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ABSTRACT. The plene in the title is investigated from the com-
binatorial point of view. Its Baer subplanes are classified and
their distribution is studied. Properties of the Fano subplanes
are shown. Blocking sets of Rédei type are constructed. Finally,
hyperovals and complete 14-arcs are considered and classified.

1 Introduction

Semitranslation planes were introduced by T.G. Ostrom [11] who gave the
following definition. A projective plane 7 of order g2 is a semi-translation
plane w.r.t. the line ! if there exists a set S of ¢+ 1 points on [ such that
if P € S, then w admits a group of elations of order ¢ with centre P and
axis I. Later, N.L. Johnson [7] gave an equivalent definition which enabled
him to classify the semi-translation planes [8]. Namely, an affine plane of
order ¢? is a semitranslation plane if it admits a group H of translations
such that each orbit of H is the set of g2 points of an affine Baer subplane.
The plane is non-strict if its full translation group properly contains H. In
the case H is the full translation group, then the plane is a strict semi-
translation plane. Obviously, a proper non-strict semi-translation plane is
neither a translation plane nor a dual translation plane. An infinite class
of proper non-strict semitranslation planes of Lenz- Barlotti class I-1 can
be obtained by deriving the dual Hall planes of even order 22" [9]. The
so obtained planes admit two collineation groups of order 27 which fix a
Baer subplane. One of these groups fixes a Baer subplane my pointwise
and the other is a group of elations which fix mp, i.e. a (P,!, mp)-elation
group. Furthermore, the full translation group of these derived planes has
order 22r+1, There is one translation group, with a fixed centre, of order
27+1 the remaining translation groups with fixed centres have order 2" or 2.
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When 227 = 16, the above mentioned construction yields the plane we call
the classical semi-translation plane of order 16 and denote hereafter by .
Therefore, to construct = we start with the desarguesian plane PG(2,16),
derive it to get the Hall plane HI(16), dualize HI(16) and derive again.

We investigate the distribution of the Baer subplanes of 7 which depends
on the fact that 7 contains both a derivation set and a dual derivation set
(sect. 4).

We show that a Fano subplane of 7 is either maximal, i.e. contained
in no Baer subplane, or completes to a unique Baer subplane. Moreover,
some of the Fano subplanes which extend to a unique Baer subplane give
also rise to “ 2-failed Baers” (sect. 3 and [4]) which are used to construct
blocking sets of Rédei type having size 25. Again from 2-failed Baers, other
blocking sets of Rédei type will be constructed which have size 27 and 30.

Finally, we investigate the hyperovals in 7, whose structure is the same as
that of the hyperovals in the exceptional semi-translation plane of order 16
[3, 10], and the complete 14-arcs of w. We observe that 14 is the maximum
size for a complete arc in « other than a hyperoval. Complete k-arcs for
k = 10,11, 12 were already discussed in [2] ; some complete 13-arcs will be
shown here.

2 Description of =

The plane 7w was obtained by the construction mentioned in sect. 1. We
consider 7 both as a projective and an affine plane. Therefore, 7 has a
distinguished line, its line at infinity, which we denote by a0, and the points
on it are A0, Aj, j =1,2,...,16, A0 being a special point.

The points A0, A1, A2, A3, A4 form the derivation set of w. The points of
w\ a0 are denoted by Bj, Cj, Dj, Fj, Hj, Kj, Lj, Mj, Nj, Pj, Rj, Sj,Tj, W3
X3,23,5=1,2,...,16.

The lines of , other than a0, are denoted by the corresponding lower case
letters and same subscripts. The lines on A0 are the lines aj ; al contains
the affine points Bj, a2 the Cj’s, ..., al6 the Zj’s. The affine lines on Al
are the lines bj. Each of these contains all affine points with subseript j (b1
contains the points B1,C1,...,Z1, and so on). The affine lines on A2 are
the ¢j’s, on A3 the dj’s, ... , on A16 the zj’s. The affine points on such
lines can be written down with the help of Table 1 (see Appendix) as we
now show.

Since 7 has an involution o which fixes a0 pointwise and acts on the finite
points and lines by keeping the letters fixed and pairing off the subscripts
as (1,2), (3,4), (5,10), (6,16), (7,13), (8,9), (11,14), (12,15), it suffices
to write half of the lines on each Aj, j = 2,...,16. Moreover, in Table
1 only the subscripts of the affine points of each line are given. The letters
are to be inserted in alphabetic order.
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E.g. from Table 1 we read

h7 : ASB7TC1D8F6H13K12L16 M15 N9 P4R255T14W10X3Z11
and applying o yields
h13: A5B13C2D9F16 HT K15 L6 M12N8 P3R1S10T11 W5 X4 Z14.

3 Fano subplanes and blocking sets

First of all, we observe that « is generated by quadrangles and there are
no forbidden vertices for generating quadrangles [2]. Some examples of
generating quadrangles for n are:

A0 P7 R14 87 AOM3 F453 A0L14T14R13 AO0H5P13K5
T11W11T2W10 ACA1M72Z4 L5L8M2M4  L5L8M4 M6
A0OD5 X7Z5 L5 L8 M4 M10.

