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1 Introduction

By Qn we mean the n-cube, i.e. the graph whose vertices V(Q,) are
the 2" binary n-tuples and whose edges E(Qy,) are those unordered pairs
< z,y >= e of vertices which differ in precisely 1 coordinate. If that coor-
dinate is the i**, we say that the direction of e is . Edges with the same
direction are called parallel. We recall a definition from [2)].

Definition 1 Let E be a subset of E(Qy). If G is a subgroup of Aut(Qy)
such that {g(E) | g € G} is an edge decomposition of Q,, we say that E
i3 a fundamental set for Q, with group G. We call E a fundamental set if
some such subgroup G exists.

In [2] we proved (Corollary 5.13) that if E has n edges, no three of
which have the same direction, and if the subgraph of @, induced by E is
connected, then E is a fundamental set. We also showed [2, Theorem 5.17]
that for a connected graph I' on n edges, the following two statements are
equivalent: (1) Each edge of ' belongs to at most one cycle. (2) There is
an embedding ¢ : I' < @y, such that no three edges of x(I") have the same
direction (and hence E(p(I')) is a fundamental set for Q).

In this paper we study subsets E of E(Q,) with 2n edges, with the aim
of discovering which are fundamental sets. We are also interested in the
question of which graphs I (and especially, which trees) on 2r edges have
embeddings ¢ : I’ < Q,, such that E(p(T')) is 2 fundamental set for Q,,.
We call such a ¢ a fundamental embedding. As we shall see, one natural
way to try to obtain a fundamental embedding is to define a 2-1 labelling
A: E(T) — {1,2,...,n}. Thisyields a subgraph of Q, with exactly 2 edges
in each direction. One of our results (Theorem 1) is a characterization of the
trees of diameter 4 with a 2—1 edge labelling A which yields a fundamental
set. In section 3 we first characterize the trees on 2n edges which can be
embedded in @, (Proposition 4). We then characterize those for which
there is an embedding which comes from a 2-1 edge labelling (Propositions
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5 and 6). In particular, this is true for every tree which is not a path, has
maximum degree at most n and has diameter at least 5.

In section 4 we define the notion of a good 2-1 edge-labelling of a graph
on 2n edges, and then state Theorem 1, described earlier.

In section 5 we raise the question of whether there is any path on 2n edges
in Q, which is a fundamental set. For n odd, the answer is no (Proposition
8). We give an example of such a path for n = 4, and conjecture that such
paths exist whenever n > 4 is even.

2 Counter-examples and Necessary Conditions.

Example 1 T = Q3 —v is a subgraph of Q3 such that for everyn, Q, has
no edge decomposition by isomorphic copies of E(T).

Proof: Any embedding of I in Q, will yield a subgraph with exactly
3 edges in each of exactly 3 directions. Thus if @, had such an edge
decomposition then for each i, the number of edges in the i** direction
would be a multiple of 3. On the other hand, we know that this number is
27—1, Contradiction. 0

The next result is quite easy.

Proposition 1 If Q, has an edge decomposition by a family {I'a} of d-
regular subgraphs, then d is a divisor of n.

Proof: For any vertex v of Qn, n =3, p_degr,(v) =0 (mod d). 0O
In a similar vein we have the following proposition.

Proposition 2 Let T’ be a graph, with | V(') |=m < 2", and | E(T) |=gq,
where q dividesn-2*!. Letk=n-2""1/q. Letdy >dp >...> dmm be
the degree sequence of I'. For m+1 < j < 2" let dj = 0. The following
is a necessary condilion for the existence of a family of embeddings K =
{pi | 1 i <k} of T into Qn such that {p;(E(T') | 1 < i < k} is an edge
decomposition of Qy, : there exists a k x 2" matric M whose first row is
(d1...dan), every other row of M is a permutation of the first, and every
column sum i3 n.

Proof: First order the vertices of @, so that for 1 < j < 2", degy, (r)(v;) =
dj. For 1 <i<k=| K|, let d;(v;) = deg,,(r)(v;). Form the k x 2" matrix
M = (M;;) where M;; = di(v;). Since {9;(E() | 1 < i < k} is an
edge decomposition of the n-regular graph @y, for each 7, the column sum
3~; di(v;) is n. Furthermore, since ¢; is a graph isomorphism, the i*h row
is a permutation of the first. a



Example 2 There is no edge decomposition of Q3 by isomorphic copies of
the tree T, if T is either of the irees shown in Figure 1.
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Figure 1

For the degree sequence of T is 3,3,2,1,1,1,1. Since | E(T) |= 6 and
| E(Q3) |= 12, we must have a 2 x 8 matrix M whose first row is 33211110,
and each of whose column sums is 3. But for this we would need My, =
Moo = 0, which is impossible since there is only one 0 in the first row. 0

We shall restrict our attention to those automorphisms of @, known as
complementations. For a subset A of {1,2,... ,n}, 04 € Aut(Qy) is defined
by

oAl)=Z+7Z

where Z = 3", 4 €, with e; denoting the ith standard basis vector of Z3.
The set of complementations, X, is a subgroup of AutQ,, isomorphic to
Z2. An important feature of complementations is that they preserve edge
directions.

