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ABSTRACT. In this paper we show that simplicial graphs, in which
every vertex belongs to exactly one simplex, characterize graphs sat-
isfying equality in some graph invariants concerning independence,
clique covering, domination or distance.

1. TERMINOLOGY AND INTRODUCTION

In this paper we consider finite, undirected and simple graphs with vertex
set V(G). For A C V(G) let G[A] be the subgraph induced by A in G.
Moreover, N(z,G) denotes the set of vertices adjacent to the vertex z
and more generally, N(X,G) = UzexN(z,G) for X C V(G). We write
Nlz,G] instead of N(z,G)U {z}. A maximal complete subgraph of a
graph is a clique. A vertex v of a graph G is simplicial, if every two
vertices of N(v,G) are adjacent in G. Equivalently, a simplicial vertex
Is a vertex that appears in exactly one clique. A clique of a graph G
containing at least one simplicial vertex is called a simplex of G. A graph
G is simplicial if every vertex of G is either simplicial or adjacent to a
simplicial vertex of G. A clique covering of G is a collection of cliques, such
that the union of their vertex sets is V(G). The clique covering number
of G denoted by #(G) is the minimum number of cliques, such that their
union is a clique covering of G. An independent set 7 of vertices of a graph
G is a set of pairwise nonadjacent vertices. Let i(G) and a(G) denote
the minimum and maximum number of vertices, such that their union is a
maximal independent set of G. Since every clique of a graph G contains at
most one vertex of an independent set of G, we have

a(G) < 6(G).

A set D of vertices of a graph G is called a dominating set of G, if every
vertex v € V(G) — D is adjacent to at least one vertex of D. Let v(G) and
['(G) denote the minimum and maximum number of vertices, such that
their union is a minimal domination set of G. In case of equality i(G) =
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a(G) (7(G) =T(G)) a graph G is said to be well covered (well dominated).
Since every maximal independent set of G is a minimal dominating set of
G, these graph invariants are related by the following inequalities:

(@) <i(G) £ «(G) <T(G)

The distance between two vertices u and v in a graph G is denoted by
dg(u,v). The kth power of a graph G is the graph G* with the same ver-
tex set V(G) and an edge is joining distinct vertices u, v € V(G) whenever
dg(u,v) < k. If we consider the last four graph invariants in G¥, distance
related generalized graph invariants of G appear ( i(G*) = ix(G), a(G*) =
a(G) the k-packing number, y(G*) = 7(G) the k-covering number,
I'(G*) = T'x(G)). They were first introduced by Meir and Moon [8]; fur-
ther studies are given in the papers of Chang, Nemhauser [1] and Topp,
Volkmann [11]. Since N[z, G] induces a complete subgraph in G2 for every
vertex z of a graph G, we have:

8(G?) < 7(G).

Simplicial graphs were introduced by Cheston, Hare and Laskar [2] . These
graphs appear often in studies about well covered graphs as one can see
in the survey paper of Plummer [9] . In particular, the well covered sim-
plicial graphs were characterized by Prisner, Topp and Vestergaard [10] .
The class of simplicial graphs for which every vertex belongs to exactly
one simplex seems to be a useful tool for characterizing graphs satisfying
equality in some graph invariants. In this paper we characterize graphs G
with a2(G) = 8(G), a2(G) = a(G) and those satisfying (G?) = §(G).
Topp and Volkmann (11} characterized trees T with k-packing number
ax(T) equal to the k-covering number (7). Hattingh and Henning (6] ex-
tended this result for block graphs - graphs without noncomplete subgraphs
induced by vertices of a cycle. Furthermore, we present a generalization of
these results with emphasis on chordal graphs.

2. PRELIMINARY RESULTS

The first proposition yields a nice property of well covered graphs with
equal independence number « and clique covering number 6.

Proposition 2.1. If G is a well covered graph with a(G) = 6(G), then in
every minimum clique covering C all cliques are pairwise vertex disjoint.

Proof: Let C = {C1,Cs,...,C,} be a minimum clique covering of G. If
q = 1, then the result is valid. Now suppose that ¢ > 1 and assume to
the contrary that there are two cliques of C, say Cy—; and Cy, containing
a common vertex v. In addition, let J be a maximal independent set of G
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containing the vertex v. Since G is well covered and a(G) = 8(G) = ¢, it
follows that |I| = ¢. Furthermore, [INV(C;)| < 1fori=1,2,...,¢—2and
[IN(V(Cy-1) UV(Cy))| = [{v}| = 1. Hence we obtain the contradiction
{I| < ¢ — 1, which completes the proof . Jj

The following property of simplicial graphs was found by Cheston, Hare
and Laskar [2].

Proposition 2.2. [2] If G is a simplicial graph and S,,S,,...S, are the
simplexes of G, then V(G) = U}_,V(S;) and ¢ = §(G) .

