—1 and v, is adjacent to v;. If these are the only adjacencies
among the vertices vy,vs, ... , v, the cycle is called a chordless cycle. We
recall Brooks’ theorem, which states that, for any connected graph G which
is not equal to a complete graph or a chordless cycle having an odd number
of vertices, we have x(G) < A(G).

We now recall the following simple procedure for coloring the vertices of
a graph G. Suppose we have a given listing or ordering of the vertices of
G : v,vs,...,7,... and that we have a given list of (sufficiently many)
colors 1,2,3,.... We assign colors to the vertices of G as follows: color 1
is assigned to v;. We then inductively assign to v; the first color in the
list of colors which has not already been assigned to any of the neighbors
of v; which precede v; in the given listing of the vertices. This procedure
is usually referred to as the greedy algorithm (with respect to the given
ordering of the vertices).

Suppose G is a chordal ring having n vertices. Thus the vertices of G can
be labeled as vg,v;,v9,...,v,—1 such that v; is adjacent to v;,q for all ¢
(addition mod n), and there is a proper divisor d of » such that, for any two
vertices v; and v; of G, v; is adjacent to v; if, and only if, vi1.q is adjacent to
vj+4 (again, additions are modulo n). Suppose we apply the above greedy
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algorithm to color the vertices of G in the cyclical order in which they are
presented vg, vy, v2,... ,9,_1. Will this color G in the minimum number of
colors? Under what conditions? If not, to what extent can the number of
colors used by the greedy method differ from the chromatic number of G?
We will see how the permutation graphs I,,, described in the next section,
shed some light on these questions.

2 The graph I, as a chordal ring

For any positive integer n we let I, denote the set of all permutations
of the set {1,2,...,n}. The set {1,2,...,n} will be denoted by [n). We
think of a permutation of a set as simply being an ordered list, from left
to right, of the elements of the set. If o is a permutation of [n] we will
exhibit o as (01,02, ... ,0,). When there is no danger of ambiguity we will
sometimes omit the brackets and commas in using this notation. (thus, for
example, (5,3,4,1,2) and 53412 denote the same permutation of the set
{1,2,3,4,5}) The element o; is referred to as the element in position i of
o. If z and y are elements of [r] and if o € I,,, we will sometimes write
z <y in o to indicate that = occurs to the left of y in o.

If o € Z, and if I C [n] then o — I denotes the permutation of the
set [n] — I obtained by deleting the elements of I from ¢ and considering
the remaining elements, in the order they appear in o. For example, if
o = 536412, then o — {1,6} = 5342. In the case of a singleton set, we will
write o —z instead of o — {z}. The notation o | S (the restriction of o to S)
denotes the permutation of the set S obtained by considering the elements
of S in the order they appear within o. (thus o | § = o — ([n] — S).) If
o is a permutation of the set [r] and if 7 is a permutation of a subset S of
[n], we will write 7 <o ifT=0|S.

We will consider £, as a graph with the adjacency relation ~ defined as
follows. Let 0,7 € £, with 0 # 7. We define ¢ ~ 7 « there exists an
element z of [n] such that ¢ —z = 7 — z. When we refer to the graph T,
it is always with respect to this adjacency relation ~.

The ordering of £, relative to which (Z,, ~) is a chordal ring will now
be described. This ordering has the property that each permutation can be
obtained from its predecessor by an interchange of two consecutive symbols
(including the first from the last). This ordering is due to Johnson [6] and
Trotter [10], and is described and studied in detail in 1.1 of [9]. As in
[9]), we will refer to this ordering as the Johnson-Trotter ordering of T,.

The permutations of [r] are listed as 0(®,o(V), ... ,o(™-1)_ This listing
is described recursively, beginning with the list 12,21 of X, as follows.
Suppose we have the list of all permutations of [n] : (®,o(1) .., o(n-1),

To get the list for [n+1], each o(¥) is replaced by a consecutive group of n+1
permutations of [n + 1], namely the ones obtained by inserting the number
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n +1 into o{® into each of the possible n + 1 positions. These insertions
are done from left to right if ¢ is odd and from right to left if ¢ is even.
This procedure is illustrated in Figure 1. The permutation which appears
r’th in this list, ("), is said to have rank r. The rank of a permutation 7
will be denoted by p(7). Thus, for any 7 € Z,, p(7) is the unique integer
r € {0,1,2,...,n! — 1} such that 7 = o("). Note that, if 7 € E,, and if
7/ = T —n, then, assuming that the number n appears in position j of 7,
we have that p(7) = np(7')+j -1 if p(7’) is odd, and p(7) = np(7')+n—j
if p(7') is even. These latter facts serve as the basis for a simple algorithm
for finding the rank of a given permutation of [n], and for finding (given n
and 7) the permutation of [r] whose rank is r. (see [9])

We note that if o, 7 € £,, and if o can be obtained from 7 by interchanging
two consecutive symbols, then ¢ is adjacent to 7 in (Z,,, ~). Therefore the
Johnson-Trotter ordering lists all the elements of X,, in a Hamilton cycle
with respect to this graph.

