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ABSTRACT. A graph G is H-decomposable if G can be decom-
posed into graphs, each of which is isomorphic to H. A graph
G without isolated vertices is a least common multiple of two
graphs G; and G if G is a graph of minimum size such that Gis
both G;-decomposable and G2-decomposable. It is shown that
two graphs can have an arbitrarily large number of least com-
mon multiples. All graphs G for which G and Ps; (and G and
2K>) have a unique least common multiple are characterized.
It is also shown that two stars K1,» and Ki,, have a unique
least common multiple if and only if 7 and s are not relatively
prime.

1 Introduction

A nonempty graph G is decomposable into the subgraphs G, Gy, ..., Gy if
no graph G; (1 < i < n) hasisolated vertices and { E(G\1), E(G2), - .., E(Gn)}
is a partition of B(G). If G; = H for each i (1 < i < n), then we say that G
is H-decomposable and H divides G, and write H|G. All terms and notation
not defined or described here may be found in [3].

Let G4 and G2 be two graphs without isolated vertices. A graph G
without isolated vertices is called a least common multiple of G1 and G2
if G is a graph of minimum size such that G,|G and G2|G. A graph H
without isolated vertices is a greatest common divisor of G; and G if G is
a graph of maximum size such that G|G; and G|G2. These concepts were
introduced in {1]. That every two graphs have a greatest common divisor is
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evident. While it is probably not clear that every two graphs have a least
common multiple, this is in fact the case and was verified in [1]. The size
of a least common multiple of a star and a cycle was also considered in
[1]). In [5] it was shown that every least common multiple of two connected
graphs is connected and that every least comon multiple of two 2-connected
graphs is 2-connected, but this cannot be extended to k-connected graphs
for k > 3. The size of a least common multiple of K3 (or K4) and a path
is also discussed in [5]. In [2] a (connected) graph without isolated vertices
and having size at least 2 is called a prime (prime-connected) graph if its
only (connected) divisors are K2 and itself. A divisor that is prime is called
a prime divisor. In [2] prime trees and prime-connected trees were studied
as were graphs with a specified number of prime divisors. Many of these
concepts were studied further by Saba in [7].

For the graphs G; = P5 and G2 = K 4, the graphs H, H’, and H” of
Figure 1 are the least common multiples of G; and G2, while G = K, 5 is
the unique greatest common divisor of Gy and Ga».

r G, !

G: H

H’: H:;@

Figure 1

G

The problem of determining the greatest common divisors of two given
graphs G and Gp appears to be considerably easier than the problem of
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determining the least common multiples of G; and G,. This is probably
due to the facts that a greatest common divisor has a smaller size (often
considerably smaller) than a least common multiple and that each greatest
common divisor is a subgraph of both G; and G3. Although the graphs G,
and G, of Figure 1 have a unique greatest common divisor, any number of
greatest common divisors is possible. For an integer n > 2 and a graph G,
the graph nG consists of n pairwise disjoint copies of G.

Theorem 1. For every positive integer n, there exist graphs G and Gg
having exactly n greatest common divisors.

Proof: For n = 1, the graphs G; and G of Figure 1 have the desired
property, so we may assume that n > 2. Define G; = 2(n — 1)P; (a
disconnected graph with 2(n — 1) components each of which is a path of
order 3) and G2 = 3(n —1)P3. Fori =1,2,...,n, define H; = (n -i)P3 U
2(i — 1)K>. (See Figure 2 for n = 3.)

Gl: GZ:
Hl: H2 H3:
O——O O_O
o—0
o—-o0
Figure 2

We show that the graphs H;, Ho,..., H, are the greatest common di-
visors of Gy and G;. Certainly, G} and G2 are H;-decomposable for
i=1,2,...,n. Observe that the size of G is 4(n — 1) and the size of G5 is
6(n—1). Since each graph H; has size 2(n—1) and ged(4(n—1),6(n—1)) =
2(n — 1), the graphs H; are greatest common divisors.

