An Algorithm To Find The Core Of A CV-Graph

A. Antonysamy

Department of Mathematics
St Joseph’s (Autonomous) College
Tiruchirapalli - 620 002
India

G. Arumugam

Department of Computer Science
Madurai - Kamaraj University
Madurai - 625 021
India

C. Xavier

Department of Computer Science
St. Xavier’s (Autonomous) College
Palayamkottai - 627 002
India

ABSTRACT. The core of a graph was defined by Morgan and
Slater [MS80] as a path in the graph minimizing the sum of the
distance of all vertices of the graph from the path. A linear
algorithm to find the core of a tree has been given in [MS80].
For the general graph the problem can be shown to be NP hard
using a reduction from the Hamiltonian path problem.

A graph with no chordless cycle of length exceeding three is
called a chordal graph. Every chordal graph is the intersection
graph of a family of subtrees of a tree. The intersection graph
of a family of undirected paths of a tree is called a UV graph.
The intersection graph of an edge disjoint family of paths of a
tree is called a CV graph [AAPX91]. We have characterised
that the CV graphs are nothing but block graphs. CV graphs
form a proper subclass of UV graphs which inturn form a proper
subclass of chordal graphs. In this paper an O(ne) algorithm
to find the core of a CV graph is given where n is the number
of vertices and e is the number of edges.

ARS COMBINATORIA 46(1997), pp. 153-160

1 Introduction and definitions

The core of a graph was defined by Morgan and Slater [MS80], [SL80] as a
path in the graph minimizing the sum of the distances of all vertices of the
graph from the path. A linear algorithm to find the core of a tree is given in
[MS80]. This algorithm traverses the edges of the tree in double scanning,
first bottom-up and then top-down. One of the applications mentioned
in [MS80] is routing a highway through a road network. Becker and Perl
[BP85] generalise this concept and define 2-core of a graph as a set of 2
paths minimizing the sum of the distances of all vertices of the graph from
the two paths. They have considered both the cases of disjoint paths and
the intersecting paths which they call 2-core and 12-core respectively. The
core is called the 1-core. The 1-core and the 2-core problems can be shown
to be NP-hard for the general graphs from the reduction of the Hamiltonian
path problem.
The following definitions and notations of [BP85] are used here.

A graph is called a block graph iff every block is complete. Let G = (V, E)
be a graph and P a path in G. Let d(v;,v2) denote the number of edges in
the shortest path joining vertices »; and v; in G.

Let d(v, P) = Min(v,?v'): v’ € P}.

Let B be a subgra'ph of G. We denote

dp(P)= Y. d(»,P)

veV(B)

If B = G then we simply write d(P) in the place of dg(P). A 1-core of a
graph G is a path P minimizing d(P).

We shall have the intersection characterisation for a block graph. A
graph with no chordless cycle of length exceeding three is called chordal
graph. Chordal graphs are precisely the intersection graphs of subtrees of
a tree [Ga74]. Given a chordal graph G, the tree can be constructed with
the vertex set as the set of maximal cliques of G [MW86]. The intersection
graph of paths of an undirected tree is called an undirected vertex path
graph or UV graph [MW86].

A family of paths in a tree T is said to be compact if every edge of T
is in one and only one path of the family. The intersection graph of a
compact family of paths in a tree is called a Compact Vertex path graph
or CV graph. In this paper cliques refer to only maximal cliques and all
the graphs considered are connected. The CV graphs have been introduced
and studied in [AAPX91].

The following results of [AAPX91] are used directly or indirectly.
Proposition 1.1.

a) A complete graph is a CV graph.

154

b) A chordal graph with exactly two cliques is a CV graph if and only
if there is exactly one point common to the cliques.

Proposition 1.2. A graph G is CV if and only if intersection of any two
cliques is at the most a singleton and collection of cliques satisfies Helly’s

property.
Proposition 1.3. A graph G is CV graph if and only if G is block graph.

A vertex v of G is said to be a cut vertex if the removal of » and the
edges incident on v makes G disconnected. We also observe that a vertex v
of a CV graph G is cut vertex if and only if v lies in more than one clique.

2 Labelling the edges

Let v and v’ be two adjacent vertices of a CV graph where v’ is a cut vertex.
Let C denote the clique containing both v and +’. Let Cy,C,,...,C, be
the cliques which contain v’ but not v. Without loss of generality assume
that C1Cy...Cy (1 £ g < s) are the cliques which contain no cut vertex
other than v'. For each C; (g < i < s) assume that v;; (1 < j < k;) be the
cut vertices of C; other than v’ and u;,. (1 £ 7 < t;) be the non-cut vertices
of Cg.
Forg<i<s, ti+k+1=|Ci

p1= Z k; is the number of cut vertices adjacent to v’
g<i<s
and
p2= Z (G| -1+ z t; is the number of non-cut
1<i<q q<i<s
vertices adjacent to v'.