The last result of this section is due to Chang and Nemhauser (1] .

Proposition 2.3. [1] If G is chordal and S is a clique of G¥, then
the subgraph G[V(S)] induced by the vertex set of S is connected and

dg(z,y) = dg[v(sy(z,y) for all z,y € S.

3. MaAIN REsuLTS
It is possible to combine the inequalities of Section 1 in the following way:
a2(G) < 8(G?) < 7(G) < i(G) < a(G) <O(G) (%)

The next theorem gives a characterization of graphs G with a3(G) = 6(G),
a2(G) = a(G) and those satisfying 8(G?) = 6(G).

Theorem 3.1. For a graph G the following statements are equivalent:
(i)  Every vertex of G belongs to exactly one simplex of G;
(ii) G satisfies a2(G) = a(G);
(iii) G satisfies 0(G?) = 6(G);
(iv) G satisfies a3(G) = 0(G?) = 7(G) = i(G) = a(G) = 6(G).

Proof: Obviously the implications (iv) — (iiZ) and (iv) — (i¢) are valid.
For the proof of the implication (i) — (iv) let G be a graph such that every
vertex of G belongs to exactly one simplex of G, and let S* be a vertex
set of G containing exactly one simplicial vertex of every simplex of G. It
is obvious that S* is independent. According to Proposition 2.2 we have
6(G) = |S*|. Since all simplexes Si,Ss,...,5; of G are pairwise vertex
disjoint we have V(G) = U{-,V(Si) = Uses- N[s,G]. Thus, for all distinct
verticesz, y € S* we deduce N[z, G]NN[y,G] = 0 and dg(z,y) > 2. There-
fore, S* is an independent set of G? and so 8(G) = |S*| < a2(G). Together
with (*) we obtain a»(G) = 8(G?) = ¥(G) = i(G) = o(G) = 4(G).

For the proof of the implication (i¥) — (z) let G be a graph with
a3(G) = a(G) and let I be an independent set of G2 with |I| = a3(G).
Thus, two distinct vertices of I are neither neighbors nor have a common
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neighbor, i.e. N[z,G]N N[y, G] = 0 for all distinct =,y € I. Since I is a
maximum independent set, I is also a dominating set of G. According to
the last two arguments V(G) = Uger N[z, G] holds. Now it suffices to show
that each w € I is a simplicial vertex. Suppose to the contrary that there
exists a nonsimplicial vertex v € I. Then v has at least two nonadjacent
neighbors z and y. Hence (I — {v}) U {x,y} is an independent set of G,
contradicting that 7 is a maximum independent set. This contradiction
completes the proof of this implication.

For the proof of the implication (#ii) — (i) let G be a graph 6(G?) = 6(G).
Because of the inequalities (), the graph G is well covered and a(G) =
6(G) = g. From Proposition 2.1 follows that in every minimum clique
covering C = {C},Cy,...,C,} all cliques are pairwise vertex disjoint, i.e.
V(G) = U!_,V(C;i). Now it suffices to show that each clique C € C is a
simplex of G. If ¢ = 1, then G is a complete graph and the result is valid.
Assume ¢ > 2 and suppose to the contrary that there is a clique of C, say
Cy, which is not a simplex of G, i.e. every vertex z € C, is adjacent to
a vertex y ¢ C,;. For every pair of vertices z,y of the induced subgraph
H; := GI[V(C;))U{N(V(C;),G)NV(CH)H} for i = 1,2,...,¢— 1 of G we
see dg(z,y) < 2 and furthermore UIZ |V (H;) = V(G). Now let H} be a
clique of G? containing the vertices of H; for ¢ = 1,2,...,¢ — 1. Then
M = {H},H;,...,H;_,} is a clique covering of G2. This yields the con-
tradiction ¢ — 1 > #(G?) = ¢ and completes the proof. i

A graph G is chordal, if G contains no induced cycle of length at least
four. Prisner, Topp and Vestergaard [10] characterized the well covered
simplicial graphs and the well covered chordal graphs, as follows.

Theorem 3.2. [10] For a simplicial {chordal} graph G the following state-
ments are equivalent:

(i) G is well covered, i.e. i(G) = a(G);

(ii) G is well dominated, i.e. ¥(G) = I'(G);

(iii) G satisfies v(G) = a(G);

(iv) G satisfies i(G) = T'(G);

(v)  Every vertex of G belongs to exactly one simplex of G.

The next theorem has been proved recently by Dean, Zito [3] and Schein-
erman [see 3]. For convenience, we call a graph G without cycle of length
four as induced subgraph Cy-free.