It remains to show that every greatest common divisor of G; and G is
H; for some ¢ (1 < i < n). Let G be a greatest common divisor of G, and
G3. Since G|G), each component of G is P3 or K3. Thus G = rP3 U sK,
for nonnegative integers r and s for which 2r 4+ s = 2(n — 1). This implies
that G = H; for some i (1 < i < n). O

In addition, two graphs can have any number of least common multiples.
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Theorem 2. For every positive integer n, there exist two graphs having
exactly n least common multiples.

Proof: First observe that since K2|2K5, the graph 2K is the unique least
common multiple of K7 and 2K>. Moreover, 2K3 and the graph obtained
by identifying vertices in two copies of K3 are the only two least common
multiples of Ps U K3 and K3. Thus the result is true for n =1 and n = 2.
We assume, therefore, that n > 3. Consider the graph 2K, and the star
Kypn—1. Since Kyn,_; is not a multiple of 2K, but 2K ,,_; is, 2K1,n—1
is a least common multiple of 2K> and K »_1, and the size of every least
common multiple of 2K and K »_; is 2(n—1); that is, every least common
multiple of 2K> and K, can be decomposed into two copies of Kj 1.

Observe that if H is a graph of size 2(n — 1) that is 2K3-decomposable,
then every vertex of H has degree at most n — 1. Hence, if H is a least
common multiple of 2K, and K ,_; that is decomposed into two copies
H, and Hj of K 5, then the vertex of degree n —1 in H; or H; cannot
be the same in H as any vertex of the other. Thus H must be obtained by
identifying a certain number m of end-vertices of H; with the same number
of end-vertices of Hs. Since 0 < m < n — 1, there are n possibilities for m
and, consequently, n possibilities for H. a

2 Graphs With a Unique Least Common Multiple

Although every two positive integers have a unique least common multiple,
we have seen that such is not the case for graphs. Indeed, it seems to
be commonplace for two graphs to have several least common multiples.
That is, two graphs having a unique least common multiple appears to
be the exception, not the rule. We now direct our attention to graphs
having exactly one least common multiple. If G is the unique least common
multiple of G; and G, then we write LCM(G, G3) = G. Since K divides
every nonempty graph G, we have LCM(G, K;) = G. We now consider the
uniqueness of LCM(G, P;). The following result (see [3]) will be useful to
us.

Theorem A. A connected graph is P3-decomposable if and only if it has
even size.

Theorem 3. A graph G of order p without isolated vertices and the graph
P3 have a unique least common multiple if and only if every component of
G has even size or G =2 Kp, where p=2 or 3 (mod 4).

Proof: If every component of G has even size, then it follows by Theorem
A that LCM(G, Ps) = G. Suppose now that G = K, where p =2 or 3
(mod 4). Then G has odd size and G is not P3-decomposable. Let H be the
graph obtained by identifying a vertex of one copy of G with some vertex of
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another copy of G. Then H has even size and clearly is decomposable into
two copies of G, so H is a least common multiple of G and P;. The only
other graph that can be decomposed into two copies of G is 2K, which is
not Ps;-decomposable; therefore, LCM(G, P;) = H.

Conversely, suppose that G is a graph, not every component of which has
even size and G ¥ K, where p =2 or p = 3 (mod 4). Since K, has even
sizeif p=0or 1 (mod 4), G is not complete. Suppose that G is connected
(and so G has odd size). Let H’ be the graph obtained by identifying a
vertex of one copy of G with a vertex of another copy of G, and let H” be
the graph obtained by identifying each of two nonadjacent vertices of one
copy of G with the corresponding vertices in another copy of G. Thus H”
and H” have different orders, and so H’ 2 H". Since H’ and H'" have even
size and can be decomposed into two copies of G, both H' and H” are least
common multiples of G and P;.