Proposition 3 Let E C E(Q,) with | E |=n. Suppose that E is a funda-
mental set for Qn with group G, where G is a subgroup of Ly, of indez 4.
Then no three edges of E have the same direction. Hence E has ezactly two
edges in each direction, and each edge of E belongs to at most one cycle in
E. PFurthermore, the length of each cycle in E is a multiple of 4.

Proof: If g € G then g is a complementation, and so for all e € E, g(e) is
parallel to e. We shall denote by E; the set of edges of E whose direction
is i. Then for 1 <i < n and for all g € G, (9(E)); = g(E;). Thus | E; |=|
g(E;) |, i.e. g(E) and E have the same number of edges in the i** direction.
Since E is fundamental for Q, with group G, Usecg(E) = E(Qx), and it
follows that Ugecg(E;) = (E(Qn)):. Hence

|G- Bi|=IC|-|9(E): |=| G- | 9(E:) =| (BE(@Qn))s |=2"7".

Thus | G | - | Ei |=2""1. Since | G |= 2"~2, we have, for all ¢, | E; |= 2. So
E has exactly two edges in each direction, and no three edges are mutually
parallel. By [2, Lemma 5.16] each edge of E belongs to at most one cycle
in E.



Finally, let C be a cycle contained in E. Then since the number of edges
of C in each direction must be even, and the number in E is exactly two,
in each direction C has either 0 or 2 edges. Let | C |= 2. With no loss of
generality we may assume that the edges of C have directions 1,2,... ,k,
and that 0 is a vertex of C. Since G C £, and index_X,G = 4, then by an
argument very similar to the one given in the proof of [2, Lemma 5.1, part
(2)] we see that there are subsets T and T3 of {1,2,...,n} such that

G={oa€Z,||ANT |=|ANT2 |=0 (mod 2)}.

Let Gk = GNY_,. Since G is E-good, so is G, and since C C E, Gy is
C-good. Now

Gr = {O’A € X ” ANT; I.._—_I ANTy IE 0 (mod 2)},
so the index of G in Iy is 4, and hence | G |= 2%~2. Therefore
|G |- | C|=22.2k = k. 2¢1,

Thus C is a fundamental set for Qx (with group Gy). Since C is 2-regular
and Q is k-regular, k must be even. Hence | C |= 2k =0 (mod 4). 0

3 Embedding Trees into Q,

We are interested in seeing which trees on 2n edges can be embedded in
Qn, and which of these embeddings yield fundamental sets. Note that
since @, has Hamiltonian paths and cycles any path on > 2"~! edges can
be embedded in Q,. In particular, for n > 3 a path on 2n edges can be
embedded. Thus it will be sufficient to consider the question for a tree on
2n edges which is not a path.

IfT is a tree, vo € V(I') and A : E(T') — {1,2,...,n} is a mapping, then
there is a unique map ¢ : V(I') = V(Qu) such that (i) p(vo) = 0 and (i)
for every (u,v) € E(T'), (p(u), ¢(v)) € V(Qn) and direction({p(u), ¢(v))) =
A({u,v)). For if z is any other vertex of " and P is the unique vy — z path,
define p(z) = x1x2:--Zpn, Where z; = 1 if i € Acp{\(€)} and z; = 0
otherwise. It is easy to check that this ¢ has the stated properties. A
necessary and sufficient condition for ¢ to be an embedding (i.e. for ¢ to
be 1—1) is that for each path P’ in I’ we have Acecpr{A(e)} # 0, i.e. that on
each path P’ some edge label occurs an odd number of times [1, Theorem
I]. (In particular, it is necessary that incident edges of I" receive different
A-values.

Definition 2 We call A an edge-labelling of the tree ' if A satisfies condi-
tions (i) and (ii) given above. If, in addition | E(T') |= 2n and the mapping
Ais2—1, we call X a2 —1 edge-labelling, and any associated embedding
p:T Qn a2-—1 embedding.



Proposition 4 Let T be a iree on 2n edges which is not a path, and suppose
that A(T) < n. Then there exists an embedding of T into Q, <> T # T,,
where Ty, is the tree obtained from two n-stars by identifying a leaf of each
(see Figure 2).

oy

Figure 2. T,

Proof: First we show that the diameter of any tree satisfying the initial
hypotheses of the propostion must be at least For since T has 2n edges and
A(T) < n, T is not a star and so its diameter is at least 3. Suppose its
diameter is 3. Then T consists of 2 stars, together with an edge joining
their centers, z and y. But then deg(z) + deg(y) = 1+ | E(T) |= 2n + 1,
which contradicts the assumption that A(T) < n.

