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ABSTRACT. The imbalance of edge (z,y) = |deg(z) — deg(y)]-
The sum of all edge imbalances in a graph is called its irregular-
ity. We determine the maximum irregularity of various classes
of graphs. For example, the irregularity of an arbitrary graph
with n vertices is less than 12'-‘.;-, and this bound is tight.

Introduction

Suppose G is a graph with n vertices and E edges. The imbalance of the
edge e = (z,y), denoted by imbg(e), is defined to be |deg(z) — deg(y)|.
The irregularity of G, denoted by irr(G), is defined by

irr(G) = Y imb(e) = Y _ | deg(z) — deg(y)|.

(z.v)

Clearly G is a regular graph if and only if its irregularity is 0. The
idea of the imbalance of an edge appeared implicitly in [3] where it was
related to Ramsey problems with repeat degrees. This was generalized
in [6]. Specifically, if r = 7(G, H) denotes the classic Ramsey number,
then Chen, Erdos, Rousseau, and Schelp show that in any 2-coloring of the
edges of K,,, there exists either a red G or a blue H in which the maximum
imbalance is < r — 2 provided n > 4(r — 1)(r — 2). There have been other
attempts to measure how irregular a graph is, but heretofore this has not
been captured by a single parameter [1,2,4,5,7]. The focus of this paper is
on graphs with large irregularity.

Elementary Properties

Proposition 1. For any edge e in a graph G, imb(e) < n — 2.

ARS COMBINATORIA 46(1997), pp. 219-225



Proposition 2. If T is a tree, then irr(T) < (n—1)(n — 2).

Equality is achieved by the star K, ;. This graph also maximizes the
irregularity of a graph with a fixed number of edges.
Proposition 3. For any graph G, irr(G) = O(nE) = O(n®).

Our next result shows what happens to the irregularity when an edge is
added to G. If u is a vertex in G it is convenient to define

deg”(u) = |{z: (x,u) in E(G) and deg(u) > deg(z)}|,

deg™(u) = |{z: (z,v) in E(G) and deg(u) = deg(z)}|,
and

deg<(u) = |{z: (z,u) in E(G) and deg(u) < deg(z)}|.

Clearly deg(u) = deg” (u) + deg™ (u) + deg=(u).

Lemma 4. (Edge Addition Lemma) If (u,v) is not in E(G), set G’ =
G+(u,v). If deg(u) > deg(v), then irr(G’) = irr(G)+2[deg” (u)+deg™(u)—
deg<(v)].

Proof: The only edges whose imbalances change between G and G’ are
those incident with u and/or v. The imbalance of (u,v) will be [(deg(u) +
1) — (deg(v) + 1)]. Each edge of G that is incident with u will have its
imbalance changed by 1. Which direction that change occurs in depends
on which end vertex had the greater degree in G. The total contribution
at u will be [deg” (u) + deg™ (u) — deg<(u)], while the total contribution at
v will be [deg” (v) + deg™(v) — deg<(v)). Thus

irr(G’) = irr(G) + (deg(u) + 1) — (deg(v) + 1)
+ [deg” (u) + deg™ (u) — deg=(u)]
+ [deg” (v) + deg™(v) — deg*(v)]
= irr(G) + 2[deg” (u) + deg™ (u) — deg<(v)].

Corollary 5. For any G, irr(G) is even.

Lemma 6. (Edge Deletion Lemma) If (u,v) is in E(G), set G’ = G —
(u,v). If deg(u) > deg(v), then irr(G") = irr(G) + 2[deg™(v) + deg™ (v) —
deg” (u)]. If deg(u) = deg(v), then irr(G”) = irr(G) + [deg(u) + deg™ (u) —
1 — deg” (u)] + [deg<(v) + deg™(v) — 1 — deg” (v)].

Bipartite Graphs

If G is bipartite, then G must be a subgraph of K; -, for some t. We
assume that 1 <¢ < . In such a graph the maximum degree is < n —t.
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The irregularity will be maximized by having as many edges as possible have
the maximum possible imbalance. To this end choose ¢ to be its minimum
possible value given n and E. So if we fix r to be » = min{j: j(n—j) > E},
it is straightforward to obtain

r_[n_\/m}
= 25—

We now construct G; = G1(n, E), a bipartite graph with n vertices, E
edges, and large irregularity. Create r red vertices, say z1,z2,...,z,. Of
these all but z, will be adjacent to y1,¥2,...,¥n—r, and thus have degree
n —r. The vertex z, will be adjacent to y1,¥s,...,ys where s=E — (r —
1){(n — r). Figure 1 shows G,(10,18):

Figure 1

Proposition 7. ir(Gi(n,E)) = (r—1)(n—=7)2 4+ 82 —sr2 — (r(n —71) —
E)(r-1)2

It is instructive to plot irr(Gi(n, E)) for fixed n and all possible values
of E. Figure 2 exhibits such a discrete plot with n = 20. Each jump
down represents an increase in r. Evidently the maximum occurs when the
bipartite graph is complete. The smooth curve represents the function that

extends irr to the interval [0, ';:-]. A straightforward, symbolic computation
shows that the maximum of this function is % which occurs when F = l:— .

Concentrating for the moment on complete bipartite graphs it is imme-
diate that irr(K¢n—¢) = t(n —t)(n — 2t) provided that ¢ < 3. This will be
maximized when ¢ is either the floor or ceiling of 3(1 — 715). For those ¢,

irm(Kep-t) = %. Thus we have:
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Proposition 8. If G is bipartite, then irr(G) < 6"—\;5

Furthermore, there exists a complete bipartite graph whose irregularity
is arbitrarily close to this bound.