Suppose now that G is disconnected with components Gy, Gs,...,Gx
(k> 2). Let v;; and v;2 (i = 1,2,...,k) be distinct vertices of G;, and
let v{, and v;, be corresponding vertices in another copy of G. Let H;
be the disconnected graph obtained by identifying v;; and v}, for each i
(1 £ i< k), and let Ha be the connected graph obtained by identifying v; o
and v, fori=1,2,...,k and v}, and v;i41,; for i =1,2,...,k — 1. Both
H; and H, are least common multiples of G and P;. O

We now consider the only other graph of size 2 without isolated vertices,
namely 2K5. Ruiz [4] characterized the 2K;-decomposable graphs.

Theorem B. Let G be a graph of size q > 2 without isolated vertices.
Then G is 2K»-decomposable if and only if q is even and A(G) < q/2,
unless G =2 K3 U K».

We now determine all those graphs G for which LCM(G, 2K5) is unique.

Theorem 4. A nonempty graph G without isolated vertices and the graph
2K, have a unique least common multiple if and only if G = K,, G = K3,
or 2K,|G.

Proof: First, it is clear that LCM(K>,2K,) = 2K, and if 2K;|G, then
LCM(G,2K;3) = G. Suppose then that G = K3. Since G is not 2Ky-
decomposable, any least common multiple of G and 2K> contains at least
two copies of G. However, 2K3 is both K3-decomposable and 2K5-decompos-
able. Thus 2K is a least common multiple. Other than 2K3, only the graph
H obtained by identifying vertices of two copies of K3 can be decomposed
into two copies of K3. By Theorem B, H is not 2K5-decomposable however.
Therefore, LCM(K3,2K5) = 2K3.

‘We now consider the converse. Suppose that G is a graph without isolated
vertices such that G is different from K> and K3 and such that G is not
2K2-decomposable. We show that G and 2K5> do not have a unique least
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common multiple. Assume that G has size g, so ¢ > 2. By hypothesis and
Theorem B, either G = K3 U K or A(G) > g/2. The graph 2G has size
2q and A(2G) < 2q/2 = q, and clearly 2G % K3U K>. Consequently, 2G is
both G-decomposable and 2K3-decomposable, and so 2G is a least common
multiple of G and 2K,.

Now let H be the graph obtained by identifying vertices of minimum
degree in two copies of G. Certainly, H 2 K3 U K. If §(G) < ¢/2, then
A(H) < q and H is also a least common multiple of G and 2K2. Suppose,
on the other hand, that §(G) > ¢/2. If G has order p, then the degree sum
is 2¢ > pq/2, that is, p < 4. So p = 2 or p = 3 and §(G) > ¢/2. Thus
G = K> or G = Ka, contrary to hypothesis. a

Some of the techniques used in the previous two proofs suggest a new
concept. Let H be a graph without isolated vertices. An H-edge coloring
(or, more simply, an H-coloring) of a graph G is a coloring of the edges
of G such that the subgraph induced by each color class is isomorphic to
H. This, of course, is an alternative but equivalent way of describing an
H-decomposition of G. Consider the disjoint sets A = {a;,a9,...,an}
and B = {b;,bs,...,bs} of m + n distinct colors. For graphs G, and
G2 without isolated vertices, a (G, G2)-edge coloring of a graph G is a
mapping f: E(G) — A x B such that the coloring induced by the ith
coordinate (1 = 1,2) is a G;-coloring of G. Hence, G is a common multiple
of G; and G5 if and only if there exists a (G, Ga)-coloring of G.

Let f be a (G, G2)-coloring of G. For an edge e of G, the image f(e) is
an ordered pair of distinct colors. We denote by Cy(e) (or C(e) if f is clear
from the context) the set of two colors assigned to e. If E’ C E(G), then

Cr(E') = UecrrCy(e),
and if v € V(G), then
Cy(v) = UCs(wv),

where the last union is taken over all vertices u of G that are adjacent to v.
We now present a necessary condition for two graphs to have a unique
least common multiple.

