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Abstract

A Restricted Resolvable Design R.RP(p, k) is a resolvable design on p
points with block sizes r and r + 1 in which each point appears & times.
An RRP is called uniform if all resolution classes consist of the blocks of
the same size.

We show that a uniform RsRP(p, & — 2) exists for all p = 12 mod
24, p # 12 except possibly when p = 84 or 156. We also show that
if g =3mod6 g € {3,21,39} and p = 4g mod 8g then there exists an
RsRP(p, & — (r +1)) for all

oer< L;—g-i if -‘% is a prime power congruent to 1 mod 6;

o r < £ where g is the smallest proper factor of '4% if -‘% is composite

499
and there exists an RT(g, &3)-

1 Introduction

A Pairwise Balanced Design PBD(v, K, )) is a pair (X, B) where [X| = v and
B is a collection of subsets of X, called blocks. Each block has size ¥ € K and
each pair of points of X occurs exactly A times in the blocks. If the blocks
can be partitioned into parallel classes such that each parallel class contains
each member of X exactly once the design is called resolvable and we write
RPBD(v, K, A). In this paper we only consider designs with A = 1 and so we
will usually omit the A. A parallel class is called uniform if it contains blocks
of only one size.

Definition 1.1 A Restricted Resolvable Design R. RP(p, k) is a resolvable pair-
wise balanced design on p points with block sizes r and r+4-1 such that each point
appears k times in the design. We call the design uniform if all the parallel
classes are uniform and non-uniform otherwise.

ARS COMBINATORIA 46(1997), pp. 161-176



The reason for transposition of the usual roles of r and k is due to the relation
of these designs to the so called g(*)(v) problem. g(*)(v) is defined to be the
smallest number of blocks necessary to create a design on v points in which the
largest block is of size k. Stinson [15] has shown that the optimal arrangement
can be achieved by adding a block of size k at “infinity” to an R,RP(v — &, k),
where r = | ¥71].

All the results in this paper are for uniform R,.RP(p, k). Note that if an
R,RP(p, k) design is uniform then there are p — k(r — 1) — 1 parallel classes of
size r + 1 and ti—?é’i"—ll — kr parallel classes of size r. In particular if r = 3
this becomes 2p — 3k.

The existence problem for RyRP(p, k) was solved in 1981 by Pullman [4]
and Stanton et.al. [14]. Recently Rees (10, 12, 13] has solved the spectrum of
R2RP(p, k). We will be concerned here with R3RP(p, k) designs, i.e. designs
with block sizes three and four. In the rest of this section we present definitions
and known results for designs which we shall use. In the next section we present
a frame construction for R3RP designs and two Harrison type constructions. In
the final section we derive the results. We first derive the necessary conditions
for the existence of an RgRP(p, k).

Theorem 1.1 The necessary conditions for the existence of an RsRP(p, k) are
that |251] < k < |25*] and p(6k — p+ 1) = 0 mod 12.

If the R3RP(p, k) is uniform the second condition reduces to p = 0 mod 12
and we have that if k < § —1 then p > 16.

Proof:

Consider a point, suppose it is in s blocks of size 3 and ¢ blocks of size 4, thus
k=s+tand p—1 = 2s+ 3¢, the first inequality follows. We now count blocks,
there are & + & = £ (6k — p+ 1) of them. Thus p(6k — p+ 1) =0 mod 12.

If the design is uniform then p must be divisible by both 3 and 4, thus
p =0mod 12. If k < & — 1 this implies that there is more than one parallel
class of size 4. After we place the first parallel class of size four, if p < 16, we
will be unable to place another one without repeating edges contained in the
first parallel class. O

We will use the idea of a group divisible design.

Definition 1.2 A group divisible design K-GDD of type (g1)*'...(¢g;)"* is a
triple (X,B,G) where X is a set of v = ¥ g;u; points. G is a collection of
subsets of X called groups, there are exactly u; groups of size g;. The groups
ezactly partition the points of X between them. B is a collection of blocks with
sizes from the set K such that each pair of points of X, not both in the same
group, appears ezaclly once in the blocks.
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If the blocks of a group divisible design may be resolved into resolution classes
we call it a resolvable group divisible design and denote it by K-RGDD of type

(g1)" ... (gs)"-

If K = {k} then we write k-(R)GDD. The following was shown in {1, 5, 11}.
Theorem 1.2 A 3-RGDD of type g* ezists if and only if

o uz%?2

e ug=0mod3

e g(u—-1)=0mod?2

* (9,4) € {(2,6),(6,3)}

Thus, for every u = 0 mod 3 there exists a 3-RGDD of type 4*. We note
that this implies the existence of an RgRP(4u,2u — 1), i.e. for all p = 0 mod 12
there exists an RsRP(p, & — 1).