- 1534
X 1243
123 | 143

L 4123
[ 1630
- 2
12 132 | 1322

[ 1324
- 3124
3142
- 312 ) 3412
| 4312
| i
. 1
321 | 3p4;

| 3214
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[ 21 231 2431
| 4231
B
13

| 2134

Figure 1: Generating permutations in the Johnson-Trotter order

Before proceeding further we would like to indicate diagrams for the
graph ¥, in the cases n = 3 and n = 4. These are shown in Figure 2 and
Figure 3 below. In each case we have listed the vertices clockwise in a cycle
in the Johnson-Trotter ordering.
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213 132
231 312

321

Figure 2: The graph X3
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Figure 3: The graph ¥,
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For convenience, we will refer to the Johnson-Trotter ordering of £,, as
the JT-ordering of L,,.

It is clear that, for any =, the graph X, is vertex transitive; that is, for
any 0,7 € ¥, there is an automorphism from I,, onto itself which maps
o to 7. Two other elementary properties of the graph ¥, are contained in
our first proposition.

Theorem 2.1. Let n be any positive integer with n > 3. Then
(i) for all 0 € £, we have d(a) = (n — 1)?, and
(ii) n < w(Zy) < x(Zn) < (n—1)2

Proof: All the neighbors of o can be described as follows. Let i € [n]
and j € [n] such that ¢ # j. Let o(i — j) be the permutation obtained
from o by selecting the element which lies in position ? of ¢, and moving
it so that it occupies position j, leaving the other elements of o in the
same relative order as they were in o. Of the n(n — 1) permutations so
described, it is easy to see that the only duplications that occur are that
o(i = i+1) =0o(i+1 — i), so there are exactly n(n —1) — (n — 1) distinct
neighbors of o in ,. This proves (i). The first inequality in (ii) follows
from the fact that, for any 7 € X,,_;, the set {o € Z,: 7 < o} is a clique in
¥, of size n. The second inequality is standard and the third follows from
(i) and Brooks’ theorem. a

The property of the JT-ordering which enables us to prove that %, is a
chordal ring involves the following concept.

Definition: Let {o(®,0(!)),...,o(*=1} be an ordering of the elements of
Y., and let d be a positive integer such that d < n. This ordering is said to
be d-periodic if, for all k, such that 0 < k, ! < n!—1, and for all 4,5 € [n],
if a(k) = ag.l), then af'”’d) = ag.”d) . (here addition is interpreted as modulo
nl. )

Lemma 2.2. Let n and d be positive integers such that d divides n and
let 0@, 60 ... o(™-1 be an ordering of the elements of ¥, which is
d-periodic. Then d is a period for the graph (X,,~) with respect to this
ordering.

Proof: Suppose o(¥) ~ ¢{) in %,. There exists z € [n] such that o(*) —
z = o — z. Suppose that = occupies positions ¢ and j in ¢(® and ¢®
respectively. We may assume that i < 7. Then we must have that aJ+d) Y.
The first three of the above equations for k + d and [ + d then imply that

(k) = o for all 7 < i, O Sk) = a(l) for all r such that i < r < j, and

a’$~ ) = a,(-) for all 7 > j. Of course we also have that agk) =¥ (= z).

Because the ordering is d-periodic these last four equations all hold with k
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and [ replaced by k + d and ! + d respectively. Now, let y = a(k+d) So we
also have that o(¥+9) — 3 = o(+4) _ 4 and hence that o(k+d) ~ g(t+d) in
3,. Since d divides n, the adjacency of o¢**%) and o(*+9) for all k and I
also implies that of o(*) and o(®). 0

Lemma 2.3. Let n > 3, and let d = . Then the JT-ordering of £, is
d-periodic.

Proof: We use induction on n. For n = 3, the JT-ordering is o(® =
123,00 = 132,002 = 312,6(® = 321,06(*) = 231, and ¢® = 213. To
check that the JT-ordering is 2-periodic, we must check, for each of the 15
pairs of elements {k,1} from the set {0,1,2, 3,4, 5}, that whenever 1, j € [3]
and a(k) , we also have that a(k"'?) = U(H'z) For any given k and [,
there are three such occurrences i, j to check. To illustrate, consider k = 2,
I = 5. We have that o{? =3 = o 0@ =120 and 0@ =2 = a§5).
We then note that (addition modulo 3!), (2+2) =2= a§5+2), a§2+2) =3=
a§5+2) 2+ _q a§5+2). The other 14 cases are checked similarly.