Theorem 5. Let G; and G2 be two graphs without isolated vertices.
If H is the unique least common multiple of G, and Ga, then for every
(G1,G2)-coloring f of H, neither of the following conditions holds:

(i) for some vertex v of H, the edges incident with v can be partitioned
into subsets E, and Ej such that C¢(v) = Cy(E,) U Cy(E2), where
Cr(E1) N Cy(Er) = 0;

(ii) if u and w are distinct vertices of G, then Cy(u) N Cy(w) =0.
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Proof: Suppose, first, that there exists a (G, G2)-coloring of H such that
condition (i) holds. Let H’ be the graph obtained from H by replacing v by
two new vertices v; and vz such that the set of edges incident with v; is E;
(i=1,2). Since Cy(E1)NCy(E2) = 0, the (G, G2)-coloring of H produces
a (G1, Gz)-coloring of H'; so the graph H’ is a common multiple of G; and
G2. Since H and H’ have the same size, H’ is also a least common multiple
of G; and Gs.

Now, suppose that there exists a (G, G2)-coloring of H such that condi-
tion (ii) holds. Note that uw ¢ E(H). Let H” be the graph obtained from
H by identifying v and w. Since H and H” have the same size and there
exists a (G1, G2)-coloring of H”, the graph H” is a least common multiple
of G; and Gs. (]

From Theorem 4, the graphs G; = 2K, and G2 = K 3 do not have a
unique least common multiple. Indeed, all of the graphs H; (1 < i < 4)
of Figure 3 are least common multiples. A (G, G2)-coloring of each graph
H; (1 <1i < 4)is also indicated in Figure 3. For each integer i (1 < i < 3),
the graph H; satisfies condition (i) of Theorem 5 and the graph H;,, is
obtained from H; by the construction given when condition (i) of Theorem
5 holds. Furthermore, for each integer ¢ (1 < ¢ < 3), the graph H;, satisfies
condition (ii) of Theorem 5 and the graph H; is obtained from H;,; by the
construction given when condition (ii) of Theorem 5 holds.
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3 Stars With a Unique Least Common Multiple

We now consider the problem of determining for a given class of graphs
those pairs of graphs in the class having a unique least common multiple.
In particular, are there graphs G; and G in the given class, neither of
which is a multiple of the other, having a unique least common multiple?
In the case of matchings (graphs of the type nK3), there are no such graphs
G, and G- having a unique least common multiple. The same is true for
paths. We now consider this question for the class of stars. We first state
two number-theoretic results.

Theorem C. Let a and b be positive integers with ged(a,b) = d. There
exist integers x and y that satisfy the equation az + by = c if and only if
dle.

Theorem D. Two integers a and b are relatively prime if and only if there
exist integers = and y such that ax + by = 1. Moreover, if a,b > 2, then z
can be chosen so that 0 < z < b.

Theorem C is well-known, as is the first statement in Theorem D. We
verify the second statement in Theorem D. Let = be the smallest positive
integer for which there exists an integer y such that ax + by = 1. Clearly,
then, y < 0. We claim that z < b; for suppose, to the contrary, that z > b.
When z = b, the equation ax + by = 1 becomes ab + by = 1; hence, b|1,
which contradicts the fact that b > 2. Thus we may assume that = > b.
Now

az+by=azx—ab+ab+by=a(z—b)+bla+y)=1.
However, z — b > 1, contradicting the minimality of z and verifying the
claim.
We are now prepared to present our next result. For integers a,b > 2,

we denote the double star S(a,b) as that tree containing only two vertices
that are not end-vertices, on€ of degree a and one of degree b.

Theorem 6. Let r and s be integers with 2 <r < s. If ged(r,s) = 1, then
the stars Ky, and K, , do not have a unique least common multiple.