One special case is when v = gk, in this case we have a resolvable transver-
sal design, which we denote by RT(k,g). These designs are a special case of
uniformly resolvable designs.

Definition 1.3 A uniformly resolvable design k-URD(v, g,t) is a resolvable de-
sign on v points each of whose resolution classes is uniform of size k or g. There
are r resolution classes of size g in total.

Danziger and Mendelsohn [2] have shown the following.

Theorem 1.3 Ifg =3 mod 6 and n is odd then there ezists a 9-URD(ng, g,r)
for all

o r < 2L if n is ¢ prime power congruent 1o 1 mod 6;
e r< % if n is composite and p is any factor of n such that there ezists an
RT(s,2).
We shall also use a special type of GDD called a frame.
Definition 1.4 A K-frame of type g} ...g%" is a group divisible design with
groups G;, where |G;| = g;. The blocks may be partitioned into holey parallel
classes, each of which partitions the set X \ G; for some i. We call the groups

holes, and say that the hole G; is of degree d; if there are d; holey parallel classes
which partition X \ G;.

For ease of notation we will sometimes denote a K-frame of type ¢* ... g%
by the multiset with u; copies of each g;. We give the following definitions for
particular types of frames.
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Definition 1.5 Given a K-frame of type g1* ...g}"°
o we call it uniform each partial parallel class is of only one block size;

o we call it completely uniform if for each hole G; the resolution classes
which span X \ G; are all of one block size;

o we call it pure if K = {k}.

We note that the standard usage of the term uniform when applied to frames
is that there is only one group size. However the term uniform frame is here
reserved for another case in accordance with the general use of the term uniform
in this paper. With this definition a pure frame is completely uniform and a
completely uniform frame is uniform.

If a frame is uniform we may denote it as a frame of type

(91; k7Y, ... ko) .. (965 kT2, .. .,k:")"'

where there are u; holes of size g; missed by n;; uniform partial resolution
classes with blocks of size k;. Thus the degree of each hole with size g; is given
by d; = 3, n;j. If the hole is completely uniform we will often omit the n;;, in
this case tfue ni; are implied by the following corollary to a result due to Rees
(8]

Theorem 1.4 In a pure k-frame of type gi* ...g}", each hole has degree 7.
In a completely uniform K-frame of type (g1 ; k1)** .. .(g, ; ks)**, each hole has
degree piiq

Stinson [16] has shown existence of pure Kirkman frames with block size 3.

Theorem 1.5 There ezists a pure {3}-frame of type g* if and only if u > 4
and

e g=2o0rd4dmod6 and u=1mod3;
e g=0mod6, allu > 4.
We will also use a resolvable design with a hole.

Definition 1.6 A resolvable PBD(v, K,m) with a hole of size w and degree d
is a design on a v-set X with block sizes from K and a hole G of size w in
which every pair of points in X not in the hole is covered ezactly once by the
blocks. Further the blocks may be partitioned into m+d classes, m of which are
resolutions of X, d of which are resolutions of X \ G.

Rees and Stinson [6, 7, 9] have shown the following Theorem, which is a
generalisation of the Doyen Wilson Theorem to the resolvable case.

Theorem 1.6 For any v = 3 mod 6 and w = 3 mod 6 such that v > 3w there
is a resolvable PBD(v, {3}, £5%) with a hole of size w and degree 251
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2 Constructions

In this section we introduce the basic constructions that we will use. First we
introduce some constructions for producing frames, then we introduce a frame
construction for restricted resolvable designs and finally we give two Harrison
type constructions for these designs.

The following four frame constructions are well known. We are particularly
interested in how blocks of different sizes are affected by these constructions.
The first is the fundamental frame construction.

Theorem 2.1 (Fundamental Frame Construction (FFC)) Let

(X,B,G) be a group divisible design, and let w(z) : X — Z* U {0} (w(z) is
called a weighting), d(z) : X — 2+ U {0} (d is called a degree function). Sup-
pose that for each block B from the group divisible design there is a K-frame
of type {w(z) | z € B} in which hole w(z) has degree d(z). Then there ez-
ists a K-frame of type {3 ¢, w(z) | Gi € G}, further each hole G; has degree

E:.'EG( d(:l,').