Theorem 3.3. [3] Let G be a Cy-free graph satisfying a(G) = 6(G). Then
the following statements are equivalent:

(i) G is well covered, i.e. i(G) = a(G);

(ii)  Every vertex of G belongs to exactly one simplex of G.
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This result generalizes the equivalence of (i) and (v) of Theorem 3.2 for
chordal graphs, since every chordal graph G is Cy-free and fulfils &(G) =
8(G), proved by A. Hajnal and J.Suranyi [5]. Theorems 3.1, 3.2 or 3.3
applied on the kth power of a graph G yield in a simple way distance related
generalizations. We focus our interest now on the generalized Theorems 3.2
and 3.3.

Corollary 3.1. Let G be a graph with ax(G) = 0(G*) and furthermore
let G* be C,-free. Then the following statements are equivalent:

(i) G satisfies ix(G) = ar(G);

(ii) G satisfies v¢(G) = T (G);

(iii) G satisfies vx(G) = ar(G);

(iv) G satisfies i (G) = T'+(G);

(v) Every vertex of G belongs to exactly one simplex of G*.

Now we have to explain the statement: S is a simplex of G*. There exists
a simplicial vertex so of G¥ contained in V(S). So we see that every vertex
of G having distance at most k£ from so is also contained in V(S). Since S
is a clique of G* we deduce dg(z,y) < k for every pair of distinct vertices
z,y € V(S). Nevertheless, the distance in a graph G between two vertices
z,y of S can increase in the subgraph G[V/(S)] of G induced by the vertices
of §, i.e. dg(z,y) < dgv(s)(z,y). In particular, the greatest distance in
G[V(S)] between two vertices of S -the diameter of G[V(S)]- can be greater
than k. We call a simplex S of G*¥ with the additional property that the
diameter of the subgraph G[V(S)] of G is at most &k a k*-simplex of G.
In the special case of chordal graphs Proposition 2.3 yields the missing
additional property, such that for chordal graphs G every simplex of G* is
also a k*-simplex of G. So, if we apply Corollary 3.1 to chordal graphs,
then statement (v) changes a little bit.

Corollary 3.2. Let G be a chordal graph with ax(G) = 6(G*) and fur-
thermore let G* be Cy-free. Then the following statements are equivalent:
(i) G satisfies it (G) = ar(G);
(ii) G satisfies 1:(G) = ['t(G);
(iii) G satisfies v, (G) = ai(G);
(iv) G satisfies it (G) = ['(G);
(v) Every vertex of G belongs to exactly one k*-simplex of G, i.e.
V(G) = U{_,V(S:), where S, ..., S, are the k*-simplexes of G.

There is a question arising from the last corollary: which chordal graphs
fulfil the assumptions? The class of chordal graphs G with likewise chordal
kth power G* fulfil the assumptions, since G* as chordal graph is Cy-free
and by reason of the equality of independence number o and clique cover-
ing number 6 for chordal graphs, proved by A. Hajnal and J.Suranyi [5).
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This class of graphs has been examined by Chang, Nemhauser [1} , Duchet
[4] and Laskar, Shier [7]. Jamison (Corollary 6.9 in [4]) showed that the
class of block graphs is also included in this subclass of chordal graphs.
Thus Corollary 3.2 generalizes the following theorem which is due to Hat-
tingh and Henning [6]. In particular, the statement (v) of Corollary 3.2 is
equivalent to statement (ii) of Theorem 3.4 for connected block graphs.

Theorem 3.4. [6] Let G be a connected block graph. Then the following
statements are equivalent:
(i) m(G)=au(G)=n;
(ii)  One of the following statements holds:
(a) G has diameter at most k and n = 1.
(b) There exists a decomposition of G into n subgraphs
G1,Gso, ...,Gy in such a way that:
(1) Gi is a connected block graph of diameter k (i =
1,2,..,n),
(2) for each i € {1,2,...,n} there exists u; € V(G;) —
V(Go) such that dg(u;, V(Go)) = k, where Gy is the
subgraph of G generated by the edges which do not
belong to any of the subgraphs G1,Ga, ... ,Gy;
(iii) G is a well-k-dominated, i.e. 7(G) = T'x(G).

o)

®
® G
z2
T T3 )
Figure 1:
T4
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The condition that G* is Cs-free is necessary in Corollary 3.2, as we can
see by the example in Figure 1: a chordal graph G with i3(G) = a2(G) =
3 having a cycle z,z2z3z42; of length four as induced subgraph of G2,
furthermore G? is not simplicial and so G is not, 2*-simplicial decomposable.

Remark 3.1. With some effort it is possible to show that the staiements
(1), (i) and (v) of Corollary 3.2 remain equivalent, if we omit the condition
that G* is Cy-free. We do not know, whether the other condition ox(G) =
8(G*) of Corollary 3.2 is necessary. We hope that it is possible to close this
gap in order o improve the equivalences of (ii),(iii) and (v} of Corollary
3.2 for all chordal graphs.

10.

11.
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