,and o4
Let n > 4, and assume that the lemma is true for n — 1. We prove it for
n. Let k and ! be any two integers such that 0 < k, I < n!—1, and let ¢

and j be any numbers in [r] such that afk) = aj(.l). We must show that
Note that, in the JT-ordering of ¥,, the position that the number n
occupies in each of the permutations ¢(®,0(1),6(), ... repeats with a pe-
riod of 2n, as it sweeps alternately from right to left to right through
all the positions from 1 through n. Since d is an even multiple of n,
(d= n(m) it follows that n occupies the same position in o(*) that
it does in a("‘“’) and the same position in o that it does in o9, In

particular,if a(k) J(l) = n, then a('”'d) §H'd) = n. So (e) holds if
o) =l =

So we may assume that cr(k) ;-‘) = z, for some z # n. There are 4
possibilities for the positions of n relative to = in o(®) and c®:

Case 1: z < n in both o{¥) and o(®).
Case 2: z <nin o® and z > n in o).
Case 3: z > n in both 6(® and o(").
Case 4: z > nin o and z < n in o®.

Since Cases 3 and 4 are similar to Cases 1 and 2, we will only verify
that (e) holds for the first two cases. For notational convenience, for any
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o € I, we will let ¢’ denote the permutation ¢ — n in X,_;. Dividing
by n we can write k = kyn + r, where 0 < r < n, and Il = ljn + s, where
0 < 5 < n. Note that, because of the way the JT-ordering is defined, we
have that (6(®) = o(%1) where the latter denotes the element of £,_;
of rank k; in the JT-ordering of X,_;. (This equation holds even when
k > nl, where the integers k and k; are interpreted modulo n! and (n — 1)!
respectively, as the reader can easily verify). Similarly (¢®)’ = o) in
Yn—1-

Case 1: Here (oV); = (a(l));. = z. So, in ¥, _; we have that or,(k‘) = o';-l‘) .

a.(’=1+dl) _ (li+d1)
- ?

By the inductive hypothesis it follows that, in £,_,, o; g;

where di = &2 Now k+d=k+ndi = kin+din+r= (ki +di)n+r
and similarly { +d = (I; +d;)n+s. It follows that the permutation g(*+9)
of ,, is obtained by inserting the number n into the permutation o{¥1+d1)
of ¥,_1, and similarly for o¢*+%, Since n has the same position in o(¥+)
and o) as it does in 0® and o respectively, it follows that n occurs
to the right of position i in o(*+9), and to the right of position j in o(+9).
Therefore a§k+d) =g+ 9) gnd a;-H'd) = o{1*)_ (where the right-hand
sides refer to the JT-ordering in £,,_1). So the statement (o) follows directly
from the inductive hypothesis.

Case 2: In this case n is in a position to the right of position ¢ in o(¥),
and to the left of position j in o®, In this case, we have that, in ¥,_4,
a,('“) = a§'l)1. So, by the inductive hypothesis, a,(k”'d‘) = ag.'_‘fd‘). Now,
as noted above, o(*+9 (respectively o{/+?) is equal to g(¥1td1)(glh+d))
with n inserted. Since n has the same position in o(**9) as it does in o(¥),
(to the right of position ), and the same position in c¢*% as it has in
o®, (to the left of position j), it follows that o{*+? = g{*1*91) and that
ay*d) = a(-'_"l"d‘). Since the right-hand sides of these last two equations are
equal by tfle inductive hypothesis, we see that (e) holds in case 2. O

An immediate consequence of 2.2 and 2.3 is the fact that X, is a chordal
ring.

Theorem 2.4. Let n >3, and let d = &. Then the graph I, is a chordal
ring of period d with respect to the JT-ordering.

By examining Figures 2 and 3 it becomes apparent that Theorem 2.4
does not give the smallest period for Z,, with respect to the JT-ordering
when n is either 3 or 4. In fact 1 is a period for I3, and 4 is a period
for X4, both of which are half the size of the period given by 2.4. It is of
interest to note however, that 2.3 does give the smallest d for which the
JT-ordering is d-periodic in these two cases. For example, in ¥3, we have
ago) = agl) whereas a{l) # agz), showing that the ordering is not 1-periodic
for n = 3. In particular, the converse of 2.2 above does not hold. For n = 5,
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Theorem 2.4 does give the smallest period for the graph Xs: In this case,
%’ = 40. Clearly the smallest positive period for s must divide 40, so it is
enough to check that neither 20 nor 8 is a period. We observe that, in %5,
o(®) = 12345 is adjacent to o(® = 12453, but (20 = 41325 is not adjacent
to 0(®® = 14352, and 0(® = 12453 is not adjacent to o(18) = 45123. We

have been unable to determine the smallest period for general n.