Proof:

We give a sketch of the proof, for a complete proof see for example (1]- The
idea is to expand each point, z, in the original GDD w(z) times. On each block
B place a K-frame of type {w(z) | z € B}. Consider a point z from a group G.
The set of points in the blocks of the GDD in which z appears is a resolution of
X \ G. Thus the collection of all the partial resolution classes from the frames
with hole w(z) is a set of partial resolution classes of the whole set except for

{:eq, v(2)|Gi€G}. O

We note that if for each point z, the blocks containing z get a uniform
K-frame then the resulting K-frame will be uniform.
Another well known method for creating frames is inflation by transversal

designs.

Theorem 2.2 (Inflation by Resolvable Transversals) If there ezists a K-
frame of type (91)** -..(g,)** and for each k € K there ezists an RT(k,n) then
there ezists a K-frame of type (ng1)%! ...(ng,)%.

Proof:

The idea is to expand each point n times, on the expanded blocks place an
RT(k,n) in such a way that the groups are the expansion of each point, the
result is the required design. O

We note that if there are m; blocks of a given size k; in the original frame

then there will be nm; blocks of size k; in the new frame. Further if the original
frame is uniform and there were r; partial resolution classes of a given size k;
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then the new frame will also be uniform and there will be nr; resolution classes
of size k;.
We also will use the following tripling construction due to Stinson [16].

Theorem 2.3 (Tripling Construction) If there exisis a uniform K -frame of
type (91)** ...(g,)"* and for each k € K there ezists an RT(3,k) (i.c. there are
no blocks of size 2 or 6) then there ezists a {3}UK -frame of type (391)** ...(3g,)“".

Proof:

Expand each point of the K-frame 3 times. On each expanded block of size
k; place an RT(3, k;) in such a way that one resolution class of blocks of size 3 is
the expansion of each point, remove this resolution class to obtain the design. O

We note that if the original frame is uniform and there are r; partial reso-
lution classes of size k; (ki # 3) then the resulting frame will also be uniform
and there will be r; partial resolution classes of size k;. There will however be
new parallel classes of size 3, and so a pure frame will not remain pure, unless
K = {8}.

The advantage of this construction is that for all block sizes k;, other than
3, if there are m; blocks of this size in the original design then there will be m;
blocks of this size in the resulting design.

Theorem 2.4 Ifthere exists a 3-RGDD of type g then there exisls a completely
uniform {3,9}-frame of type (2; 3')’(g — 1; g*)", where s = }(g(u — 1)).

Proof:
Remove a point from the 3-RGDD of type g* and identify the short block
in each resolution class as the hole. O

We now give a frame construction for R, RP designs.

Theorem 2.5 If there ezisis a uniform {3,g9}-frame of {type
(915 3)*(92; 3°,47)! (where p = }(g2—3r)) and w is such that gy +w = 3 mod 6,
2w < g1, and there ezists a uniform R3RP(g2+w, k) (k = 12=I=1) then there
ezists a uniform R3RP(git + g2 + w, Uitgatw=r=l)

r—1

Proof:

The idea is to adjoin w points at infinity to the original frame, we then fill in
each of the holes plus the points at infinity with a resolvable PBD(g; +w, {3}, &)
with a hole of size w and degree 23 in such a way that the hole is exactly the
w points at infinity. The last hole, of size g, we fill with the R3RP(g2 + w, k).

More formally we will construct the design on X = I,Ul,,, where v = g t+g2.
We will denote the members of I, by W and call them points at infinity.
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Figure 1: The resolution classes A;;
oo
T;(Gy)

R;(Gi)

Figure 2: The resolution classes B;

U;(Go)

Uj(Ge-1) || Gi-1

Hj

We start with the uniform {3, g}-frame of type (g1; 3)*(g2; 3°,4")! with point
set I,. Let the holes of size g, be denoted by G;, i = 0,...,£ — 1 and the hole
of size g be denoted by G;. For the holes of size g; denote the partial parallel
classes which miss the hole G; by R;j(Gi),i=0,...,t—1,j=1,..., 4. We
note that by Theorem 1.4 the degree of the holes of size g; is 4.