Proof: Since ged(r,s) = 1, it follows that lem(r, s) = rs and so K}, is
a least common multiple of K;, and K;,. By Theorem D, there exist
integers z and y such that rz + sy = 1, where x may be chosen so that
0 < z < s, implying that zr < zs. Clearly, y < 0; so rz > sy. Define
z=—y > 0. Thus

rs—zs=rs+ys=rs+(l—-rz)=14+r(s—xz)>3.

Now let G be the double star S(2s+1,rs— zs), which has size rs. We show
that G is both K ,-decomposable and K ,-decomposable. Observe that
at the vertex of degree zs + 1 (= zr) of G, there are z edge-disjoint copies
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of K r, where the edge joining the vertices of G that are not end-vertices
belongs to one of these copies of K ,. There are rs — 2s — 1 (= rs — rz)
unused edges of G at the vertex of degree rs — zs. Therefore, there are s —x
(> 0) edge-disjoint copies of K, at this vertex. Hence G is decomposable
into s copies of K ,. Similarly, it can be shown that G is decomposable
into r copies of K ,. Therefore, G is a least common multiple of K, and
K. ]

We now verify the converse of Theorem 6. For the purpose of doing this,
we present the first of two additional number-theoretic lemmas.

Lemma 7. Let ay,a,...,ax (k > 2) and by, bs,...,b, (n > 2) be (finite)
sequences of positive integers satisfying the following conditions:

(1) there exists an integer m > 2 such that mla; and mlb; for all i
(1<i<k)andj(1<j<n);

(2) @i <n+k-1andb; <n+k—1foralli(1<i<k)andj(l<j<n);
(3) Ty @ =X by

Then there exist proper nonempty subsets A C {1,2,...,k} and B C
{1,2,...,n} such that 3", 4 ai = X e p b-

Proof: Assume, without loss of generality, that = > k. For each integer j
with 1 < j <n —1, let i; denote the largest nonnegative integer such that

a1 +az+---+ay; Sby+by+---+ by, (1)
where the left side of inequality (1) is defined as 0 if i; = 0. The difference
dj=(bi+by+---+b;)— (a1 +az+---+ay;)

is a nonnegative integer and mld;. Moreover,

0<dj<ay+1Sn+k-1 2)
for every integer j with 1 < j < n—1. If dj = 0 for some integer j
(1 £ j € n—1), then the lemma follows; thus it suffices to assume that

d; > 0 for all such integers j. Therefore, there are |(n+k—2)/m/| possible
values for the integers di,ds, ..., dn_1.

We now show that two of the integers dy,dp,...,d,—; are equal. We
consider three cases.

Case 1. Assume thatn > k+ 1. Since m > 2,

mn—-1)-(2n-3)>2(n-1)-(2n-3)=1>0.
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Thus 2n — 3 < m(n — 1). Consequently,
[n+k—2J < n+k—2 < 2n -3
m

m - m -

<n-—1.

Case 2. Assume that n =k and m > 3. Since n > 2,
3n-1)-(2n-2)=n—-1>0

so that 2n — 2 < 3(n — 1). Therefore,

ln+k—2J < [2n—2J S21'7.—2 <n—1.

m 3

Case 3. Assume that n = k and m = 2. Since n = k and all integers a;
(1 < i < k) are even, inequality (2) becomes d; < a;;4+1 < 2n — 2. Hence
there are |(2n — 3)/2] pcssible values for dy,ds, ..., dn—~1. However,

2n—3
2

J:n—2<n—1.

Therefore, in every case two of the integers dy, ds, . .., dn—1 are equal, say
d, =d,, where 1 <p <q<n-1. Thusi; > i, and

(b1+ba+---+bg)—(ar+az+: - +ai,) = (b1+bo+- - -+bp) —(a1+az+- - -+ai )

or, equivalently,

bp+1+bp+2+"'+b =aip+l+ai,,+2+”'+ai¢- (3)

Since the left side of (3) is positive, so too is the right side, implying that

ig > ip. Taking A= {ip+1,i,+2,...,5}and B={p+1,p+2,...,q9}

completes the proof. a
The following result is well-known from number theory.