When a quadrangle does not generate w, then it generates a Fano subplane
of . Since w is a derived plane, it contains Baer subplanes and so Fano sub-
planes. The obvious classification of Fano subplanes w.r.t. the distinguished
points and lines of m shows that there is no forbidden situation. Thus, we
choose to classify the Fano subplanes according to their being maximal or
not. More precisely, it is well known that in PG(2,16), the desarguesian
plane, every Fano subplane completes to (extends to, is contained in) a
unique Baer subplane. (A Baer subplane will be briefly called a Baer; sim-
ilarly, for Fano subplanes.) This is no longer true in the translation planes
of order 16, which are classified in [1], where a Fano subplane can complete
to more than one Baer and up to seven in the Johnson-Walker and in the
Lorimer-Rahilly planes [5]. On the other hand, in the strict semitranslation
plane of order 16 a Fano subplane is either maximal, i.e. is contained in no
Baer, or completes to a unique Baer [3]. The same situation occurs in .
Examples of maximal Fano subplanes of 7 are the following (only points
and lines are given, the incidences can be obtained from Table 1):
points lines

A0 A5 Al4 Cl1 C3 H5 HI13 a0 a2 a5 A7 hl10 w9 wld

A0 A2 A5 C2 C3 H5 H7 a0 a2 a5 cl c4 h10 hl13

L16 M14 N1 N8 NI10 R12 T6 a9 c9 d5 [16 pl5 sl4 wé

A7 Lia M6 N5 N9 N13 P7 a9 112 6 1115 m8 t12 wll

A0 D3 D5 F3 F4 M3 M8 a3 a4 a8 b3 cl hld k9

A0 L8 Ll4 R4 RI6 T4 T14 a7 all al3 bl4 dl w9 z3

A0 A9 A10 D4 D8 K5 K6 a0 a3 a6 n3 n9 p2 pll

A0 L5 L8 M1 M4 W2 WIl a7 a8 al4 di12 f7 116 ml0

A0 D3 D15 L5 L8 M4 M7 a3 a7 a8 o6 d12 h15 116

A0 Al A5 L15 L16 M15 M16 a0 a7 a8 b1S b16 h5 A7

A0 Al A5 H2 H5 P2 P5 a0 a5 al0 b2 b h3 Al0
A Fano subplane of « which is not maximal completes to one Baer only.
However, there are Fano subplanes which besides completing to a Baer also
complete to some 2—failed Baers. A failed Baer [4] in a plane of order 16 is
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an affine plane of order 4 with one missing parallel class of lines and whose
line at infinity contains four points only. In [4] it was shown that in sev-
eral non-desarguesian translation planes of order 16 failed Baers do exist;
moreover, they can be extended to blocking sets of Rédei type by adding
three points on the line at infinity (which contains the line at infinity of
the failed Baer). Recall that a blocking set in a plane of order q is of Rédei
type if it has ¢ + m points and one m-secant. Furthermore, in PG(2,9) a
blocking set of Rédei type either contains a Baer or has at least g+ ¢%/3 +1
points. The above mentioned blocking sets of Rédei type in some transla-
tion planes of order 16 all have 23 points (and 23 is slightly smaller than
the lower bound in PG(2,16)) and intersection numbers (1, 3,5,7) with a
unique 7-secant. There are no failed Baers in 7. However, 7 contains what
we call 2—failed Baers, i.e. Baer subplanes with two missing parallel classes
of lines. Therefore, a 2—failed Baer consists of 19 points, three of which on
the line at infinity, and twelve lines (its line at infinity contains just three
points). A 2—failed Baer can also be viewed as a 3—net on sixteen points to
which three points at infinity have been added. It turns out that « contains
at least three non-equivalent types of 2—failed Baers. Indeed, the 19—set
of points of a 2—failed Baer can have different intersection numbers w.r.t.
the lines of 7. The 2—failed Baers in 7 give rise to blocking sets of Rédei
type by adding some points on the line at infinity which, again, contains
the points at infinity of the 2—failed Baer. In the case of 7, the size of the
blocking set constructed by starting with a 2—failed Baer depends on the
type of the latter. The minimum possible size is 25 in which case the inter-
section numbers are (1,3,5,9). There are also 2—failed Baers which produce
blocking sets with 27 points and intersection numbers (1,2,3,4,5,11), and a
unique 11—secant. Finally, some 2—failed Baers in 7 yield blocking sets of
size 30 and a unique 14-secant, the remaining intersection numbers being
1,2,3,5. Obviously, the most interesting blocking sets are those of size 25.
Next, we provide some examples of Fano subplanes which extend to one
Baer only and of Fano subplanes which both extend to a Baer and to some
2-failed Baers. In the latter case, we also give the points to be added to
the 2—failed Baers in order to obtain the above mentioned blocking sets of
Rédei type. Our last example is of a 2—failed Baer which yields a blocking
set of size 27,

1. Fano: A0 A1 A2 B1 B2C1C2, a0al a2b1b2cl c2;
Baer with A3 A4 B3 BAC3C4 Dj Fj, a3a4b3b4c3cd dj fj,
§=1,234.

2. Fano: A0 A1 A2 D5 D10 F'5 F'10, a0 a3 a4 b5b10¢7 c13;
Baer with A3 A4 D7 D13 F7 F13 Bj Cj, al a2b7b13¢5 c104dj f7,
j =5,10,7,13.
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3. Fano: A5 A6 A7 B5C4 D8 F6, a0 h5 h7k5 k1015113,
Baer with A0 A8 B7 B10 B13C1C2C3D9D11D14F12F15 F16,
al a2a3 a4 h10 h13k7 k1317110 m& m7 m10m13.

4. Fano: A6 B5 B7 B10C2 D8 F6, al h7k5 k7 k1015 m10;
Baer with A0 A5 A7 A8 B13C1C3C4 D9 D11 D14 F12 F'15 F16,
a0a2a3 a4 h5 h10h13 k1317110113 mSm7m13.

5. Fano: A0 K4 K10510514 Z10 Z12, a6 al2al6 b10 h9p16 t2;
Baer with K8 K165256 Z1Z9 D5 D7 D10 D13 X3 X10 X11 X15,
a3al5c7d5 f13k14111 m8nl1576 s12w3 1 24.

6. Fano: A0 A1 A12 B7 B12 D7 D12, a0al a3b7b1257 512;
Baer with A6 A14 B2 B11 D2 D11 Cj Fj, a2 a4 b2 b11 s2 311 kj wj,
3=2,7,11,12,

7. Fano: A0 A9 A10 B3 B4 F7 F13, a0al a4 n3n4 p3 p4;
Baer with A11 A12B1 B2 F5 F10C6C12C15C16 D8 D9 D11 D14,
a2a3nln2plp2rjsj, j7=1,2,3,4.