We denote the partial parallel classes of triples which miss the hole G; of
size g2 by Sj, i =1,.. pa.nd thoseofsxze4by Qi,i=1,. ,r By counting
the degree of a vertex not in the hole of size g, we obtain p = 1(gz — 3r).

The conditions that 2w < ¢; and g1 + w = 3 mod 6 implies, by Theorem
1.6, that there exists a resolvable PBD(91 + w, {3}, %) with a hole of size w
and degree %3~ =1 For each hole of size g1, Gi, i =1,...,t — 1, of the frame we
construct such a design with point set G; U W, with the hole of size w which
exactly covers the points at infinity, W. This covers all edges in the holes of size
g1 from the fra.me Denote the 4 full resolution classes of this design by T;(G:),
i=1,.., % and the 23! pamal ones by U;(G;). Each of the collections of
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Figure 3: The resolution classes Cj

S; :
Hjyy-1)

blocks o
Aij = (Rj(G.’)UT}(G,')), i=1...,tj=1, gy
are resolutions of the set X.

For the hole of size g3, G, we construct a uniform RzgRP(g; + w, 11—"',',"%"1-)
with point set G:UW and resolution classes of size 4 denoted by V;,j=1,...,r
and those of size 3 by Hj, j=1,...,7. (vy= %(.‘lz + w—1-3r)). This covers
all the edges in the hole of size w and the hole of size g3 from the frame. The
collections of blocks

t=1
. -1
By = H;u| JUi(G), =1,....,75=

i=0

are ”’T"' parallel classes of triples. This leaves exactly %(yz — 3r) resolution

classes of triples from the RRP, Hj, j = Q'Tl, ...,7, which we pair with the
triples from the partial resolutions in the frame with hole G, S;.

. 1
C,’ = Hj-{-*(w-l) U Sj: J= 1,.. ')5(92 - r(g - 1))'

Finally we form the resolution classes of size 4, from the partial resolution
classes from the frame and the resolution classes of size 4 from the RRP.

Dj=V;uU@Qy, j=1,...,r

We give the following two Harrison constructions. In these constructions
each point in a master design is expanded and the resulting large blocks are
filled by other designs called ingredients.

The following is a Harrison type construction which allows us to muitiply p
while leaving the number of blocks of size 4 constant.
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Figure 4: The resolution classes D;

Qj :

v;

Theorem 2.6 If n = 0 mod 3 and there ezists an R3RP(p,k) (p # 24) then
there ezists a R3RP(np, &2:—1)' +k). Note that the number of parallel classes of
size 4 remains the same.

Proof:

By the conditions on n and Theorem 1.2 there is a 3-RGDD of type 4", we
will use this design as the master design. It is well known that if § # 2 or 6 there
exists an RT(3,2). We will use an RT(3,%) and the RsRP(p, k) as ingredient
designs.

Each point of the 3-RGDD of type 4" is expanded & times. On each of the
expanded groups, of size p, we place the RsRP(p, k). Each point occurs k times.
On the expanded blocks, of size %3 we place an RT(3, §) in such a way that the
groups are the expansion of each point. Each point occurs 2(n — 1) times in the
3-RGDD of type 4™, each of these will occur & times in the completed design.

Thus this part contributes 3(3233 occurrences of each point. O

Theorem 2.7 If p = 4g mod 8¢g where g = 3 mod 6 (which implies § is odd)
and there ezists a R3RP(4g,29 — 2) and a 3-URD(%,g,r) then there ezists a
R3RP(p,% - (r+1)).

Proof:

We will take the 3-URD(%, g, r) as our master design, we expand each point
4 times. Note that each point will occur r times in blocks of size g and }(§ —
1—r(g — 1)) times in blocks of size 3.

Place copies of the RgRP(4g,2¢ — 2) on the expanded blocks of size g in
such a way that the expansion of a point is one of the parallel classes of size 4,
remove this class from all of the copies to avoid duplication of edges. Thus each
point occurs r(2g — 3) times. On the expansion of each point place a block of
size 4, giving another parallel class of size 4.

Now place an RT(3,4) on the expanded blocks of size 3 in such a way that
the groups are the expansion of each point. Each point occurs 2(§ —1-r(g—1))
times. Thus in total each point will occur & — (r + 1) times. O
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3 Results

In this section we present the results. We first derive some frames to use in the
construction Theorem 2.5, we then use this theorem to show that there exists
an R3RP(p, & — 2) for all p = 12 mod 24 with two possible exceptions. We use
this result in conjuction with the construction Theorem 2.6 to derive the main
result. We shall use the following result (see for example 8]).