(=): Suppose that ¢ is an embedding of T;, into @, and A is the associ-
ated edge labelling, given by A(e) = the direction of e. Let » and w be the
two vertices of T, of degree n, and let v be the vertex (of degree 2) which
is adjacent to both u and w. Since edge labels of incident edges must be
distinct, all » edge labels must occur on the n edges which meet u, and also
on the n edges which meet w. Say A({z,v)) =7 and M((v,w)) = j. Then ¢
must be the edge label of some edge meeting v and j must be the label of
some edge meeting u. Thus T, has a path of length 4 whose image under
 has two sets of parallel edges, and is therefore a 4-cycle. But since T}, is
acyclic, this contradicts the assumption that ¢ is an embedding.

(«=): We argue by induction on n. A tree with maximum degree 2 is a
path, and so the statement is trivially true in the case n = 2. Let n = 3.
Up to isomorphism, there are three trees on 6 edges which are not paths
and which are not T3. Each tree, together with an embedding in Qs, is
shown in Figure 3.

So assume n > 4. Suppose first that A(T) < n — 2. Choose vertices «
and y such that dist(z,y) = diemeter(T) > 3. Then z and y are leaves
of T and therefore lie on two independent pendant edges, say ex and ¢, .
Deleting  and y we obtain a tree T’ with 2(n — 1) edges and for which
A(T)<n—-2<n—-1=A(T,_1). Hence TV # T . Since T is not a path,
neither is 7. So by induction, T can be embedded in Q,_;. By labelling
both e; and e, n, we obtain an embedding of T in Q..



3a. 3b. 3e.
Figure 3

Next, suppose A(T) = n—1. If T 7 T,—; then form T’ as above.
T' # Tn-1, so by the preceding argument T embeds in Q,. So suppose
that T C T,_. First let n =4. Then T C T3, and so T = T3 + 2 pendant
edges e and f. Now e and f are incident with at most 2 of the 4 leaves of
Ts. Let » and w be the two vertices of T3 of degree 3. If both of them are
adjacent to leaves of T, delete one leaf adjacent to u and one leaf adjacent to
w to form T”. Then T” is a path on 6 edges and can therefore be embedded
in Q3. Assigning the label 4 to each of the two edges of T — T" we obtain
an embedding of T in Q4. Now suppose that one of » and w, say u, is
not adjacent to a leaf of 7. Delete one leaf adjacent to w and one leaf at
distance 2 from u (see Figure 4) to form 7”. An embedding of T’ in Qs is
shown in Figure 3c. As before, this extends to an embedding of T in Q4.

T T
Figure 4

Now suppose n > 5. If T,,_1 ¢ T, let T =T — z — y, where z and y are
leaves of T such that dist(z,y) > 3. Then A(T") < A(T)<n—-1and T'
has 2(n — 1) edges. Since, in addition, T # T},_,, it follows by induction
that there is an embedding ¢’ of T’ in Q,—1. Hence labelling each of the
two edges of T — T” with n yields an extension of ¢’ to an embedding ¢ of
T in Qn. Now asssume that T,,_; C T. Let » and w be the 2 vertices of
degree n—1 and let v be the vertex which is adjacent to both u and w. Let
z and y be the two vertices of T — T,,_,. Neither of them is adjacent to u
or w since A(T) =n —1. Let 7" = T — = — a, where a is a leaf of T and
a #z, a#y. Then T # T;,_, and by induction, there is an embedding ¢’



of T” in Q,—1. Since the two edges of T' — T,,_; are independent, we may
assign both of them the label n and thereby extend ¢’ to an embedding ¢
of T in Q. This completes the proof in the case A(T) =n — 1.

Finally, suppose A(T') = n. T has at most two vertices of degree n. Case
1: T has two vertices of degree n. Then since T # T,, T is unique up to
isomorphism and the labelling shown in Figure 5 yields an embedding of T
in Q.. Case 2: T has exactly one vertex of degree n, say u. Subcase 2a:
No vertex adjacent to u is a leaf. Then T is the "stretched star” shown
in Figure 6, and the edge labelling shown there yields an embedding of T'
in Q.. Subcase 2b: Some vertex z adjacent to u is a leaf. There must be
another leaf y which is not adjacent to u. Let 7' =T — 2 —y. Then T/
has 2(n — 1) edges, and since degr(u) =n -1, A(T') =n—1. As we
observed at the beginning of the proof of this proposition, a tree with 2k
edges and A < k must have diameter> 4. Again, the two edges of T — T
are independent and so if 77 # T,—_i, there is a natural extension of the
inductively guaranteed embedding of 77 in Q,—; to an embedding of T in
Qr. Therefore, assume that 77 = T,,—1. Then let T* =T — y, and let A*
be the edge labelling indicated in Figure 7.