8. Fano: A0 A13 A14 B7 B10C12C16, a0al a2t7 t10 w7 wl10;
Baer with A15 A16 B5 B13C6 C15 D1 D2 D3 DA F8 F9 F'11 F'14,
a3a4t5t13wbwldzjzj, j=25,10,7,13.

9. Fano: AOH2 H7 L7 L16T7T9, a5a7al13b7111r12¢1;
Baer with H11 H12 L3 L14T4T15 D5 D7 D10 D13 P1 P6 P7 P8,
a3al0c10d13 f5h9 k14 m8n16pl5 s6 wix2 23.

10. Fano: A0 A1 A5 B6 B8 C6C8, a0al a2b6 b8 h6 h8;
Baer with A11 A16 B1 B7C1C7 Dj Fj, a3 a4 b1 b7 h1 k73 23,
j=1,6,7,8.

Next, we show a Fano subplane which completes to one Baer and to four
2—failed Baers each of which yields a blocking set by adding some suitable
points at infinity.

Fano: A0 A1 A2 P7 P16 S7 516, a0al0al2b7b16 c3cl4;

Baer with A3 A4 P3 P14 S3S14 Bj Nj, b3bldc7cl6dj f5, j=3,7,14,16.

1. 2—failed Baer with the points A8 P6 P13.56 S13 Dj Mj,j = 6,7,13,16;
by adding, to the Fano, A3 A5 A9 A10A11 A12 A13 A14 A15 A16 a
blocking set is obtained with 30 points and intersection numbers
(1,2,3,5,14), the unique 14-secant is a0.

2. 2—-failed Baer with A10P6 P13S6S13LjZj, j = 6,7,13,16; by
adding (to the Fano) A3 A8 A11 A12 A15 we get a blocking set with
25 points and intersection numbers (1,3,5,9).
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3. 2—failed Baer with A13 P5 P15 S5515 Hj Xj, j=5,7,15,16; block-
ing set with 25 points and intersection numbers (1,3,5,9) by adding
A3 A6 A12 A15 A16.

4. 2—failed Baer with A12 P5 P15S5515Cj Rj, j=5,7,15,16; block-
ing set with 30 points and intersection numbers (1,2,3,5,14) by adding
A3 A5 A6 A7 A8 A9 A13 A14 A15 Al6.

As we already mentioned, the 2—failed Baers, as well as the blocking sets
they yield, are embedded in different ways in 7. We now show this fact on
the examples above.

The 2—failed Baer 1 consists of the 19 points A0 A1 A8 Dj Mj PjSj,j =
6,7,13,16. By adding A2, A3, A5, A9,..., A16 we get the blocking set. All
finite lines on A4, A6, and A7 are tangent to the blocking set. The affine
lines on A0, Al and A8 are either 5—secant or tangent. The affine lines
on A5 are either 3—secant or tangent; furthermore, the 16 affine points of
the 2—failed Baer split into four quadruples each of which yields a Fano
subplane together with A0 A1 A5. The affine lines on each of the remaining
points at infinity are either tangent (four of them) or 3—secant (four lines)
or 2—secant. The 3—secants come in pairs which form two Fano subplanes
by adding their point at infinity and A0, Al.

The 2—failed Baer 4 has the same structure. Its points are A0 A1 A12Cj
PjRjSj,j = 5,7,15,16. The affine lines on A9 are either 3—secants or
tangents. The points at infinity on all tangents are A4, A10, A11. For the
remaining points at infinity the situation is as in 1 (mutatis mutandis).

The 2—failed Baer 2 consists of the points A0 A1 A10Lj PjSj Zj, 7 =
6,7,13, 16, and the blocking set of size 25 is obtained by adding A2, A3, A8,
All, A12, A15. In this case, all finite lines on A4, A5, A6, A7, A9, A13, Al4,
and Al6 are tangent. The affine lines on A0, A1 and A10 are either
5—secant or tangent. The finite lines on each of the remaining points at
infinity are either 3—secant or tangent (eight of each). Moreover, the 16
affine points of such 2—failed Baer split into four quadruples each of which
completes to a Fano subplane by adding A0, Al and the point at infinity
of the two 3—secants on which the four points lie.

The same situation occurs for the 2—failed Baer 3 whose points are
A0 A1 A13Hj,Pj5,S5,X34, j =5,7,15,16, and which yields a blocking set
of size 25 by adding A2, A3, A6, A12, A15, A16. In this case all affine lines
on A4, A5, A7, A8, A9, A10, All, Al4 are tangent to the blocking set. For
the remaining lines the behaviours are as above (mutatis mutandis).

Finally, we show a third type of 2—failed Baer (which was not obtained
by starting with a Fano subplane). The points of the 2—failed Baer are
A0A1A9DjHjRj Zj5, 5 =8,9,11,14.

By adding A5, A6, A7, A8, A13, Al4, A15, A16 we obtain a blocking set
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of size 27 and intersection numbers (1,2,3,4,5,11). This 2—failed Baer is
different from the previous ones as four of the lines on A8 and A15 are
3—secant to the 2—failed Baer so they yield the 4—secants to the blocking
set. The remaining lines behave as in the other blocking sets. Obviously,
the unique 11—secant is a0.

4 Baer subplanes

First of all, we observe that the existence of Baer subplanes is guaranteed
by the fact that 7 is a derived plane. The distinguished elements of 7
play a major role in the distribution of its Baers. Such distinguished ele-
ments are the following ones: the line at infinity a0, the distinguished point
AO on it, the derivation set A0 A1 A2 A3 A4, and the dual derivation set
a0al a2a3a4. This means there are four special lines, other than 0, on
AO0.