Lemma 3.1 Ift = 1mod3,t > 4and 0 < u < ﬁ';—lz then there ezists a
{4,5}-GDD of type 4*ul. Further, each point in the group of size u appears only
in blocks of size 5.

Proof:

It is well known that there exists an PBD(4t, {4},1) (see [3]), with 2L
parallel classes of size 4. Add a group of size u at infinity to this design, to the
first u parallel classes adjoin a distinct point from the group of size u to get
blocks of size 5. By the conditions on u there is at least one parallel class of
size four left untouched, take one of these parallel classes along with the group
of size u as the groups of the new design. O

Lemma 3.2 For allt = 1mod3, ¢t > 4, 0 < u < = and n # 2,3,6,10
there is a {3,4}-frame of type (24n; 3'12)*(9un; 4", 33un)!

Proof:

We will first construct a {3,4}-frame of type (8n; 3**)*(3un; 4*")!, apply
the tripling construction (Theorem 2.3) to this frame to get the required frame.

To construct this frame we use the the fundamental frame construction (The-
orem 2.1) with the group divisible design given in Lemma 3.1. We give each
point in the groups of size four weight 2n and each point in the group of size u
weight 3n. A {3}-frame of type (2n)* exists by Theorem 1.5, we use frames of
this type to cover the expanded groups of size 4.

We cover the groups of size 5 with a {3,4}-frame of type (2n; 3")*(3n; 47).
To construct this frame we note that by Theorem 1.2 there exists a 3-RGDD
of type 4> thus by Theorem 2.4 there is a {3,4}-frame of type (2; 31)%(3; 4!)!.
Apply inflation by resolvable transversals (Theorem 2.2) to get a {3,4}-frame of
type (2n; 3%)*(3n; 47)!. O

We now apply the frame construction Theorem, 2.5 using the frame above,
with g3 = 9un to get the following.

Theorem 3.1 If there ezists an R3RP(v, 2=% ~ 1), where v = Qun + w and

un=1
w = 3mod6, w < 12n then there ezists an R3RP(p, -‘;"L'_zf ~ 1), where p =

(72s+9%u+24)n+ w, forall s > % and n #2,3,6,10.
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Taking u = 3, n = 1 and w = 9 we get the following.

Theorem 3.2 For all p = 60 mod 72 there erists a uniform R3RP(p,% —2).

Proof:
If p > 60 this is the previous theorem with u =3, n = landw =9, a
uniform R3RP(36, 16) is given in the appendix. For the case where p = 60 a

uniform RzRP(60, 28) is given in the appendix. O

We now use a similar method to show there exists a uniform RsRP(p, § —2)
for all p = 12 mod 72, p # 12 except possibly when p = 84 or 156. We first note
that there is no R3RP(12,4) by the necessary conditions for the existence of a
uniform Restricted Resolvable Design (Theorem 1.1).

Lemma 3.3 There ezists a {3,4}-frame of type (24; 3'2)}(51; 321, 4%)! for all
t=1mod3 witht > 4.

Proof:

We start with the GDD given in Lemma 3.1 with u =7, i.e a {4,5}-GDD of
type 4'7!. We identify three of the points in the group of size u, we call these
points high weight points, the other four points we will call low weight points.

Apply the fundamental frame construction (Theorem 2.1) giving each point
in the groups of size 4 weight 6. We also give the four low weight points weight
6. The three high weight points get weight 9.

By Theorem 1.5 there exists a {3}-frame of type 6* and a {3}-frame of type
65. We cover each block of size 4 with a {3}-frame of type 6%. If a block of size
5 contains a low weight point we cover that block with a {3}-frame of type 65.

For the blocks of size 5 containing a high weight point we use a {3,4}-frame
of type (6; 3)4(9; 3%,4!)!. To get this frame take v = 12 in Theorem 2.4 and
apply the tripling construction (Theorem 2.3). This gives the required frame.
a

We now apply the frame construction Theorem 2.5.

Theorem 3.3 There ezists a uniform R3RP(p,& —2) for allp = 12mod 72,
p # 12, except possibly when p = 84,156.