3 The graph X,, as an example for the coloring problem

In this section we will see that the graph X,, furnishes us with with an ex-
ample, in the case n = 5, of a chordal ring for which the greedy algorithm
does not use the minimum number of colors. While the existence of such an
example may not be so surprising, the fact that there is a graph having this
property which is vertex transitive and which has the symmetry and struc-
ture of ¥5 is somewhat more interesting. It is clear that any chordal ring
on which the the greedy method does not color the vertices in 2 minimum
number of colors must have chromatic number at least 3. Our example, Zs,
has chromatic number 5.

a
123

213 132
231 312

321
a

Figure 4:
The result of the greedy method of coloring £3 in the JT-order

If we apply the greedy algorithm to color the vertices of the graphs X3
and X4, in the JT-ordering, we see that 3 and 4 colors respectively are
required. The results are shown in Figures 4 and 5 where the colors used
are denoted by a, b, ¢, d. Together with the first inequality in 2.1(ii) above,
this shows that x(X3) = 3 and x(Z4) = 4. The case n = 5 proves to be a
more interesting one. It is a routine matter to determine that the greedy
algorithm, in the case n = 5, requires 9 colors. We explicitly list the 16
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neighbors of ¢ = 12345. Then, while generating the remaining elements
o®) for k =1,2,...,119 of S5 by the Johnson-Trotter method, we generate
the neighbors of o(®) by applying the natural automorphism of ¥5 which
takes a(®) to 0(*) to the neighbors of o{®). We then assign a color to o(%),
Denoting the colors used by a,b,c,d, ..., the reader can check that the
greedy method colors the vertices as follows in the JT-order:

mhgi@mhdqgimqqhq¢mhqqhqq¢th&ﬂh
%qﬂmhqmgm¢mqiﬂiqhmq¢qhmghmqigh¢
mﬂqhiqmﬁmqhﬂthqi&igmhqm¢qﬂhﬂhq
miﬂhqggqiﬂgmqmmhimﬁqghﬁhm@&

d a b
2134 1234 1243

{ ] »
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B

m\k.
C ; 1"""./" TR\ d
2413 ;ﬁ_‘//#’i‘:r“‘:“‘\\“\}:i\\—' 4123
‘,f ",, 7/ "\* <S "“—""' [
N

Y/ \

77NN
Q4231 °\( \ /’ \“s'\'."s\\p
’\Q 7 /:\;

Qﬁf \
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NS~ 3124 d

‘V_:{{%éfﬂg 2
K “V X (/’/’

WY H” 8142 a

L]
1/
XN\ N DT
XS 3412

4321 43]2
%§21 & 5

—
C

Figure 5:
The result of the greedy method of coloring 4 in the JT-order
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To show that X5 is the desired example,we must show that it has chro-
matic number less than 9. We originally did this by applying the general
deductions found in 3.1 - 3.4 below, which imply, among other things, that
x(Zs) < 8. We subsequently found, by a rather ad hoc method, that, in
fact, x(¥s) = 5. Because the deductions contained in 3.1 - 3.4 seem to
be interesting in their own right, and because they provide a possible lead
to finding an optimal way to color ¥, in general, we have included this
material (as well as the ad hoc coloring).

In the following lemma, we employ the following concept of homomor-
phism. Let Gy = (W, E1) and G2 = (Va, E») be graphs. A homomorphism
from G, to G3 is a function f: V; — V5 which has the property that, for all
v,w € G, if v is adjacent to w in Gy, then f(v) is adjacent to f(w) in Ga.
(note that, in particular, adjacent vertices cannot have the same image)

Lemma 3.1. Let G = (V, E) be a graph, and let m and n be positive
integers. Let V1,Va,... ,Vy, be disjoint subsets of V such that V = |JI~, V..
Let H = (W, F) be a graph with x(H) = n > m. Suppose that, for each
i =1,2,...,m there is & homomorphism f;: V; — H such that, for all
t,J < m with i # j, we have, for any = € V; and for any y € Vj, if z is
adjacent to y in G then fi(z) = f;(y). Then x(G) < n.