Obviously, a Baer either has five points on the line at infinity or is tan-
gent to it and both situations do occur. As to the Baers with five points on
a0, one of these is always AO. For the remaining points there are different
situations. One is the following. The points on a0\ A0 break into four
quadruples, namely A1 A2 A3 A4, A5 A6 A7 A8, A9 A10 A11 A12, A13 Al4
A15 A16, one of which is in the derivation set, and each of such quadruples
together with A0 forms the set of points at infinity of some Baers. In partic-
ular, those Baers whose points at infinity other than A0 lie in a quadruple
not in the derivation set have points on the lines of the dual derivation set.
These Baers will be considered again together with the Baers tangent to
a0.

To examine the other sets of points on a0 which are points at infinity
of Baers having a0 as a line we have to consider the dual derivation set
which is defined as follows. Firstly, one can view a usual derivation set as
a set A of g+ 1 points at infinity (in a plane of order ¢?) such that for
any two points whose line hits A there is exactly one Baer on A containing
those points. Then a dual derivation set A* is a set of ¢+ 1 lines on a
distinguished point, A0 say, such that for any two lines whose intersection
point lies on a line of A* there is a unique Baer having as lines those of A*
and the given lines.

7 has such a dual derivation set and the related Baers all have five points
on a0 and there are Baers two of whose points at infinity are in the deriva-
tion set and one of these is always AO. The other 5-tuples are those listed
before and there are four Baers on each such 5-tuple. Furthermore, these
Baers are either self-conjugate under o or come in pairs of conjugate Baers
under o. There are four Baers which belong to both the derivation set and
the dual derivation set and each of them is self conjugate under o (cf. Sect.
2).
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The Baers tangent to the line at infinity are all tangent to a0 at AO.
Moreover, each of such Baers contains four points, other than A0, on one
line of the dual derivation set. Each of these four affine lines contains four
quadruples of points and there is a translation with centre A0 which maps
one quadruple onto any other one on the same line. By adding A0 to
the points of such a quadruple one gets five points which are the shared
points of 16 Baers whose points partition the points of @ minus the line
on which these five points lie. These 16 Baers split into four sets of four
parallel Baers each (i.e. sharing those five points only) which use the same
lines. Only one of these four Baers has five points on a0 and is one of the
Baers we mentioned before. The remaining Baers are all tangent to a0 at
A0. Thus, when we consider all 16 Baers sharing the same five points on
aj, 3 = 1,2,3,4, we have four Baers with five points on a0 (and all four sets
of the previously mentioned partition are used) and twelve Baers tangent
to a0 at A0. The latter come in pairs of conjugate Baers under o whereas
the Baers with five points on a0 are self-conjugate under o. Observe that
the considered sets of points (on the lines of the dual derivation set) are
not derivation sets. On each of them there are exactly sixteen Baers. The
sets belonging to different lines on A0, and the Baers hanging on them, can
be mapped, in pairs, one onto another one, by a translation with centre
Al. However, not all translations with such a centre exist. Also, there is
an involution which maps onto itself the common set of five points on aj
and pairs off the Baers on those five points.

The distribution of the Baers of = we just described depends on the ex-
istence of a derivation set and a dual derivation set. However, some special
involutions of 7 are also involved in such distribution. We mentioned and
used the involution o which acts by keeping letters fixed and pairing off sub-
scripts of affine points and linesof mas 12,34,510,616,713,89,11 14,12 15.
There is another involution, w, which acts by keeping fixed the subscripts of
affine points and lines and pairing off lettersas BC,DF,H P, K Z,LT,MN,
RW,SX.

Both o and w fix a0 pointwise. Moreover, o fixes all lines on A0 (ajo =
aj) and induces an involution on each such line. Similarly, w fixes all lines
on Al (bjw = bj) and induces an involution on each of such lines. o and
w commute, so ow is an involution.

There is exactly one pencil of lines on which o and w act in the same way,
namely the pencil with centre A2 : ¢jo = ¢jw which implies cjow = ¢j.
This means that ow fixes each line on A2 and induces an involution on it.

Therefore, the derivation set contains a special triple, A0 A1 A2, to which
the distinguished point A0 belongs, and a special pair, A3 A4, which con-
sists of the points at infinity of all hyperovals in m (cf. sect. 5). Observe
that < o,w > Vj acts as a Baer four-group on the Baers belonging to
both the derivation set and the dual derivation set.
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Next, we provide some examples of Baers and their distribution. (Some
examples of Baers were already given in sect. 3.)

First of all, the four Baers which belong to both the derivation set and
the dual derivation set are the following ones:
A0AjBjCjDjFj,a0ajbjcidi f3,5=1,2,3,4; AOAj BiCiDiFi,
aOajbicidi fi, i =5,10,7,13;

A0Aj BiCiDiFi, a0ajbicidi fi, 1= 6,16,12,15; A0 Aj Bi Ci Di Fi,
alajbicidi fi, 1=8,9,11,14.

Each of such Baers is self-conjugate both under o and under w.

Next we illustrate the mentioned distribution of the Baers by taking the
line a3 and writing down the sixteen Baers on A0 D5 D7 D10 D13. (We just
list the points of such Baers; both the lines and the incidences are easily
obtained from Table 1.)

A0A1A2A3A4BjCjDjFj, i =5,10,7,13;

A0 A5 A6 A7 A8 B8 B9 B11 B14C6C12C16 C15D5 D10 D7 D13 F1 F2 F3 F4;
A0 A9 A10 A11 A12 B6 B16 B12 B15C1 C2C3C4 D5 D10 D7 D13 F8 F9 F11 F14;
A0 A13 A14 A15 A16 B1 B2 B3 BAC8C9C11C14 D5 D10 D7 D13 F6 F16 F12 F15.