Figure 6. The “stretched n star”



z
Figure 7. T* =T —y.

Let e = (z, y) be the unique edge in E(T")—E(T™*). To define an extension
A of A* to E(T) we only need to define AMe). If z =, let A(e)=1. If z
is adjacent to w, let A(e) = n — 1, and if z is adjacent to u let A(e) = n.
It is easy to see that A yields an embedding of T in Q. The proof is now
complete. a

Proposition 5 Letn > 3 and suppose T is a tree on 2n edges with A(T") <
n and diameter(I') = 4. ThenT has a 2—1 embedding in Q, <= (1) every
non-central vertezr has degree < n—1 and (2) ' C Ty, the stretched 3-star,
formed from 3 paths on 2 edges by identifying a terminal vertexr of each
(see Figure 8).

o

Figure 8. I'y.

Proof: (=) First note that diameter(I') = 4 & T is the ammalgamation
of stars at a common leaf y (see Figure 9). Call y the center of .

If T has any embedding in Q,, then A(I') < n. But if some non-central
vertex z has degree n then I" has no 2—1 embedding in @,. For let e = (z,y)
and suppose A(e) = n. Then, assuming that A\: E(T') —» 1,2,...,nis 2-1,
A(f) = n for some pendant edge f. Let w be the end of f adjacent to y. Let
A(w,y)) = j < n. Since deg(z) = n, all n labels must occur on the edges
meeting . Thus some edge h at = has A(h) = j. So we get a path with

10



labels 4,n, 7, n. Its image in Q,, must be a 4-cycle, which is a contradiction.
Thus every vertex adjacent to a leaf has degree < n — 1. This proves (1).

o

N

Figure 9. A typical tree of diameter 4.

Now suppose that T" 7 I'y. Then I'" consists of a path of length 4, whose
internal vertices are z, y, and 2, and 2n — 4 additional pendant edges
incident with these internal vertices (see Figure 10). Suppose that A is
a 2 — 1 edge labelling of " which induces an embedding in @,. We may
assume that A({z,y)) = 1 and A({y, 2)) = 2. No other edge meeting y or 2
can have label 2. Thus some edge meeting = has label 2. Similarly, some
edge meeting z must have label 1. But then there is a path with labels
2,1,2,1 which, as we have seen, is impossible.

VA e

Figure 10

(+<=) By induction on n. If n = 3, then I' = Iy, which has the labelling
shown in Figure 11a. For n = 4, the only possibilities for I" are I'; and I's,
shown in Figures 11b and 11c together with their 2 — 1 labellings.

Now let n > 5 and assume the result is true for n — 1. First suppose
A)<n—-2. Let IY =T ~e— f, where e and f are independent pendant
edges. If IV C I'g then by induction there is a 2 — 1 embedding of I’ in
Qn-1, and this extends, in the obvious way, to a 2 — 1 embedding of I in

11



Qn. So assume that IV ¢ Ty. Then I is of the form shown in Figure 10,
and so ' =I'V 4 e+ f must be as in either Figure 12a or Figure 12b.

Q
o

Figure 11a. I'.

Figure 11b.

3 1 A 3 2

Figure 11c.

Next, suppose A(I') = n. Since every non-central vertex, by hypothesis,
has degree at most n — 1, the vertex of degree n must be the central vertex
y. If each vertex adjacent to y has degree 2, then I' is the "stretched star”
of Figure 6, and the labelling shown there is 2 — 1. Otherwise, there is at
least one leaf adjacent to y. Call it u. Since exactly n of the 2n edges of T'
meet y, there must also be n leaves at distance 2 from y. Deleting one of
these, as well as u, yields a I’ which satisfiess A(I’) =n—1and IV CTy. In
addition, every non-central vértex of I'” has degree at most n —2. Thus by

12



induction there is a 2 — 1 embedding of I’ in Q,,—;. Since the two edges in
E(T')— E(I") are independent, this embedding extends to a 2—1 embedding
of I'in Q.

Figure 12a.

Figure 12b.

Finally, suppose A(I') = n — 1. As before, at most two vertices of I'
have degree n — 1. Suppose there are two such. If possible, delete a leaf
adjacent to each to form IV, ThenIV C g and A(I') =n-2=(n-1)-1.
Furthermore, every non-central vertex of IV has degree < n — 2. Thus by
induction, I'" has a 2 — 1 embedding in Q,—1, and this extendstoa 2 -1
embedding of T in Q. On the other hand, suppose one of the vertices of
degree n — 1 is not adjacent to any leaf. The only possible candidate for
such a vertex is y. In that case each neighbor of y has degree> 2, and
I' consists of the stretched (n — 1)-star centered at y, together with two
additional edges meeting neighbors of y. But then if 2 # y, deg z < 4.
Thus » — 1 < 4. Since we are assuming that n > 5, we must have n = 5.
Hence I' must be the tree shown in Figure 13, and the 2 —1 labelling shown
there yields the desired embedding in Qs.