Lemma E. If b and d are relatively prime positive integers and ab = 0
(mod d), then a =0 (mod d).

We need one additional graph-theoretic result before presenting the main
result of this section.

Lemma 8. Let H be a least.common multiple of the stars K1, and K,
where 2 < r < s and ged(r, 8) # 1. For any K, ,-decomposition and K ,-
decomposition of H, each center of a subgraph in the K, ,-decomposition
must be a center of at least one subgraph in the K, ,-decomposition.

Proof: Let ged(r,s) = m (> 1) and lem(r, s) = M (< rs). Suppose that
there are s; subgraphs in the K ,-decomposition of H and r; subgraphs in
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the K ,-decomposition of H. Then M = ss; =rry. Let vy, v9,...,vx (1 <
k < s;1) denote the vertices of H that are the centers of the s, subgraphs
in the K s-decomposition. Let v € V(H), where v # v; (1 < i < k). Every
edge in H must be incident with one of the vertices vy, vs,..., vk, so the
neighborhood N(v) C {v;,v,...,vk}. Consequently, degv <k < s;.

We claim that s; < r. Suppose, to the contrary, that s; > r. Since
mM = rs, it follows that mM = (M/r1)(M/s;), that is, M = mr;s;.
Therefore,

M =mrys; 2 mrir =mM,

contradicting m > 1. Thus v is not the center of any subgraph K, in the
K r~decomposition of H. (M}

The hypothesis ged(r,s) # 1 is necessary in Lemma 8. For example,
consider the graph H of size 12 in Figure 4. Then H is a least common
multiple of K, 3 and K 4. There is only one K, 3-decomposition and only
one K, 4-decomposition of H. The vertex z is the center of one of these
copies of K1 3 but is the center of no copy of K; 4.

X

o

Figure 4

Theorem 9. If r > 2 and s > 2 are integers with ged(r, s) # 1, then the
stars K, , and K, , have a unique least common multiple.

Proof: Suppose that r < s. Let ged(r,s) = m (> 1) and lem(r,s) = M
(< rs). Clearly, Kj u is a least common multiple of Ky, and K; ;. We
show that in fact K ar is the only least common multiple of K, and K} ,.
The result is obvious if r|s or equivalently, if m = r. Therefore, it suffices
to assume that m < r. Suppose then, to the contrary, that H is a graph
(without isolated vertices) that is not isomorphic to Kj a and is a least
common multiple of K » and K ;. Let there be given a K} ,-decomposition
and a K ,-decomposition of H. By Lemma 8, every center of a subgraph
in the K ,-decomposition of H must be a center of at least one subgraph
in the K ,-decomposition of H.
Every edge of H belongs to a unique copy of K} , in the K, ,-decomposition

of H. We construct a digraph D from H by directing each edge of H away
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from the center in the copy of K, to which the edge belongs. Therefore,
the outdegree of every vertex of D is a multiple of s. Let z1,22,...,2
(g > 2) denote the vertices of positive outdegree in D. Hence the centers of
the stars K, ; in the K ,~decomposition of H are 21, 23,...,%,. For each
i=1,2,...,g, assume that there are ¢; (> 1) copies of K, with center 2;
in the K ,-decomposition of H. Hence in D, odz=c¢sfori=12,...,9.
The number of copies of K} 4 in the K ,-decomposition is M/s = r/m.
Therefore, Y°7_, c; =r/m.

Each arc of D is either directed from a vertex z; (1 <4 < g) to a vertex
zj, i # J, (a type 1 arc) or is directed from a vertex z; (1 <i < g) toa
vertex not among {21, 22,...,2} (a type 2 arc). According to Lemma 8,
finding a K ,-decomposition in H is equivalent to reversing the direction of
some type 1 arcs of D so that the outdegree of every vertex in the resulting
digraph is a multiple of r.