Notice that each of these four Baers is self-conjugate under o. The re-
maining twelve Baers come in pairs of conjugate Baers under o so that we
just list half of them. Moreover, they are all tangent to a0 at AQ.

A0D5 D10 D7 D13H2 HTH11 H12 P1 P6 PT P8 L3 LT L14 L16 TAT7T9T15
AO0DSD10D7TDI13M1IM5M11 M16 N3N5 N6 N9 R4 R5 R12R14W2 W5 W8 W15
A0D5DI0D7TD13H4H8H10H16 P3 P10P11 P15L1LSL10L12T2T6T10T14
A0D5 D10 D7 D13 MAM7TM9M15N2N7TN11 N12R1 R6 RTRBW3WTW14W16
A0D5 D10 D7 D13 K3 K5 K6 K9 Z2 Z5Z8 Z15 5155511 S16 X4 X5 X12 X 14
A0D5DI0DTDI13K2K7 K11 K12232Z7Z14Z16545759515X1 X6 X7 X8.

Observe that there are four Baers on the points A0 D5 D10 D7 D13 and
on the lines a3 k9 k14111 m8 which partition the points on such lines. One
of these Baers has a0 as a line and is the only one which is self-conjugate
under o. (Other quadruples of lines not in the dual derivation set with the
same property are easily found by looking at the given examples.)

The translation with centre A0 which maps D5 onto D8, maps D10
onto D9, D7 onto D14 and D13 onto D11. Therefore, the above given
partition by Baers is shifted along a3. Similarly, there are two other
translations, again with centre A0, which act as (D5, D10, D7, D13) —
(D1, D2, D4, D3), and (D5, D10, D7,D13) — (D6, D16, D12, D15). By
applying such translations we obtain the Baers associated with the parti-
tion of a3.

Obviously, applying w to the above given Baers (and to those obtained
by the mentioned translations) yields the partition of a4 and the related
Baers.
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Finally, we can also use the translations with centre Al (recall that 7 ad-
mits some translations with centre A1). E.g. there is a translation with cen-
tre Al mapping D5 D7 D10 D13 onto B5B7 B10 B13 (in the given order)
which maps the Baer A0 D5 D10 D7 D13 H4 H8 H10 H16 P3 P10 P11 P15
L1L9 L10 L12T2T6 T10T14 onto the Baer A0 B5 B10 B7 B13 H2 H6 H10
H14P1P9P10P12L3L10L11 L15T4T8T10T16.

Of course, the Baers in the partition above do not exhaust the Baers of
w, and it seems worthwhile to give also some examples of Baers with two
points in the derivation set. Such Baers use the lines in the dual derivation
set.:

A0A1 A5 A11A16BjCj Dj Fj, 5=1,6,7,8;

A0 A1 A5 A11 A16 Bj Cj Dj Fj, j =3,10,11, 15;
A0 A1 A5 A11 A16 Bj Cj Dj Fj, j = 4,5,12, 14;
A0 A1 A5 A11 A16 Bj Cj Dj F3j, j = 2,9,183, 16.

Observe that these four Baers are parallel (i.e. share their points at
infinity only), self-conjugate under w and come in pairs of conjugate Baers
under o.

Another quadruple of Baers with two points in the derivation set is the
following one:

A0 A4 A5 A9 A14 B1 B9 B10 B12C3C7C14C16 D4 D6 D11 D13
F2F5 F8 F15

A0 A4 A5 A9 A14 B3 B7 B14 B16 C1C9C10C12 D2 D5 D8 D15
FAF6 F11 F13

and their conjugate Baers under o. (Notice that the above written Baers
are conjugate under w.)

Obviously, if a Baer with a0 as a line is not self-conjugate under o (w or
ow), then its images under < o,w > provide a quadruple of Baers which
share their points at infinity only (and, of course, as many lines).

Finally, it is clear that the existence of 2—failed Baers in 7 (cf. sect. 3)
is a consequence of the distribution of its Baers.

5 Hyperovals

The hyperovals in 7 share a property with the hyperovals in the strict
semitranslation plane constructed by N.L. Johnson [3]. More precisely, all
hyperovals in « (as well as those in the other semitranslation plane) have
the same points at infinity and such points belong to the derivation set. As
a matter of fact, they are A3 and A4. Moreover, each hyperoval of = splits
into four hyperovals, belonging to four distinct Baers on the derivation set,
which share the points at infinity.

However, only some quadruples of Baers on the derivation set contain
hyperovals which can be glued together to yield hyperovals in . None of the
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involved Baers has lines in the dual derivation set and another quadruple
of lines is forbidden. In other words, only eight lines on AQ, aj for j =
5,10; 6,16; 7,13; 12,15, contain the Baers involved in the hyperovals. Also
only specific quadruples of lines on Al belong to these Baers.

Observe that all hyperovals in 7 are mapped onto themselves by o and w.
We remark that the translation planes of order 16 [1] all contain quadruples
of hyperovals which share either eight finite points or the two points at in-
finity [5, 6]. No such configuration exists in w. Next, we list some examples
of hyperovals.

The following four hyperovals use points on the same lines on A0 and
Al:

H5 H10 P5 P10 L6 L16 T6 T16 K12 K15 Z12 Z15
S7 S13 X7 X13 A3 A4
H16 H6 P6 P16 L5 L10 TS T10 K7 K13 Z7 Z13
S12 S15 X12 X15 A3 A4
H7 H13 P71 P13 L12 L15 T12 T15 K6 K16 Z6 Z16
S5 S10 X5 X10 A3 A4
H12 H15 P12 P15 L7 L13 T7 T13 K5 K10 Z5 Z10
S6 S16 X6 X16 A3 A4

Each of these hyperovals splits into four hyperovals on A3 A4 belonging to
four distinct Baers. For the first hyperoval the four involved Baers which
all share the points A0 A1 A2 A3 A4 have the following affine points and
lines:

al : Hj Lj PjTj; aj, bj, 5 =5,10,7,13, clc2c3c4, d6d16d124d15,

S8 9111 f14.

o2: KjZjSj Xj; a6al6al2al5, bj, c8cIcll cl4, dld2d3 d4,
f6 f16 f12 f15, = 5,10,7,13.

a3: Hj Lj PjTj; a5al0a7al3, bj, c8c9cll cl4, d5d10d7d13
f1f2£3 f4, j =12,15,6,16.

o4 : KjZjSj X3, abal6al2als, bj, cl c2c3c4d8d9dl1d14
£5 f10 f7 £13, j = 6,16,12, 15.