Now suppose that only one vertex of I" has degree n — 1. First assume
that this vertex is a non-central vertex, say z. Then deg(y) <n—2. T has
2n — (n—1) = n+1 > 6 edges not meeting z. Suppose that of these, at
most two did not meet y. Then deg(y) = (n+1) —2 = n— 1, contradicting

13



the assumption that deg(y) < n —2. So at least three edges meet neither =
nor y. By deleting a leaf on one of these edges and a leaf adjacent to z we
obtain a IV C I'g with | E(I") |=2(n —1) and A(IY) = n— 2. As before, I
has the desired embedding which extends to a 2 — 1 embedding of I'.

x 3
4 2 4 E
O N/ 7 N7 ‘O
1 3 1

5

Figure 13. A 2-1 labelling of T".

Now assume that the unique vertex of degree n — 1 is the central vertex
y. Then there are n + 1 edges which do not meet y, all of which must
be pendant. Excluding three of them which are pendant edges of Iy, we
have n — 2 more. Since y is the only vertex of degree n — 1, these n — 2
pendant edges can not all meet at the same vertex, and so at least 2 of
them are independent. Thus we may delete 2 leaves which are ends of these
independent edges and thereby obtain a IV which provides the extendable
2 — 1 embedding. O

Example 3 For any n > 3, the tree T, shown in Figure 14 has a unique
(up to an automorphism of Q) embedding into Q,, which comes from a
labelling, such as the one shown in Figure 14, that is not 1 — 1. And the
image of E(T,) in Qn is not a fundamental set for Q. In fact, Q, has no
edge decomposition into isomorphic copies of E(T,).

Figure 14. T,,.

Proof: Suppose the contrary. Then E(Qy) is the disjoint union of 2"—2
copies of the n-set E(7,). Now each end of edge e (see Figure 14) has

14



degree n. If ¢’ and e” are the edges corresponding to e in two isomorphic
copies TY and T of E(7,,) in the edge decomposition, then no end of e’ can
be adjacent to an end of ¢”. For if so, then we would have an edge {z’, z")
with =’ an end of ¢’ and z” an end of ¢”, and since Q,, is n-regular and
degr:(z') = degpn(x'") = n, this edge would belong to E(T') N E(T") = 0.
So we have a family of 2"~2 edges, such that any two endpoints chosen from
different edges are not adjacent. In other words, these 2”~2 edges form a
matching which is an induced subgraph of @,. In Lemma 1 we shall show
that these edges must all be parallel. So say they all have direction 5. Then
each copy of E(7,) has only one edge with direction j. But the union of
the copies is E(Q,), which has 2"~! edges with direction j. Contradiction.
Hence there is no such edge decomposition of Q.. a

Lemma 1 Let M be an induced matching in Q, with 2”2 edges. Then
all the edges of M are parallel.

Proof: Let H be the subgraph of Q,, obtained by deleting the 2”~! vertices
of M. The number of edges which are incident with exactly one vertex of
M is (n — 1) - 21, while the number incident with two vertices of M is,
of course, | E(M) |=2"~2. Hence

| E(H) |=| E@n) | ~((n—1)- 27" +277%)

=n.2n—1 —(n—l) .on-1 _2n—2

= 2n—1 _ 2'n—2 = 2n—2'

Since H has 2"~ vertices, the average degree of a vertex of H is 1. We
shall show that H is 1-regular by showing that no vertex of H can have
degree 0. Suppose z € H and degy(z) = 0. Then every Q,-neighbor of
z belongs to M. So let y be a vertex adjacent to z, with {y,2) € M, for
some z. There is a unique w € @, such that z,y, 2z, w is a 4-cycle. Since w
is adjacent to z, w € M by our assumption. But the adjacency of w and
z contradicts the fact that the matching M is an induced subgraph of Q..
Hence for all z € H, degy(z) > 1, and so H is 1-regular, i.e. a matching.
Furthermore, since H was obtained from @, by deletion of vertices, H is
also an induced subgraph of @,. In addition, M U H is a perfect matching
of Qy.

It suffices now to show that all edges of M U H are parallel. Let z € Qy,.
Without loss of generality we may assume z € e;, where e; € M and
direction(ez) = 1. Let F be the (n — 1)-dimensional subcube of vertices
whose first coordinate agrees with that of z. It suffices to show that for
every z € F, if e, is the edge of MUH containing z, then direction(e,) = 1.
This is proved by induction on the Hamming distance between = and z. It is
easy to see that it suffices to establish the result when z and z are adjacent.