By deleting the edges of C (only edges, not the vertices) the CV graph
G is decomposed into a number of components. These components are
called the branches separated by C. We define two labels for each edge
vv/, one corresponding to v and the other to v’. Let B, denote the branch
containing v’ separated by C. Let L**' = 1Y, mv’, n**") denote the label
of vv’ correponding to the vertex v. We define the labels such that n*’ is
the number of vertices in B, and 1"*' = ds,,({v}). m*’ is the maximum
one can save on dg ,({v}) by putting a path P through v into B,, and

155

replacing dp , ({v}) by dp,(P). We denote
Lﬂ"v‘f = Lij’
lvlvij . lij:
mu’u(j = mtj:
and
nu'v.-j = niJ
Let Li; = (1i5, mij,m4;5) be the label of edge v'y;; corresponding to v'.
(1<j<ki,g<igs).
Let S be the set of all cut vertices in the clique C and

B= |J B
ueV(C)—{v}
where B, is the branch containing u separated by C.

Let B;; denote the branch containing v;; separated by C;. Let there be
a path P up to v'.

Let there be a path P up to v’. Let my; be the distance saved on dg(P)
by extending P from v’ to v;; after visiting all the vertice of C; and then
extending into ng.

Let

my = Max;<i<o{|Ci| — 1}
my = Max xqssiissl:g {mij}

Lemma 2.1. The number of vertices in B, is given by

' =13 Y ngl+pe+1 (2.1)

q<i<si<j<ki

Proof: If all the cliques C}, Cs, ..., C, have no other cut vertex then v =
p2 + 1, which is trivially the number of elements in the branch B,.

By induction let us assume that n;; has been already calculated which
is the number of vertices in the branch with v;; separated by the clique C;
(g<i<s1<j< k).

The number of non-cut vertices adjacent to v’ is p2. At every cut vertex
v;; adjacent to v’ there is a branch with n;; vertices; v’ is also in the branch
B, So, the total number of vertices in B, is given by (2.1).

Lemma 2.2.

de,({v) = Y. D (ij+ni)+2p2+1 (2:2)

g<iLsi<j<k:

156

Proof: Let v’ be the cut vertex adjacent to ». If all the cliques C1, Cs,...,C;s
have no cut vertex other than v then every vertex except v’ is at a distance
2 from v. So, the sum of the distances of all the vertices except v’ is 2ps.
Hence the total distance dp_, ({v}) = 2p2+1. Now consider the cut vertices
v;; adjacent to v’ (¢ < i < 8,1 < j < k;). By induction hypothesis assume
that 1;; has already been evaluated and 1;; = dp,;({v'}) where B;; is the
branch with v;; separated by the clique C;. Since v is adjacent to v'.

dp,;({v}) = dp,; ({v'}) + nyj = 1ij + nyy

So, the sum of the distance coming through the cut vertices is

Z Z (145 + ni5)

q<i<si<i<k;

So, including the distances from the non-cut vertices and the distance of
v’, dp,, ({v}) is given by (2.2).

Lemma 2.3. Let P be a path which terminates at v such that V(P) N
V(C) = {v}. By extending v to v’ after visiting all the vertices of C one
can save

ICl-1+ Y. @™-1) (2.3)
u€S—{v}
on d(P).

Proof: Since C is a separating clique a path which extends from v to 2’
gets a saving of distance one for each vertex of C other than v. For every
cut vertex u of C, the branch B, has n** vertices. Of them u has been
already counted and the other vertices also get a saving of 1 and hence
(2.3).

Lemma 2.4. Let P be a path which terminates at v' and PN C; = {v'}
(1 £ i £ s5). By extending P from v’ and visiting all the vertices of C;
(1 <1 < q) one can save

ICi| -1 (2.4)
on dg(P).

Proof: All the vertices of C; except v’ were at a distance 1 from P and
because of the extension they lie on the path P. No other vertices of B are
affected.

Let us denote

m” =[Cl -1+ Y (0"’ —1)+ Max (mq,mo)
ueS—{v}

157

Theorem 2.5. Let P be a path which terminates at v and V(P)NV(C) =
{v}. By extending P from v to v’ after visiting all the vertices of C and
then extending into B, one can save at the most m*’ on d(P).

Proof: The extension of the path P is done in two phases. In the first
phase the path is extended from v to v’ after visiting all the vertices of C
and this yields a saving of

IC| -1+ > (n** — 1) by Lemma (2.3)

wEV(C)—{v}
and u Is a cut vortox

In the second phase the path is extended further. If the path is extended
to clique C; (1 < i < g), one can save at the most m;. If extended to some

vij (¢ 2 q) then one can save at the most mo. This establishes Theorem
2.5.