Proof: It is no loss of generality to assume that n = m. Otherwise, we
could add n — m isolated vertices vm41,Um+2,.-.,%s to G to form a larger
graph G’, and let V; = {v;} for i =m +1,... ,n. Let f; be any map from
V;i to H for ¢ > m. Then x(G) < x(G"), so the result applied to G’ implies
the result for G.

Let c: W — {0,1,2,...,n — 1} be an n-coloring of H. Addition in the
following is modulo n. We define a function y: V' — {0,1,2,... ,n — 1} as
follows: y(z) = c¢(fi(z)) +iifz € V;.

Claim: 1 is a proper coloring of G:

Let z and y be adjacent vertices of G. If there is a set V; such that
{z,y} C Vi, then fi(z) is adjacent to f;(y) in H and so c(fi(z)) # c(fi(¥)).
Hence c(fi(z)) + ¢ # c(fi(y)) + ¢. Otherwise, there are distinct ¢ and j
such that z € V; and y € V;. This implies that f;(x) = f;(y), and hence
that c(fi(x)) = c(f;(y)). Since i # j, the latter equation implies that
v(=) # 1(v)- m]

While it is not directly related to our main object in this section, we
would like to point out an interesting consequence of 3.1.

Corollary 3.2. Let G = (V,E) be a graph. Suppose that there are
disjoint subsets A and B of V such that V = AU B, and that there exists
a homomorphism f: A — B such that, forall z € Aand y € B, if z is
adjacent to y, then f(z) =y. Then x(G) = x(B).
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The assumptions in 3.2 obviously imply that, for each z € A there is at
most one vertex y € B which is adjacent to z, namely y = f(z). We note,
however, that even when this latter condition holds for B relative to A as
well as for A relative to B, we can have x(G) larger than x(A) and x(B).
An example of this is shown in Figure 6, in which we can let A = {a,b, ¢}

and B = {d, e, f}. d e f
\/

a b C
Figure 6

The consequence of 3.1 which we will employ is the following.

Corollary 3.3. Letn > 3. Fori=1,2,...,n,let V;, = {c € Z,: n
has position i in 0}. Then x(|J; even Vi) < X(Bn-1), and x(U; oaa Vi) <
X(En—l)-

Proof: Define f;: V; — Z,_; by fi(¢) = 0 — n. Clearly f; is a homomor-
phism. (note that o # 7 — o—n # 7 —n when n has the same position in
o and 7.)

Now, if |i—j |>2,and if o € V; and 7 € V};, and if ¢ ~ 7 in I, then we
must have 0 — n =7 — n. This holds because, under the assumptions on %
and j, the position of n in ¢ differs by at least two places from its position
in 7. Deleting any one number, other than n, from both ¢ and 7 can bring
the position of the n in o at most one place closer to the position of the n
in 7. Since there is an z € [n] for which 0 — z = 7 — z, this z must be n.
This implies that fi(o) = f;(7). Since [§] < n — 1, we can apply Lemma
3.1 above to each of the subgraphs Gy = J; oven Vi» and Ga = |J; oaq Vi of
2. O

One could attempt to somehow ‘merge’ a coloring of the even V;’s with
the odd V;’s in conjunction with 3.3 above to obtain an estimate of x(Z,,).
For our purposes, we can get away with allowing totally different colors on
the two.

Corollary 3.4. Let n > 3. Then x(Zn) < 2x(Zn-1)-

Note that Corollary 3.4 will not lead to good estimates for x(Z,), because
it implies an exponential bound, as compared with the simple polynomial
bound found in 2.1(ii) above. However, it does enable us to deduce that
the graph X5 provides us with our desired example.
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Example 3.5: (¥s,~) is a chordal ring in the JT-ordering whose chro-
matic number is less than the number of colors required by the greedy algo-
rithm applied to the vertices in that order.

Proof: We have seen above that X5 is a chordal ring in the JT-order, and
that the greedy method uses 9 colors to color X5 in the JT-order. Since, as
shown at the beginning of this section, x(X4) = 4, it follows from 3.4 that
x(Zs) £8. ]

Although it is not necessary to determine x(Xs) any more exactly for
the purpose of Example 3.5, we have subsequently determined that, in fact
x(Zs) = 5. Since we feel that the determination of x(X,) is an interest-
ing problem in its own right, this fact deserves some additional comment.
Rather than simply exhibit a 5-coloring of X5, we would like to indicate
how this coloring was obtained. While we have been unable to generalize
our approach to apply to arbritrary n, certain elements of the method hold
some promise toward finding x(Z,,) for arbitrary n.