Proof:

A uniform RgRP(60, 28) is given in the appendix, use the {3,4}-frame of
type (24; 3!2)¥(51; 3%!,4%)! from the above lemma in the construction Theo-
rem 2.5. Take g; = 24, g2 = 51, w = 9 and £ = 1 + 35 to get a uniform
R3RP(72s + 84,365+ 40) foralls > 1. O

Finally we show there exists a uniform RsRP(p, £ —2) for all p = 36 mod 72.
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Lemma 3.4 There ezists a {3,4}-frame of type (24; 3'3)*(219; 31%5,4%)! for
allt=1mod 3 witht > 28.

Proof:

The proof is similar to the proof of Lemma 3.3. We start with the GDD
given in Lemma 3.1 with u = 35, i.e a {4,5}-GDD of type (4)*(35)'. We identify
three of the points in the group of size u, we call these points high weight points,
the other 32 points we will call low weight points.

Apply the fundamental frame construction (Theorem 2.1) giving each point
in the groups of size 4 weight 6. We also give the low weight points weight 6.
The three high weight points get weight 9.

By Theorem 1.5 there exists a {3}-frame of type 6* and a {3}-frame of type
65. We cover each block of size four with a {3}-frame of type 6%. If a block of
size 5 contains a low weight point we cover that block with a {3}-frame of type
65.

For the blocks of size 5 containing a high weight point we use a {3,4}-frame
of type (6; 3)%(9; 33,4')!. To get this frame take p = 12 in Theorem 2.4 and
apply the tripling construction (Theorem 2.3). This gives the required frame.
a

We now apply the frame construction Theorem 2.5.
Theorem 3.4 There ezists a uniform R3RP(p,% —2) for all p = 36 mod 72.

Proof:

A uniform RgRP(228, 112) exists by Theorem 3.3, use the above frame in
Theorem 2.5 with g; = 24, g2 =219, w =9 andt =1+ 3s,5s > 6 to get a
uniform R3RP(72s + 252, 365 + 124).

This gives the result except for the cases p = 36, 108, 180, 252, 324, 396,
468, 540, 612, 684, we deal with these cases individually, using Theorem 2.6.

A uniform RgRP(36, 16) is given in the appendix and so by Theorem 2.6
there exists a uniform RzRP(36n, 18n — 2) for all n = 0 mod 3. This covers the
cases p = 36, 108, 324, 540.

A uniform R3RP(60, 28) is also given in the appendix and so by Theorem
2.6 there exists an RgRP(60n, 30n —2) for all n = 3 mod 6. This covers the case
p = 180.

By Theorem 3.2 there exists a uniform R3RP(204, 100) and a uniform
RsRP(132, 64), thus by Theorem 2.6 there exists a uniform RgRP(396, 196)
and a uniform RsRP(612, 304) .

By Theorem 3.3 there exists a uniform RgRP(228, 112), thus by Theorem
2.6 there exists a uniform RgRP(684, 340)

We may deal with the cases p = 252,468 by using Theorem 2.7. There
exists an RT(3,4), an RgRP(36, 16) is given in the appendix, by Theorem 1.3
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there exists a 3-URD(63,9,1), this gives us an R3gRP(252, 124). Similarly a 3-
URD(117,9,1) gives us an R3gRP(468, 232). O

Putting this together we get:

Theorem 3.5 Ifp = 12 mod 24, p # 12 then there ezists a uniform R3RP(p, §—
2) ezcept possibly when p = 84,156.

We now apply Theorem 2.7 in conjuction with the Uniformly Resolvable
Design result, Theorem 1.3, to get the following Theorem.

Theorem 3.6 If g = 3mod6 g & {3,21,39} and p = 49 mod 8¢ then there
ezists an R3RP(p,§ — (r + 1)) for all:

er< &g’- if -4% is a prime power congruent to 1 mod 6;

e r< -4% where q is the smallest proper factor of -42’- if -‘% is composite and
there ezists an RT(g, ).

We note that even in the best of circumstances this approach can only hope
to yield the very top of the spectrum. Even supposing we had the complete
spectrum for 3-URD(v, g,r) with g = 3 mod 6, then r < ]_"‘IJ But v= & so
we can estimate the minimum k given by the theorem above s

p_§-1_,_p29-3-49-2)
2 g-1 4(9-1) ’

k=

This is still far from the theoretical minimum [§]. The value will be smaller for

smaller values of g, but g > 9. Even in the bat case, when g = 9, this reduces
to JE!:_

A Appendix

In this appendix we give some specific designs. I would like to thank Terry
Griggs for some useful conversations on the construction of these designs. These
designs where found by a computer search on selected difference families.