15



Let ez = {z,y), and let (y,w) be parallel to (z, z). So z,y, 2, w is a 4-cycle,
and (z, w) is parallel to e = (z,y). Suppose (z,w) € MUH, i.e. (z,w) # e,.
Then e, # ey. Since z is adjacent to x and e, € M and M is induced,
it follows that e; & M. Hence e, € H. But w is adjacent to both y and
z,and e, = e € M, while e, € H. Since both M and H are induced,
ew € M and e, € H, which contradicts the fact that e,, € M U H. Hence
(2,w) € MU H (in fact, (2,w) € H) and so e, is parallel to (z,y) = e,. O

Lemma 2 Let n > 4 and let T be a tree on 2n edges, with A(T") = n and
diameter(I') > 5. Then there ezist independent pendant edges e and f such
that if T =T — v, — vy, where v, and vy are the leaves incident with e and
f respectively, then A(I') =n — 1 and diameter(I) > 5.

Proof: If I' had more than one vertex of degree n then I" would be either
T, (see Figure 2) or 7, (see Figure 14), and so diameter(I") would be 4,
contrary to hypothesis. Let z be the unique vertex of degree n. I’ must
have at least one leaf adjacent to z, since otherwise I would be a “stretched
n-star” and thus have diameter 4. First suppose that I" has-only one leaf,
Ty, adjacent to . Then since diameter(I') > 5, I' must be the tree shown
in Figure 15.

Zn

Figure 15

Since n > 4 there is a pendant edge f = (zn-1,2) where H(z,z) = 2.
Letting e = (z,2,), ve = Zn, and vy = 2z, we see that I’ =T -z, — 2
works.

Now suppose that I" has at least two leaves, z,,_; and z,, adjacent to z.
Let P be a longest path. First assume that z € P. Since length(P) > 5, at
least one of z,—1 and z,, does not belong to P. With no loss of generality,
say z,, & P. Let e = (z,,z). Let y be an end vertex of P, not adjacent to z.
If length(P) > 6, length(P—y) >5and P—yisapathin' -z —y=1TI".
So diameter(I) > 5, A(I') = n — 1 and E(I') has 2(n — 1) edges. So
suppose now that length(P) = 5. If n = 4 then there are exactly two z; on
P and exactly two zx not on P. (The latter are the two leaves x3 and x4
adjacent to z.) P has exactly three other edges. This accounts for 7 of the
8 edges of I'. The 8** edge f must be a pendant edge not incident with z.
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Thus we can delete the leaf x4 adjacent to z and the leaf at the end of f,
to obtain the desired I''. So suppose n > 5. Then I"' O I'*, where I'* is the
tree on 8 edges and maximum degree 5 shown in Figure 16.

Figure 16. I'™*.

E(T") — E(T'*) has 2n — 8 edges, of which exactly n — 5 are incident with
z. Thus there are n — 3 edges in E(T") — E(I'*), none of which meets z. At
least one of these is a pendant edge. Call it f, and let the leaf at its end
be v. Then f and (z,,z) are independent, and I' =T — x,, — v works.

Finally, suppose that z ¢ P. Since P has at least 5 edges, none meeting
z, and deg(z) = n = 1/2 | E(T') |, it follows that deg(z) > 5. So I must
contain as a subtree the tree I’ shown in Figure 17 .

oO——20---- O —0 O:-+-- (o)
v! f I
;\V;
Ve €

a

Figure 17. T".

The edge f which is indicated is pendant and independent of e, and
I =T — v — vy satisfies A(IY) = n — 1 and diameter(I") > 5. O

Proposition 6 Let n > 3 and let T be a tree on 2n edges which is not a
path. Suppose A(T') < n and diameter(T) > 5. Then there exists a 2 — 1
embedding of T into Q,,.

Proof: By induction on n. Suppose n = 3. There are only two possibilities
(up to isomorphism) for T, and these are shown in Figures 18a and 18b,
together with 2 — 1 edge labellings.
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Figure 18a
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e
Figure 18b

Now let n > 4 and assume the proposition is true for n» — 1. By Lemma
2, there exist independent pendant edges e and f in I" which end in leaves
ze and zy so that IY = ' — z, — zy is a tree (on 2n — 1 edges) which
is not a path, has a path of length > 5, and satisfies A(I') < n — 1.
By our induction hypothesis, there is a 2 — 1 edge labelling X’ of I, X:
E() - {1,2,... ,n—1}. Since e and f are independent, we can define A:
E()—{1,2,...,n} by AMe)=XN(¢') if e’€ E(I"), and A(e)=A(f)=n. O

4 Trees with Good 2-1 Labellings.
Definition 3 Let ' be a graph on 2n edges and suppose

A ET) - {1,2,...,n}

i3 6 2 — 1 labelling which yields an embedding ¢ of T into Q,. We say
that X and @ are good if there is a subgroup G of L, of index 4 such that
E(p(T") is a fundamental set for Qn with group G.