We employ the notation V; as in the statement of 3.3 above. We proceed
in Y5 as follows. We consider the subgraph H = V; UV,. We color H by
the greedy algorithm using the inherited JT-ordering on H as the ordering
of its vertices. This turns out to require 5 colors. Let us denote by 7«
the resulting coloring. We next attempt to extend this to a coloring of
the subgraph H; = Vi U Vo U V4 U V5. Since the mapping o — 0P is
an automorphism of the graph X5, (where 0°PP denotes the permutation
o written in reverse order), a natural way to do this is to assign to each
o € V3 U Vs the color y(c°P). This turns out to be a proper coloring
because the greedy coloring of H so happens to have the property that
7(5! a, b, ¢ d) % 'Y(sv d) ¢, b’ a’)) and that 7(51 a, b: ¢, d) # 'Y(d: 5$ ¢, b’ a’)a and
that v(a,5,b,¢c,d) # v(d,5,¢c,b,a). So this produces a 5-coloring of Hi,
which we also refer to as . Finally, we attempt to extend the coloring
to all of ¥ = H; U V3, by assigning colors to the vertices of V3, in a
manner compatible with the coloring of ¥ on H;. We assign colors to the
vertices of V3 in the inherited JT-ordering in a greedy way, choosing the
first color possible at each vertex o which would provide a proper coloring
of HHU {1 € V3: 7 < g}, where < denotes the JT-ordering. This turns out
to require just 2 colors for the vertices of V3, the last 2 colors of the 5 used
in the greedy method on H. So this produces a 5-coloring of Zs.

Theorem 3.6. x(Xs) = 5.

Proof: We know by 2.1(ii) that x(Z5) > 5. The method outlined in the
preceding discussion produces the following 5-coloring of the vertices of Zs,
where the colors are denoted by a, b, ¢, d, e and the vertices are listed in the
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JT-ordering:

6 ¢, d: a, ba a, bs € ¢ d’ a, ba €, C, dl €, G, d: a, b: dr ¢ e, a, b) G a, d’ b) ¢ Ga,
d! bv €, dv Géeaq, ba a, b, d, ce,a, b: 6, ¢, d1 e, b7 d) a, c, d, b: €, a,c, b’ a, d’ ¢,
€ d, ce, ba a, d) cée, by a, bt a, d: ce, b) a,¢€,c, d, ¢, b’ dv a,c, ¢, b: d’ a, ¢, bs

a,e,cd, e cd,b,a,dceb,a,ca,dbeca,ebd

a

The information in this section suggests an interesting conjecture, namely
that x(Z,) = n, for all n > 3. We have, as yet, been unable to settle this
conjecture. We will return to this problem in the next section.

4 Some other properties of the graph X,

We will show that the largest size of a clique in X, is n. First we will
establish a lemma which is useful in discussing adjacency in £,.. ifo, 7 € X,
and if {z,y} is a pair of elements in [r], we say that {z,y} is opposite in
o and T if £ < y in one of the two permutations and y < z in the other.
Similarly, if {z,, z2, z3} is a triple of elements of [r], we say that {z;,z;,z3}
is opposite in o and 7 if, for some permutation %3, 29, i3 of 1,2,3 we have
Zi, < Zi, < Ti, in one of the two permutations and z;, < z;, < z;, in the
other.

Lemma 4.1. Let n > 3, and let 0,7 € X, with o # 7. Then o is not
adjacent to 7 in ¥, if, and only if, one of the following two conditions holds:
Either there are two disjoint pairs {z1,y1}, {z2,y2} in [n] both of which are
opposite in o and 7, or there is a triple of elements {z,y, 2z} in [n] which is
opposite in o and 1.

Proof: To prove the ‘if’ implication, note that if either of the two stated
conditions holds, then, for any i € [n], o and 7 cannot agree on the set
[7] — {}, because, in the first case, one of the two pairs does not involve
%, and in the second, two of the three elements are different from ¢ and are
opposite in the two permutations.

Conversely, suppose that ¢ is distinct from and not adjacent to 7. There
are elements z,y such that z <yincandy<zin 7. Sinceo -z # 17—12,
there are two elements u, v in [r] — {z} such that {u,v} is opposite in ¢ and
7. If y ¢ {u,v}, then the first condition holds. So let us suppose that y = v.
Now, if y < u in o, then we would have z < y < uwino,andu <y < zin T,
so the second condition would hold. So we may as well assume that u < y
in 0. So both u and z precede y in o, and both follow y in 7. If z and
u are in the opposite order in ¢ and 7, then again we would have a triple
satisfying the second condition. So let us suppose that z < « < y in o and
¥y <z < uin 7. Since ¢ and 7 are not adjacent, we have o0 —y # 7 — 3.
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Therefore there exist twc elements a,b in [n] — {y} such that e < bin o
and b < ain 7. At least one of the elements z, u does not belong to the set
{a,b}. This element, together with y, and the pair {a, b}, are two disjoint
pairs which satisfy the first condition in the statement of the lemma. O

If 6,7 € T, and o ~ 7, we will say, for an element =z € [n], that =
witnesses 0 ~ T if 0 — z = 7 — z. (by definition, some such z exists.)