Construction A.1 There ezisis a uniform RgRP(36, 16).

Proof:
We construct the design on X = I4 x Is. We take as our three resolution
classes of size four:

S = {(0,0),(1,0),(2,0),(3,0)} mod (-, 9)
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S? = {(0) 0)! (11 1)1 (2i 2)) (3$ 3)} mod (_) 9)

S3 ={(0,3),(1,2),(2, 1),(3,0)} mod (-, 9)
We note that there is a KTS(9). Place a copy of this design on each of the
four 9 sets. Denote the parallel classes by R;; where i = 1,..., 4 are the parallel

classes of the KTS(9) and j € I4 denotes on which Ig the parallel class is placed.
We form the resolution classes of triples as follows:

{(0,0),(1,2),(2,4)} mod (—,9) U Ry3
{(0) O)v (1) 3)’ (29 6)} mod (_) 9) U R23
{(0,0),(1,5),(2,1)} mod (—,9) U Ras

{(0,0),(1,4),(3,5)} mod (-,9) U Ry2
{(0,0),(1,6),(3,1)} mod (-,9) U R22
{(0,0),(1,7),(3,4)} mod (—,9) U R32

{(0,0),(2,5),(3,7)} mod (—,9) U Ry
{(0, 0), (2, 3), (3, 8)} mod (—, 9)U Ry
{(0) 0)1 (2: 8)1 (3: 2)} mod (_: 9) U Ra;

{(1) 0)» (21 4)! (3s 8)} mod (_1 9) v RIO
{(1,0),(2,6),(3,3)} mod (—,9) U Rz
{(1,0),(2,7),(3,5)} mod (—,9) U R3o

The final resolution class of triples is given by
4
U Ry
i=0

(=]
Construction A.2 There ezists a uniform R3RP(60, 28).

Proof:
We construct the design on X = Iy x I;5. We take as our three resolution
classes of size four:

51 = {(0,0),(1,0),(2,0),(3,0)} mod (-, 15)
S2 = {(0,0),(1,1),(2,2),(3,3)} mod (-, 15)

S = {(0) 3): (11 2): (2$ 1)’ (3!0)} mod (-! 15)

We note that there is a KTS(15). Place a copy of this design on each of
the four 15 sets. Denote the parallel classes by R;; where i = 1,...,7 are the
paralle]l classes of the KTS(15) and j € I; denotes on which I;s the parallel
class is placed.
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We form the resolution classes of triples as follows:

{(01 O)v (l’ 2)1 (27 4)} mod (—! 15) U R13
{(0) 0): (lv 3)1 (216)} mod (—v 15) U Rz3
{(01 0)1 (1» 4)1 (218)} mod (-» 15) U R33
{(0,0),(1,5),(2,10)} mod (—, 15) U Ry3
{(0, 0)1 (1’ 7)) (2’ 14)} mod ("! 15) U R53
{(0,0),(1,8),(2,1)} mod (—,15) U Res

{(01 0)) (ls 6)! (3v 7)} mod (": 15) U Ri2
{(0,0),(1,10),(3,13)} mod (-, 15) U R22
{(0.0), (1,9), (3, 14)} mod (-, 15) U Rs;
{(0) 0), (lv 12)7 (3’ 1)} mod (_v 15) U R4z
{(0,0), (1,13),(3,4)} mod (-, 15) U Rs>
{(0,0), (1, 11), (3,5)} mod (—, 15) U Rez

{(0,0),(2,9), (3,12)} mod (-, 15) U Ry
{(0,0), (2,10), (3, 14)} mod (-, 15) U Ry
{(0' 0)! (2: 6): (31 11)} mod (_s 15) U R31
{(0,0), (2, 11), (3,8)} mod (-, 15) U Ray
{(0,0), (2, 12), (3,10)} mod (—, 15) U R
{(0,0),(2,13),(3,7)} mod (—, 15) U R

{(1,0), (2,9), (3,12)} mod (-, 15) U Rio
{(1,0), (2, 10), (3, 14)} mod (-, 15) U Rao
{(1,0),(2,6), (3,11)} mod (~, 15) U Rso
{(1,0),(2,11), (3,8)} mod (-, 15) U Rao
{(1,0), (2,12), (3,10)} mod (-, 15) U Rso
{(1,0),(2,13),(3,7)} mod (-, 15) U Reo

The final resolution class of triples is given by
4
U Ry
=0

a
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