Let E be a subset of E(Q,,) and let g € Aut(Q,), g # identity. Asin [2,
Definition 4.1] we say that g is E-good if g(E)NE = @ and E-bad otherwise.
Furthermore, a subgroup G of Aut(Qy) is called E-good if all its non-
identity elements are E-good. In [2, Section 5, Remark (preceding Lemma
5.1)] we showed that if edges ¢ and e’ are parallel, there is a unique subset B
of {1,2,... ,n} with | B | even and o(e) = ¢’ (and since (0 5)? = identity,
o(e’) = e). Moreover, if direction(e) = j then ga(e) = e <= A = {j} or
A =0 (so 04 = identity). Thus cs(e) = ¢ <= A= B or A= BA{j}.
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Now suppose that | E |=2n and for 1 < j < n, E has exactly two edges,
e; and e;, in direction j. Let B; denote the unique subset with | B; | even
and op,(e;) = e;. Then o4 € En is E—bad <= A = {j} or A= Bj or
A = B;A{j}, for’ somel <Jj <n. Thusif F = U7 o{s}, B;, B;A{5} then a
subgroup G of X, is E-good<=> GNo(F) =0, where o(F)={oa| Ac F}.

Lemma 8 Let (I, X') be a 2—1 edge-labelled graph with | E(I') |= 2(n—1).
Suppose XN'(e/) = N'(f') =n—1. Let P be the set of internal edges of some
e’ — f’ path in . (Note we include the special case where ¢’ = f' and
P =0.) Let (T',)) be the 2 — 1 labelled graph on 2n edges obtained from
(", X') by adjoining edges e and f, with A(e) = A(f) = n, where e is
incident with e’ and f with f'(see Figure 19). Then

B —_ Bﬂ—l
"7\ or BpoiA{n—1,n}

_______________________

Figure 19

Proof: If exactly one of e and f is incident with an edge of P then n —
1€ B, Ifn—-1¢€ B,_y, then B, = B,_;. If n—1 ¢ B,_,, then
By = Bp_1U{n—1,n} = B,_1A{n — 1,n}. On the other hand, if either
both or neither of e and f is incident with an edge of P thenn —1 ¢ B,.
Hence if n — 1 & B,_,, then B, = B,_1, while if n -1 € B, — 1, then
By, =Bn1—{n—-1}U{n} = B,_1A{n - 1,n}. a

Proposition 7 Let (I, ') and (T, A) be as in Lemma 3. Suppose E(¢'(I))
is fundamental for Q. with associated subgroup G’ of Tn-1. Then E(p(T))
is fundamental for Q, with an associated subgroup G of T,,.

Proof: Let G' = {o4 € 2,y || ANT! |=0 (mod 2) for i = 0,1}. For
1<j5<n-1, Bj(I') = B;(I") = Bj. By Lemma 3, B, = B,(I") = either
Byp—jor Bo_1A{n —1,n}.

Case 1: B, = B,_;. Since 0p,_, € G', at least one of | B,—; nTy |
and | By,—1 NT} | is odd. With no loss of generality we may assume
| Ba-1NTg | is odd. Let To = T and Ty = T] U {n}. So by Lemma 3,
TouT, ={1,2,...,n}. Fork<nandj—01 BknTJ—Bkr‘IT'and
(BeA{k})NT; = (BkA{k})n , so in each case the cardinalities are equal
Since G’ is E(l’")-good and thus op, € G, for each k, | By N Tj | is odd
for at least one value of j, and the same is true for | (BxA{k}) N T‘J R
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Finally, | B, N Ty |=| Ba—1 N Ty | is odd, by our assumption, and since
(BpA{n})NTy = B,NTy, | (BuA{n})NTp | is odd. Thus if G = {04 €
Tn || ANT; =0 (mod 2) for j =0,1}, then G is E(yp(T'))-good.

Case 2: B, = B,_1A{n—1,n}. For atleast one j € {0,1}, | (Bn—1)A{n—
1} N T; | is odd, since op,_,A{n-1} ¢ G’. Without loss of generality,
assume that | (Bn—1A{n —1}) N T} | is odd. Let Tp = Ty U {n}, and
Ty=T,. Let G={os € En || ANTj |= 0 (mod 2) for j =0,1}. Then
ToUT: = {1,2,...,n}. As before, for k < n, B NT; = B, NT] and
(BeA{k}) NT; = (BxA{k})NTj, and so o, ¢ G and o(g,a(x} €G-

Finally,

| BaA{n}) N Ty |=| (Bn —1A{n —1})A{n})NT; |
=| (Bn-1A{n -1 NT || (Ba-1A{n -1} NT] |

which, by assumption, is odd. Also,
| BaNTy |=| (Ba—1A{n—-1,2})NTY |

| Bac1A{n—1NNT. |+ | {n}NT/| (mod 2).