Theorem 4.2. Let n > 3. Then w(Z,) =n.

Proof: Because of the first inequality in 2.1(ii) above, what has to be
shown is that no clique in X, has more than n elements. We prove this by
induction on n. For n = 3 the result is straightforward to check. (it also
follows from the fact that x(X3) = 3) So let us assume that n > 4, and
that the theorem is true for n — 1. For the sake of contradiction, let K be
a clique in £, with |K|>n.

We first show that there can be at most 2 elements which occur as the
first entry in any of the permutations which belong to the set K. Otherwise,
(without loss of generality), there are 0y, 02,03 in K whose first entries are
1, 2,and 3 respectively. Now, the adjacency oy ~ o3 has to be witnessed
by either 1 or 2. (for any other z, o1 — =z and o3 — z have different first
component) We may assume that it is witnessed by 2. This implies that 1
is the second entry of o2. This implies that 2 cannot witness the adjacency
between o2 and o3. Therefore 3 does. This implies that the first three
entries of o3 are 321. Therefore o; ~ o3 must be witnessed by 1. Therefore
the first three entries of oy are 132. Also, because 2 is a witness for o) ~ o2,
3 must immediately follow 1 in o2, so its first three entries are 213. Now,
let 7 be any other element of K. Since {1,2,3} cannot be opposite in 7
and any of the o; (by Lemma 4.1), 7 must agree with one of the o; on the
set {1,2,3}. We may assume that 7 | {1,2,3} = 132. Therefore 7 ~ o9
must be witnessed by 2. So the first two entries in 7 are 13. Therefore
T ~ 03 must be witnessed by 1. This implies that the third entry of 7 is
2. So we have o; = 132a;, 7 = 132ay where a; and a; are two different
permutations of the set {4,,5,...,n}. Hence there are elements a,b > 3
such that {a,b} is opposite in &; and ay. Since o0y —2 = 03 — 2, {a,b} is
also opposite in 7 and o5. But then there are two disjoint pairs opposite in
7 and o9, which, by Lemma 4.1, is contrary to 7 ~ oa.

So there are at most 2 elements which occur as the first entry of any of
the elements of K. Since deleting the first entry 7, from all the members
of K which have i as their first entry, produces (up to labeling), a clique
in X, _, the inductive hypothesis implies that there are, in fact, two such
first entries, and that each is the first entry of at least 2 members of K.
Let us suppose that these two ‘first entries’ are 1 and 2. Let 0y, 09,... ,0%
denote the members of K whose first entry is 1, and let 71,79, ..., 7; denote
the members of K whose first entry is 2. Note that each of the adjacencies
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o; ~ 7; must be witnessed by either 1 or 2. In particular, each o; agrees
with each 7; on the set [n] — {1,2}. Therefore, all the members of K
agree in the way they order the set [2] — {1,2}. Without loss of generality,
suppose that 1 witnesses o; ~ 71. Thus, there is a permutation « on the
set [n] — {1,2} such that oy = 12¢.. All the members of K agree with a on
the set [n] — {1,2}. Let z be the first entry of . Since o2 # 01, we must
have £ < 2 in g5. Therefore 1 < z < 2 in 03y. Since 7, 7 72, there must be
a pair of elements which are epposite in these two permutations. This pair
cannot contain 2, and must contain 1, since all the 7; agree on [r] — {1,2}.
So there is an entry y in « such that the pair {1, y} is opposite in 7; and 7.
In one of these latter two, we have y < 1, and hence z < 1, since z is the
first entry of . In this particular 7;, we have 2 < z < 1. But this means
that the triple {1, z,2} is opposite in o3 and 7;, contrary (by lemma 4.1)
to their adjacency. O

Corollary 4.3. k(Z,) = (n —1)!