38 Algorithm

The edges of the CV-graph G are given two labels one for each vertex using
the following procedure

Procedure 3.1.
Input: A CV graph G

Output: For each edge vv’ of G, evaluate two labels, one for » and the
other for v’ The label of vv' correspondmg to v is denoted by L¥¥' =
(lvv Uﬂ)

1. For every edge vv’,while v’ is a non-cut vertex do

la) n" «— 1
1b) 1¥¥ —1
1.c) m* «— |C| — 1 where C is the clique containing vv’.
2. Check 1f there is an edge vv’ such that for every edge v'u ('u, #v) the

labels n”* and 1¥"* have already been evaluated but n* and 1"’
have not.

2.a) If the test in step-2 fails, then the labels 1**" and n** have been
evaluated for all the edges;

go to step-3.
2.b) If the test in step-2 succeeds,
' — [Zq«ss Eiggk_. nij] + p2 + 1;

1 — Zq(iSa Elgqu (L5 +7m45) +2p2+ 15
go to step-2.

158

3.

Check if there is an edge vv’ such that for every edge v'u (u # v) the
label m¥'* has already been evaluated but m**' have not.
3.a) If the test in step-3 fails, then the labelling process is over.
3.b) If the test in step-3 succeeds
3.b.1) my «— Max<i< {|Ci] — 1}
3.b.2) mg +— Max 1q5<5‘55):¢ {m,-j}
3b3) m* «— |C] - 1+ Lyes— gy n* + Max{m;, mp}
3.b.4) go to step-3.

Algorithm 3.2.

Input: A CV graph G
Output: A core of G.

. Label the edges as per procedure 3.1.
. Choose the edge vv’ which has a maximum label m?Y’

1
2
3.
4

The path P = {v}

. Extend P from v and reach v’ after visiting all the vertices of the

clique C containing v and v'.

. In the evaluation of m**’

If my; = Max{my, m2} and m; = |C;| — 1 for a particular ¢ < q then
go to step (5.a), otherwise go to step (5.b).

5.a) Extend the path from v’ into C;, visit all the vertices of C; and
stop. The core of the CV graph has been constructed.

5.b) If my; = my; for some particular values ¢ and j ({ > ¢ and
i < j < k;) Treating v'v;; as vv’ go to step 4.

4 Correctness and computing time

Theorem 4.1. Algorithm 3.2 constructs a core of a CV-graph.

Proof: In step-2, v»' has been selected in such a way that the label m™’
is the maximum. As per the definition of m**’ this minimizes d(P). The
same procedure Is repeated in step-5 and hence d(P) is the mlnimum.

Lemma 4.2. The time taken by procedure 3.1 Is bounded by O(ne) where
e is the number of edges and n is the number of vertices.

159

Proof: A vertex is a cut vertex if and only if it is in more than one clique.
Hence a vertex can be checked for cut vertex in O(p) time where p is the
number of cliques. Hence step 1 takes at the most O(ep) time. Test-2 can
be performed in constant time and this is repeated 2e times. Step-3 takes
no more time than step-2. Hence the total time taken is O(ep). But p is
bounded by n since a CV-graph is chordal. Hence the time taken by the
procedure 3.1 is bounded by O(ne).

Theorem 4.3. The computing time of algorithm 3.2 is O(ne).
Proof: Follows from Lemma 4.2.

References

[AAPX91] A. AntonySamy, G. Arumugam, M. Paul Devasahayam, C.
Xavier, A recognition Algorithm for the Intersectlon graphs of inter-
nally disjoint paths in trees, Proceedings of National Seminar on The-
oretical Computer Science, I MSc Madras Report 115 (1991), 169-178.

[BP85] Ronald I. Becker and Yehoshua Perl, Finding the two-core of a tree,
(personal communication).

[GaT74] F. Gavril, The intersection graphs of sub trees of a tree are exactly
the chordal graphs, J. Comb. Theory Ser. B 16 (1974), 47-56.

[MS80] C.A. Morgan and P.J. Slater, A linear algorithm for the core of a
tree, J. Algotrithms 1 (1980), 247-258.

[MW86] C.L. Monma and V.K. Wei, Intersection graphs of Paths in a tree,
Jour. of Comb. Theory (B) 41(2) (1986), 141-181.

[SL80] P.J. Slater, Centrality of paths and vertices in a graph: Cores and
pits in: G. Chartrand et al. eds. 4th International Conf. Theory and
Appl. Graphs, Western Michigan University, Wiley, New York, (1980),
529-542,

160