But n g€ T, so | B N7 |=| (Bn-1A{n — 1}) N T} | which is odd. Thus
o, € G and 0p A(n-1} € G. Hence G is E(p(T))-good and E(p(I)) is
fundamental for Q. a

We now give some examples of 2 — 1 labellings of trees, both bad and
good.

Example 4 Let (T, \) be the labelled tree of Figure 20.

Then B1 = {2, 3},32 = {1,3},33 = {1,3},34 = {1,2} and BlA{l} =
ByA{2} = B3A{3} = {1,2,3}. Thus F C X3 — {0}, and so there is no
subgroup G of index 4 in X4 with GNF = 0. So the 2 —1 labelling X of T
is bad.

Figure 20. (T, )\)
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On the other hand, the following 2 — 1 labelling A of T', shown in Figure
21, is good.

3 1 2 3 4 2

(e, O— O O O

Figure 21. (T, })

For By = {1,2,3,4}, B, = By = {3,4}, Bs = {1,2}, B1A{1}
B2A{2} = {2,3,4}, BsA{3} = 1,2,3, and B;A{4} = {3}. Let $;
{1,2,3} and S; = {2,3,4}, and let G = {04 € 54 || ANS; |=
(mod 2), for j=1,2}. Then FNG =4.

Note: If we delete the two pendant edges labelled 4 from (T, ) in Ex-
ample 4 we obtain a good pair (T”,\’) with associated subgroup G =
{id,0(1,9)} of index 4 in X3 (see Figure 22).

ol

Figure 22. (T, X)

Example 5 Let T be the tree shown in Figure 29a. The 2—1 labellings A\,
and Xz, shown in Figures 2%b and 23c are both bad. For F()\;) C T3{id}
and F(X2) C {04 | AC {1,3,4}, A # 0}. However, the labelling A3 shown
in Figure 28d is good. For each pendant edge labelled 4 is incident with
and edge labelled 3. If we delete the 2 edges labelled 4 and their incident
leaves, we have a pair (T', X) (see Figure 23¢) which has the associated
good subgroup G = {id,0(y 2y} of 3. Thus by Proposition 7,3 is a good
2 — 1 labelling of T.

We can now state the main result of this section. Its proof is quite long,
requiring six lemmas, and so we omit it.

Theorem 1 Letn 2> 3 and let T be a tree on 2n edges with diameter([) =
4. Suppose I' D Ty, degzo < n, and degz; < n — 1 for all vertices z;
adjacent to xo. Then there ezists a 2 — 1 labelling A of E(T') which is
E-good.

Combining Theorem 1 and Proposition 5 we see that for n > 3, any tree
on 2n edges with diameter 4 which has a 2 — 1 embedding in Q,, also has
a good 2 — 1 embedding. We conjecture that this is true regardless of the
diameter.
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Figure 23a. T

Figure 23e. (T', X)

Conjecture 1 Ifn > 3, any tree which has a 2 — 1 embedding in Q,, also
has a good 2 — 1 embedding.
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Figure 24. T

5 Paths on 2n Edges.

A path on 2n edges can not have a 2 — 1 embedding in Q,,. For with each
edge direction occurring twice, the image in Q,, would be a closed walk.
We can ask instead whether there is an embedding of P;, whose image is
a fundamental set for Q. For n odd, this is impossible.

Proposition 8 Letn be odd, and let Py be a path on k edges in Q,, so that
isomorphic copies of Py yield an edge decomposition of Q.. Then k < n.

Proof: Q, is n-regular. Since every non-terminal vertex of P; has degree 2,
and each vertex of @y, has odd degree, each vertex of Q,, must be a terminal
vertex of at least one copy of Px. If Q, had an edge decomposition by m
copies of P, then there would be at most 2m terminal vertices in Q,,. Hence
2m >| V(Qn) |= 2" and so m > 2*1. Since n-2*! =| E(Q,) |= k- m,
we find that k =n-2""1/m < n. O

Conjecture 2 Ifn > 4 is even then some P, C Q,, is a fundamental set
Jor Qn.

Example 6 We shall establish the conjecture for n = 4. Let Py be the
path with initial vertez 0 and edge direction sequence 1,2,1,3,2,1,2,4. Let
0 be the permutation (1,3)(2,4) and let pg denote the automorphism of Q4
defined by z122x3%4 — Te(1)To(2)To(3)To(a) = T3T4Z1Z2. Then the sub-
group G = (0(1,2,3,4},p6) of Aut(Q4) has order 4 and is E(Ps)-good. For
P U 0(1,2,3.4)(Ps) is the Hamiltonian cycle with edge direction sequence
(1,2,1,3,2,1,2,4)2, which, as was observed in [2, Example (a)(i), Section
4], is fundamental for Q4 with associated subgroup {pp) of Aut(Qs).
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