Now Y°¢_, cis = (r/m)s = M is a multiple of r. Furthermore, since
mls, it follows that m|c;s for each i (1 < i < g). However, none of the
integers c;s is a multiple of r; for suppose, to the contrary, that r|c;s for
some j € {1,2,...,g}. Since s|c;s, the integer c;s is a common multiple of
r and s. Thus,

¢js < (r/m)s = M < ¢js,
producing a contradiction. Hence when ¢;s (1 < i < g) is divided by r, a
nonzero remainder a} results; so 0 < aj < r, for each 7 (1 < < g). Since
m]c;s and m|r, we conclude that m|a} for each ¢ (1 <i < g).

Since there is also a K ,-decomposition of H, it is possible to change
the directions of some arcs joining pairs of vertices in {2, 2a,...,24} so
that the outdegree of each vertex in the resulting digraph is a multiple of r.
Hence the outdegrees of some of the vertices z1, 22,. .., 2, must decrease;
while the outdegrees of the remaining vertices must increase. Suppose that
the outdegrees of 21, z3,..., 2, decrease, while those of zki1, zk+2,...,2
increase. Let g — k = n. Neither k nor n equals 1; for suppose, to the
contrary, that k = 1, say. Then 2; has its outdegree decreased by exactly
g — 1, while the outdegree of each of z3, z3,..., 2, increases by exactly 1.
This implies that » — a] = 1 for each ¢ (2 < i < g), contradicting m|(r — a})
since m > 2. Thus k > 2, and, similarly, n > 2.

Denote the numbers r —a}, . ,7— @}, ...,7—ag by b}, b5, . .., by, respec-
tively. For each 7 (1 < i < k), let a; denote the outdegree .decrease of z;.
Thus a; > a} and a; = o} (mod r). Furthermore, for each j (1 < j < n), let
b; denote the outdegree increase of zx+;. Then b; > b} and b; = b; (mod
r). Since the total outdegree decrease equals the total outdegree increase,

a1+ax+-tak=b+br+--+bn.

Since no outdegree can be decreased or increased by more than g — 1
and g — 1 = n+ k — 1, we see that the sequences a,,as,...,ar and
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by, ba, ..., by satisfy the hypotheses of Lemma 7. Consequently, there exist
proper nonempty subsets A C {1,2,...,k} and B C {1,2,...,n} such that
Yicati=2 icpbj. Let A’={1,2,...,k}-Aand B’ ={1,2,...,n} - B.
Then it also follows that 3 ;¢ 4, ai = 3¢ p/ bs-

For a set C of positive integers and a fixed positive integer d, define the

set
C+d={c+dlceC}.

Since 3 ;c 4 @ = X_jcp by, it follows that

Zai = Z (T —aj)v

i€A JjEB+k
or, equivalently,
Z a; =0 (modr).
i€ AU(B+k)

Since a; = ¢;s (mod r) for each i (1 < i < g), we have

Z ¢s=0 (modr).

i€AU(B+k)

From this, it follows that
Z ci(s/m)=0 (mod r/m),
i€AU(B+k)
or
Z ¢ | (s/m)=0 (modr/m).
i€ AU(B+k)
Since the integers s/m and r/m are relatively prime, it follows by Lemma
E that
Z ;=0 (modr/m).
i€AU(B+k)

Similarly,

Z =0 (modr/m).

i€ A'U(B+k)

Neither 3¢ au(p+k) G 0T D ic aru(pr+k) G 18 0, however; hence

9
r r 2r
Sa- ¥ at ¥ ariil-k
i=1 i€AU(B+K)  i€A’U(B'+k)
This contradicts the fact that }°7_, ¢; = r/m. ]
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Combining Theorems 6 and 9, we have the following result.

Corollary 10. Let » > 2 and s > 2 be integers. The stars K, , and
K, have a unique least common multiple if and only if r and s are not
relatively prime.
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