The preceding result relied heavily upon the assumption that G is bipar-
tite. As we shall see there exist graphs whose irregularity is substantially
larger than that of the complete bipartite graphs. Although we have been
unable to find a triangle free graph with larger irregularity, all we can prove
is:

Proposition 9. If G s triangle free, then irr(G) < %

Proof: Suppose deg(v) = §, the minimum degree in G. Let G’ = G — {v}.
Let N(v) denote the set of v’s neighbors. We can obtain the irregularity
of G from that of G’ by adding the imbalance of each edge incident with v
and accounting for changes in the imbalance at the edges that are incident
with the neighbors of ».

irr(G) <irr(G) + Y (ldeg(a:)—deg(v)|+ > 1).

TEN(v) v#z€N(z)

Since G is triangle free, £ and v cannot have a common neighbor. Thus
deg(z) < n—1—(6—1) = n—6 and | deg(z) —deg(v)| < n—26. Consequently

irr(G) <irr(G’) + 6(n —26) + 6(n — § — 1) = irr(G') + 6(2n — 36 — 1).

If we inductively assume that irr(G’) < c(n — 1)® for some constant c,
then irr(G) < cn® provided that §(2n — 36 — 1) < c(3n2 — 3n +1). Now
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8(2n — 36 — 1) will be maximized when § = 22=1, [t is straightforward to
check that ¢ = } is the smallest value that will support the induction.

The General Case

Let H,n denote K,V I,_, where I,,, denotes an independent set with m
vertices and G, V G2 denotes the join, i.e. vertex disjoint copies of Gy and
G together with every possible edge joining a vertex of G; and a vertex of
G,. Figure 3 shows H3 7.

Figure 3

Proposition 10. There exist integers r and n such that irr(Hy ) is arbi-
trarily close to 55‘73.

Proof: By construction the only edges that contribute any imbalance are
the join edges. There are r(n—r) of these and each has imbalance n—1—7.
Thus irr(Hyn) = r(n — r)(n — r — 1). It is straightforward to determine
that for fixed n, irr(H, ,) will be maximized when r is either the floor or
the ceiling of M;@i Plugging this value into irr(H,. ) for large n
asymptotically yields %’-.

In the graph H,, let z3,3,...,z, denote the vertices of the clique and
Y2,¥2, - - -, Yn—r denote the vertices of the independent set. Since deg(y;) =
deg<(y;) = r, the edge addition lemma guarantees that adding an edge
to H,n would decrease the irregularity. If » > n — 1, then H,, = K,. If
r < n—1, then deg(z;) > deg(y;). Since deg“(y;) = r and deg” (z;) = n—r,
the edge deletion lemma guarantees that deleting the edge (z:,y;) from
H,, would decrease the irregularity whenever r < 3. Similarly, since
deg<(zk) = 0, deg™(zx) = r — 1, and deg”(zx) = n — r, the edge deletion
lemma guarantees that deleting the edge (z;, z;) would add 2(r—2)—2(n—r)
to the irregularity of H,,. This will be negative precisely if r < % + 1.
This inspires the idea of a critical graph. A graph G is said to be critical if
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whenever (7 is obtained from G by exactly one edge addition or deletion,
then irr(G’) < irr(G). We have just shown:

Proposition 11. If r < 3, then H,. , is critical.

Theorem 12. If G is critical, then G £ H,. ,, for some 7.

Proof: Suppose G is critical and deg(z) = A(G), the maximum degree of
G. If z is not adjacent to y, then G’ = G + (z,y) will have irregularity
irr(G’) = irr(G) + 2[deg” (z) + deg™(z) — deg=(y)). Since deg=(y) < A(G),
irr(G’) > irr(G). Thus we may assume that A(G) = n — 1. Now assume
that the vertices of G have been labelled so that deg(z;) = - - - = deg(z,) =
A(G) and A(G) > deg(u) > deg(t) for every t in V(G) that is not one of
the z;’s. If deg(u) = r, then G = H,.,,. Thus we may assume there exist v
and z not among the z;’s such that (u,v) is in E(G) but (u, z) is not. If
no such v has deg(v) < deg(u), then deg”(u) = 0. This, together with the
Edge Deletion Lemma, implies that G is not critical. Thus we may assume
that deg(u) > deg(v). By the Edge Deletion Lemma applied to the edge
(u,v), since G is critical

deg” (u) > deg<(v) + deg=(v) >r+1.
By the Edge Addition Lemma applied to u and z,
deg<(z) > deg” (u) +deg™(u) > 7 +1.

Thus there exists w not one of the z;’s such (w, z) in E(G) and deg(w) >
deg(z). Once again we use edge deletion applied to (w, 2) to see that

deg” (w) > deg=(z) + deg™(z) > deg” (u) + deg™(u).

If deg(w) > deg(u), this contradicts how u was chosen. Alternatively,
deg” (w) = deg” (u) + deg™(u) and deg™(w) = 0. Consequently w is not
adjacent to u. Adding the edge (u,w) to G increases the irregularity by
deg” (w) — deg<(u) = r + 1 — r > 0, contradicting the assumption that G
is critical.

Corollary 18. For any graph G, irr(G) < %.

Proof: Clearly a graph of maximum irregularity must be critical. From
Theorem 12 such a graph is H, ,, for some r. Thus

ll’l'(G) < max{irr(Hr,n)}
< max{r(n —r)(n —r - 1)}
4nd

< max{r(n -r)%} = =7
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