Proof: The collection of cliques K; = {0 € Z,: 7 < g}, for 7 € Ty,
covers . Since, by 4.2, no clique in ¥,, has more than n elements, at least
(n —1)! cliques must be present in any cover of £, by cliques. O

The question raised at the end of section 3 above, whether the equality
x(Zr) = n holds for arbitrary n, can now be seen to be equivalent to asking
whether x(Z,) = w(Z,). We recall that a graph G is called a perfect graph
if x(H) = w(H) for every induced subgraph H of G. We can easily see
that, while X3 is perfect, I, is not perfect for n > 3. We can see this
by noting that I, contains a chordless 5-cycle (and hence so does I, for
all » > 3); one such cycle being 1423, 3142, 4312, 2431, 2143. (the author
thanks James Currie for his rapid sighting of an odd cycle from the diagram
of T4 in Figure 3 above.) Some authors have used the term good to refer to
a graph G for which x(G) = w(G) (and so a graph is perfect when all of its
subgraphs are good). Using this term, our question is whether or not X,
is a good graph for all n > 3. While we have been unable to answer this
question,we have been able to show, at least, that the graph Z,,is locally
good; that is x(N(v)) = w(N(v)) holds for the neighborhood N(v) of every
vertex v of the graph. Before proving this, we would like to note that one
consequence of the equality x(Z,) = nis that a(X,) = (n—1)! : If £, is the
union of n independent sets, then at least one of them has at least (n — 1)!
elements, and, since I, is the union of (n —1)! cliques, no independent set
can be any larger than this. Unfortunately, we have not been able to settle
this question either. Does I,, contain an independent set of size (n — 1)!
for all n > 37 In more explicit terms, this asks for a set S of permutations
of [n], with | S |= (n — 1)}, such that, for all i < n, {o —i: 0 € S} is the
set of all permutations of the set [r] — {¢}.
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Theorem 4.4. Let n > 3. Then x(N(c)) = n —1 = w(N(o)) for all
g€ L,.

Proof: Note that, since ¥,, is vertex transitive, it is really enough to show
this for any one ¢ in £,. The second equality follows from the fact that
w(Zy,) =n.

Let 0 € Z,,. Asin 2.1 above, for any ¢,j with 1 <%, 7 < n and i # 7, we
let o(i — j) denote the permutation obtained from o by selecting the ele-
ment which lies in position ¢ of & and moving it so that it occupies position
7, leaving the other n—1 elements in the same order among themselves. As
noted in 2.1 above, we have o(i — i+1) = o(i+1 — ), and aside from this,
the elements o (i — j) are all distinct. Together they are all the neighbors
of o in L,. It is straightforward to check (with the help of Lemma 4.1)
" that all the adjacencies among these neighbors can be described as follows:
o(i » i4+1) ~o(f - j+1) o [i—j € 1,if i =3 > 1, then
o(i— j)~o(k— k+1) —~i=kori=k+1, andif (¢,5), (k,!) are distinct
pairs such that i — 5] > 1 and |k =] > 1, then o(i — j) ~o(k = 1) &
either i = k or {(3,7),(k,)} = {(a,a + 2),(a + 2,a)} for some a <n —2.

Now, foreach j=1,2,...,n—1, let

Sj={o(t-7+1):1<i<j}U{o(i > j):7+2<i<n}.

From the description of the adjacencies, it is clear that each of the sets
Sj is an independent set in X,. Since N(o) = U'.:ll S;, this shows that
x(N(o)) < n—1. Since N(o) contains a clique of size n — 1, the result
follows. o

It is also possible to determine the local stability number for the graph
¥n, and this leads to our last result.

Theorem 4.5. Let n > 4, and let ¢ € ,,. Then
(i) a(N(c)) =n and
(ii) k(N(o)) =n.

Proof: Select any number & with 2 < k < n—2 and keep it fixed. Let L =
{1,2,...,k},andlet R={k+1,k+2,... ,n}. Fori€ L, let ; = o(i = n),
and for ¢ € R, let 7; = o(¢ — 1). We have used the same notation as in 4.4
above. We will show that the set T = {n:i=1,2,...,n} is independent
in ,: If ¢; and i3 both belong to L and i; < i3, then we have, in =,
that 0;, < ¢ < 03, where z is any element of R, whereas in 7;; we have
0i, < z < 0i;. The non-adjancecy of 7;; and 7;, follows from 4.1 above. A
similar argument applies when both z; and i, are in R. Now, if i; € L and
i2 € R, let z and y be elements of L and R respectively, which are distinct
from i, and i2. We then observe that the pairs {z, %2} and {y, ¢} are both
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opposite in 7;; and 7;,. Therefore, by 4.1, 7;, and 7;, are not adjacent. We
see that T is an independent set in N (o) of size n.

The preceding argument implies that n < a(N(g)). Since a(N(o)) <
k(N (o)), the proof of 4.5 will be complete once we show that k(N (o)) < n,
in other words, that N(o) is equal to the union of n cliques. This is clear:
for each i € [n], let K; = {r € Z,: 0 —i < 7}. Then {K;:i < n}isa
suitable family of cliques. 0
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