The four hyperovals in these Baers are:

HS5 H10 P5 P10 A3 A4, K7 K13 Z7 Z13 A3 A4, L12 L15T12T15 A3 A4,
56516 X6 X16 A3 A4, respectively.

A similar partition holds for the other three hyperovals in 7 of the quadru-
ple above.

Another quadruple of hyperovals is the following one and the related
Baers can be easily found with the help of Table 1, as well as the hyperovals
in such Baers.
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H11 H14 P11 P14 K8 K9 Z8 Z9 L3 I4 T3 T4
51 S§2 X1 X2 A3 A4
H3 H4 P3 P4 L11 L14 T11 T4 K1 K2 Z1 Z2
S8 S9 X8 X9 A3 A4
Hl H2 P1 P2 L8 L9 T8 T9 K3 K4 Z3 Z4
511 S14 X11 X14 A3 A4
H8 H9 P8 P9 L1 L2 T1 T2 K11 K14 Z11 Z14
S3 S4 X3 X4 A3 A4

6 Complete 14-arcs

All non-desarguesian planes of order 16 contain complete 14-arcs, whereas
only the Hall plane [6] and the Johnson-Walker plane contain complete 16-
arcs [5]. In n, as well as in the exceptional semitranslation plane of order
16 (3], all complete 14-arcs have two points on the line at infinity none of
which in the derivation set.

There are some interesting configurations formed by complete 14-arcs
which we now briefly describe. (By a 14-arc we always mean a complete
one.)

There are quadruples of 14-arcs on the same finite 8-arc. These quadru-
ples split into two pairs and the arcs in the same pair share also the two
points at infinity. There are triples of 14-arcs on the same finite 8-arc and
the three pairs of points at infinity of the arcs of the same triple are all
distinct. However, there are also triples of 14-arcs on the same finite 8-arc
with only five distinct points at infinity. We observe that the quadruples
of 14-arcs we just mentioned behave as the quadruples of hyperovals which
exist in all translation planes of order 16. Also, the pairs of points at infinity
of the 14-arcs always come from those 4-sets which together with A0 form
the points at infinity of Baers in the dual derivation set and a quadruple
of 14-arcs uses four points all belonging to one of such sets. In order to
classify the 14-arcs, one can look at the distribution of j—points, a j—point
being a point off the arc on exactly j tangents. In = the same cases occur
as in the strict semi-translation plane constructed by Johnson [4].

Next, some examples of 14-arcs are listed.



M3 M4 N3 N4 HI1l H14 P11 Pl4 A5 A6

M3 M4 N3 N4 L11 Li4 T11 Ti4 A7 A8
M3 M4 N3 N4 S8 SS9 X8 X9 A7 A8

D7 D13 F7 F13 R12 R15 W12 W15 H8 H9 P8 P9 A9 All
D7 D13 F7 F13 R12 R15 W12 W15 K1 K2 21 Z2 A9 All
D7 D13 F7 F13 R12 R15 W12 W15 L11 Ll4 TI11 Ti14 Al0 Al2
D7 D13 F7 F13 R12 R15 W12 W15 83 S4 X3 X4 Al0 Al12

M6 M16 N6 N16 K5 K10 Z5 Z10 Di12 D15 F12 F15 A9 All
M6 M16 N6 N16 K5 K10 25 Z10 L3 L4 T3 T4 Al13 AlS
M6 M16 N6 N16 K5 K10 Z5 Z10 Rl1l Rl4 W1l W14 A5 A7

L6 L6 T6 T16 R5 RI10 W5 WI10 D7 D13 F7 F13 Al0 Al2
L6 L16 T6é T16 R5 R10 W5 WI10 M1l M14 N11 N14 A9 Al2
L6 L16 T6 T16 R5 R1I0 W5 WI0 S§1 S2 X1 X2 A6 A8

M8 M9 N8 N9 R6 R16 W6 W16 K5 K10 Z5 Z10 A5 A7
M8 M9 N8 N9 R6 Rl6 W6 W16 K7 K13 Z7 Z13 A6 A8
M8 M9 N8 N9 R6 R16 W6 WI16 S1 S2 X1 X2 A5 A7
M8 M9 N8 N9 R6 R16 W6 W16 S3 S4 X3 X4 A6 A8

M8 M9 N8 N9 RS R10 W5 W10 H6 Hi6 P6 P16 A9 Al2
M8 M9 N8 N9 R5 RI1I0 W5 W10 HI12 H15 P12 P15 Al0 All
M8 M9 N8 N9 R5 RI10 W5 W10 L1 L2 T1 T2 A9 Al2
M8 M9 N8 N9 RS RI0 W5 WI0 L3 L4 T3 T4 Al0 All

M8 M9 N8 N9 RT R13 W7 WI13 H1 H2 Pl P2 A9 Al2
M8 M9 N8 N9 R7T R13 W7 WI13 H3 H4 P3 P4 Al0 All
M8 M9 N8 N9 R7 R13 W7 W13 L6 L16 T6 Ti6 Al0 All
M8 M9 N8 N9 RT RI13 W7 W13 L12 L15 Ti2 T15 A9 Al2

M8 M9 N8 N9 R12 R15 W12 W15 K1 K2 Z1 22 A5 AT
M8 M9 N8 N9 R12 R15 W12 W15 K3 K4 Z3 Z4 A6 A8
M8 M9 N8 N9 R12 R15 W12 W15 S5 S10 X5 X10 A6 A8
M8 M9 N8 N9 R12 R15 W12 W15 ST S13 X7 X13 A5 A7

B8 B9 C8 C9 M1l Ml4 N11 N14 H3 H4 P3 P4 A5 A6
Bs B9 C8 C9 M1l Ml14 N11 Ni14 L3 L4 T3 T4 A7 A8
B8 B9 C8 C9 M1l M14 N11 N14 K1 K2 21 Z2 A5 A6
Bs B9 C8 C9 M1l Ml14 N11 N14 S1 S2 X1 X2 A7 A8

H3 H4 P3 P4 MI11 M14 N11 N14 B8 B9 C8 C9 A5 A6
H3 H4 P3 P4 M1l M14 N11 N14 K6 K16 Z6 Z16 Al5 Al6
H3 H4 P3 P4 M11 M14 N11 N4 R5 R10 W5 W10 A9 Al2
The last quadruple and the last triple show that a 14—arc can belong to
both a quadruple and a triple.
By comparing the listed 14—arcs with the hyperovals in Sect. 5 it is clear
that there are forbidden points for the hyperovals. Also the 14-arcs split
into suitable hyperovals in three Baers.
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Finally, we show the j—points and their distribution for the four 14-arcs
of the first listed quadruple, which we denote by v;, = 1,2,3,4, in the
above given order.

M

Ya:

O-points: AOA1 A2B7B13C7C13D5D10F5F10K1 K2K3K4
Z12Z273274
(these 19 points split into four Fano subplanes on A0 A1 A2 );

6—points: B5 B10C5C10D7D13F7F1351525354X1X2X3X4
5859 X8 X9,

10-points: K8 K9 Z8 Z9.

The remaining points are either 2- or 4—points.

O-points: AOA1 A2H1H2H3HAMT7M13N7TN13 P1P2P3 P4
R5 R1I0W5W10;

6-points: L1L2L3L4L11 L14 M5 M10N5N10 R7 R13
T1T2T3TAT11TIAWTW13;

10-points: H11 H14 P11 P14.
Again, we do not list 2- and 4- points.

The same situation (involving different points) occurs for 3 and ;.

We observe that a 14—arc admits either 10-points or 8-points, never both
(cf. [3)).

For completeness, we also mention a complete 13-arc and observe that all
13~arcs in 7 seem to be tangent to a0 :
M8MINS8NIKI12K15212Z15 H1 H2 P1 P2 A15.

204



31110 4 9 5 3 2
6 31514 21211 9

1
1
1412 7 6 1 215 3 516 4 10 13

8 7
1 6
1114 8 9161015 3 4 6 11312 2 7 5

Table 1

4 5 6 7 8 910111213 14 15 16
4 1
4 8

21315101114 7 816 5 9 6 12
13 7 114 41215 216 8 3 6 911
1510 8 7 1 413 211 5 3 914

1316 41214 81511 2 6 9 3 1

12 1
5

3
1
10
16

6 15
3 10
9 11

2
4
0
7
12

1

1
1
1 4 2 311 7 8 612 91610141513 5

3 2 41 8101115161412 7 9 6 5 13
7 5131015 1 6 81416 9 31211 2 4
814 911 3 6 1 7 5 21315 410 16 12

11 914 8 115 31013 4 5 6 2 7 1216

1
3
5
6
7
8

121516 6 8 414 510 913 111 7 2 3
5
6

5 9 8

oM

6
8

412111510 71
0111214 4 2

1 3 4 216 8 6 71012 5 91513 14 11
3 1 2 12 11
513 71011 12

6151216 2 7 1 811 41413 3 9 510
710 513 9 6 8 1 314 41611 212 15

81114 913 1 7 615 512 21016 4 3

™ ©
- -l
)
4
SR
O AN
—
™M
o~
L
M0
-
wn O
—t
o«
i
< o
i
4 GO
-l
< N
GO v~
i
[V=2RTr)
—
~ o
i

- M

M =M A
— —
NN ANOM
— —
N WO I O
— —
00 < H M AD —
- v

N~ 00O
— —

M O AW WO
L] ™
— O N 00
i -
NSO NM~M
i -4
©COWMANM
v =i - -4
NN OIFNO
o -t i
WO WANMmD
i
O WM<,
o - - -l
N b= =~ MW
-
<t~ 00 DO
4 i
MO0 = O
LR o}

di2:112 615161314 5 4 110 3 9 7 211 8

Appendix

cll:
cl2:
dl:
d3:
ds:
dé :
a7
ds:
dll:

f1
f3:
f5

fl1:/11 8 914 5 31015 61316 4 712 2 1
fl12:/1216 615 3 5 414 9 1 810 211 713

J6:
J7:
J8:

g

—
. N
BB85RZZ

205




8
6
1

1 4
0 5

3

1 51611 915 413 2 614 71012 3 8
31312 814 6 2 5 415 910 716 111
5 11116 6 810 213 912 3 414 715
614 210 5 4161115 3 7 9 8 11213

11611 5 81315 4 6 7 9 2 31012 14
312 81311 5 6 2151014 4 1 716 9

3 6 6 910 716 413 2151211 814 1
511 16 11

53 9 6 2 11113 410 814161512 7
6 9 3 51114 215 816 4 11013 7 12
7 21112 3 4 910 11314 81516 6 5
81610 4 615 5 91214 713 1 3 211
1112 7 215 6131416 910 5

1211 2 7 9 8 3161415 1 4131
11012 915 3 516 811 214 4 7 6 13
3 71614 6 1131211 8 4 9 21015 5
5 2 81514 7 3 9 612131610 111 4
611 413 112 9 3 5 715101614 2 8
7 31416 8 5 21112 6101513 4 9 1
815 5 210111213 1 3 9 414 6 7 16
11 613 4 7 816 5 3 114 2 915 10 12
12 9 110 4 611 2 7 5161315 8 3 14
7 4 915121413 31011 6 2 1 8 5 16
81213 3 2101416 9 7 4 615 511
1116 5 1 4 7 9121410 215 613 8 3

1131514 71012 2 5 4 616 811 9 3

N~

w o

6 210141

ml2:(12 8 313 7 115 916 2 51114 4 6 10

kl:
k3:
k5:
k6 :
k7 :
k8 :
k11 :
k12 :
1:
13:
15:
16 :
I7:
18:
11:
112:
ml:
m3:
mb5 :
mb :
m7:
m8 :
mll :
nl:
n3:
nd :
né

11 5 116 312 7 91015 414 8 6 13
12 313 810 9 115 211 716 614 4 5
206

nl2:



112 9101316 3 5111415 8 6 4 7 2

31614 7 512 113 8 9 61115 210 4

5 815 2 4 9 7 3121614 611 10 1 13
6 41311 8 312 9 710 1 5 216 14 15
71416 3 111 5 2 615 812 913 410

8 5 21516131112 3 410 1 714 6 9
1113 4 612 5 816 1 2 7 310 915 14

12 110 914 2 611 513 4 7 315 8 16

1 6 8 712 9111413 3 415 516 210

31511101614 8 9 5 1 2 61312 4 7

51412 4 916 615 1 71011 2 813 3

6 1 7 8 310 513141216 211 415 9

7 8 6 111151216 4 513 9 31410 2

6 5 2 3 4161114101213 915

7 1

8

1151413 3 21012 416 7 5 9 811 6

3 6 9 51 4 716 21210131411 815

713 1111014 2 4121615 8
121514 216 111 8 71013 4
71112 2 510 4 913 8 3 1 61516 14
810 41611 915 51413 612 2 1 3 7
11 7 212 814 613 9 51516 4 3 110

5 9 6 3
6 3 5 9

1 91012 2 516 314 81311 7 6 415
314 716 41312 1 911 5 81015 2 6

515 2 813 3 9 716 6 412 111 10 14

61311 415 9 31210 56 8 714 216 1

716 31410 211 51512 1 6 4 913 8

pl:

p3:

p5:

p6:

pr:

p8:

pll:

pl2:

rl:

r3:

75

76 :

r7:
78 :

r11:(11 10 31513 4 1 212 8 9 716 514 6

r12:(12 4 514 213 710 8 615 3 9 116 11

sl:

s3:

85
86 ¢
s7:
s8:

sll:

§12:112 2 711 616 8 315 4 914 51310 1

tl:

t3:

t5:

6 :

t7

207



3 9 5 61516 4 71213 1 2 81411 10
5 6 3 9 81113 114 4 710151216 2

1141315 612 21016 5 3 411 9 8 7

- M O
—
O )
— -
M~ ON
M O m
— =t
W m <
— -
A WD —
— —t
00 = N
—
™~ Q0 M
—
W
— —
n O ;M
— -
N

3 4
114
0 7

1
16 1

6 5 9
712 2
8 416

111 51614 41315 7 2 8 612 310 9
3 81312 9 2 5 610 4111516 1 7 14
516 1111210 2 8 31315 914 7 4 6
61014 2 71611 4 91513 3 112 8 5
715 4 9 613 314 2101611 8 5 112
8 31213 4141610 6 9 1 7 51115 2
11 116 5 2 912 71514 31013 8 6 4
1213 8 3 515 9 1111610 2 4 614 7

wl
w3 :

wb :
w6 ;
w7 :
w8 :

wl2:(12 711 2 1 316 8 414 61510 513 9

wll:|11 212 7101314 6 516 8 9 1 4 315

zl:
z3:
z5:
z6 :
z7:
z8 :

zll:

zl2:

208

1 8 7 61014 911 3151213 2 516 4

3111015 7 914 8 1 616 5 41312 2

5 12
6 7
7 6 1 8 2161512 5 911 410 3 14 13

8 1 6 715 4 2 31110 516 9 12 13 14
11 31510 6 2 4 1 8 713121416 5 9

12 514 4111013 7 6 3 2 816 9 115

zl:
z3:
25:
26 :
27 :
28 :
z211:
z12:



References

[1] U. Dempwolff and A. Reifart, The classification of the translation
planes of order 16, I, Geom. Ded. 15 (1983), 137-153.

[2] M. J. de Resmini, Some combinatorial properties of a semitranslation
plane, Congressus Numerantium, 59 (1987), 5-12.

[3] M. J. de Resmini, On an exceptional semitranslation plane, in “Ad-
vances in Finite Geometries and Designs”, Oxford U.P., 1991, 141-162.

[4] M. J. de Resmini, Failed Baers and blocking sets, Mitt. Math. Semin.
Univ. Giessen, 201 (1991), 4548.

[5] M. J. de Resmini, On the Johnson-Walker plane, Simon Stevin 64
(1990), 113-139.

[6] M. J. de Resmini, Some remarks on the Hall plane of order 16, Congr.
Num,. 70 (1990), 17-27.

[7] N. L. Johnson, Non-strict semitranslation planes, Arch. Math. 20
(1969), 301-310.

[8] N. L. Johnson, A classification of semitranslation planes, Canad. J.
Math. 21 (1969), 1372-1387.

[9] N. L. Johnson, On non-strict semitranslation planes of Lenz—Barlotti
class I-1, Arch. Math. 21 (1970), 402-410.

[10] N. L. Johnson, A note on semitranslation planes of class I-5a, Arch.
Math. 21 (1970), 528-532.

[11] T. G. Ostrom, Semi-translation planes, Trans. Amer. Math. Soc. 111
(1964), 1-18.

209



