Hamiltonian Graphs with Large
Neighborhood Unions

Guantao Chen*

Department of Mathematics
North Dakota State University
Fargo, ND 58105

Yiping Liu
Department of Mathematics

Nanjin Normal University
Nanjin, China

ABSTRACT. One of the fundamental results concerning cycles
in graphs is due to Ore: If G is a graph of order n > 3 such that
d(z) + d(y) = n for every pair of nonadjacent vertices x, y €
V(G), then G is hamiltonian. We generalize this result using
neighborhood unions of k£ independent vertices for any fixed
integer k > 1. That is, for A C V(G), let N(A) = U,caN(a),
where N(a) = {b : ab € E(G)} is the neighborhood of a. In
particular we show: In a 4(k — 1)-connected graph G of order
n > 3, if |[N(S)|+|N(T)| = n for every two disjoint independent
vertex sets S and T of k vertices, then G is hamiltonian. A
similar result for hamiltonian connected graphs is obtained too.

1 Introduction

Only finite simple graphs will be considered. In general G = (V, E) will
denote a graph with vertex set V and edge set E. Terminology will in
general follow that used in the text of Bondy and Murty [1]. Given a graph
G, a hamiltonian path of the graph is a path that contains every vertex of
G. Similarly, a hamiltonian cycle of G is a cycle that contains every vertex
of G. A graph G is hamiltonian if it contains a hamiltonian cycle. A graph
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is hamiltonian connected if there is a hamiltonian path between any two
distinct vertices. In this paper, N(z) denotes the open neighborhood of a
vertex z, which we generalize to a subset A of vertices. Let A and B be
two vertex subsets of G. We define

N(A) =U,eaN(a) and Ng(A)= N(A)nB.

One of the oldest results giving sufficient conditions for a graph to be
hamiltonian was given by Dirac.

Theorem 1 (Dirac [7]) If G is a graph of order n > 3 such that the
minimum degree 6(G) > n/2, then G is hamiltonian.

Since Dirac published this theorem, the approach for developing sufficient
conditions for a graph to be hamiltonian usually involved generalized de-
grees of a graph. Ore relaxed the condition in Dirac’s theorem and obtained
the following.

Theorem 2 (Ore [15]) If G is a graph of order n > 3 such that d(u) +
d(v) = n for every pair of nonadjacent vertices u, v € V, then G is hamil-
tonian.

Recently, several papers have explored the effect of various neighborhood
union conditions for hamiltonian graphs, beginning with the next result.

Theorem 3 (Faudree, Gould, Jacobson, Schelp [9]) Let G be a

2-connected graph of order n. If for every pair of distinct nonadjacent
vertices u and v

IN(u) UN(v)| > (2n - 1)/3,
then G is hamiltonian.
The above three results are generalized in [3].
Theorem 4 (Chen [3]) Let G be a 2-connected graph of order n. If
d(u) +d(v) + 2|N(u)UN(v)| > 2n -1
for every pair of nonadjacent vertices u and v, then G is hamiltonian.
Later there are many stronger results are obtained in [4], [5], [10], [17].
The graph K3 + 3K, illustrates that (2n — 1)/3 in Theorem 3 is, in some

sense, best possible. However, the following three theorems show that the
(2n — 1)/3 can be lowered considerably under some circumstances.
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Theorem 5 (Faudree, Gould, Jacobson, and Lesniak, [8]) IfG isa
2-connected graph of sufficiently large order n such that |N (u)UN (v)| > n/2
for all distinct u and v € V(G), then G is hamiltonian.

Theorem 6 (Jackson [14]) Let G be a 3-connected graph of order n. If
IN(w)U N(v)| = (n+ 1)/2 for any pair of nonadjacent vertices, then G is
hamiltonian.

Theorem 7 (Broersma, Van Den Heuvel, and Veldman [2]) Let G
be a 3-connected graph of order n. If [N(u)U N(v)| = n/2 for every pair of
nonadjacent vertices u and v, then G s either hamiltonian or the Petersen
graph.

Fraisse extended Theorem 3 from two nonadjacent vertices to larger in-
dependent sets of vertices.

Theorem 8 (Fraisse [11]) Let G be a k-connected graph of order n. If
for every independent vertex set S of cardinality k,

k(n—1)

NS> S

then G is hamiltonian.

The graph Ki + (k + 1)K, illustrates that the above result is, in some
sense, best possible. Notice that the connectivity of K+ (k+1)K, is k. It
is natural to ask under what circumstances the bound &('::_;112 can be lower
to n/2. In particular, the following question is asked.

Question 1 For any positive integer k, does there exist a posilive integer
f(k) such that: for any f(k)-connected graph G of ordern > 3, if |N(S)| >
n/2 for every independent set S of k vertices, then G is hamiltonian?

Notice that the complete bipartite graphs Kp ;41 show that bound n/2 is
best possible if the answer of the question is a positive one. The graph
Kak—2 + (2k — 1)K, with p > 1 illustrates that f(k) > 2k — 1 if such a
f(k) exists. The following theorem affirms that such a f(k) exists and it is
bounded above by 4(k — 1) for every positive integer k.

Theorem 9 Let k be a positive integer and G be a 4(k—1)-connected graph
of order n > 3. If [IN(S)| = n/2 for every independent set of k wvertices,
then G is hamiltonian.

In fact we will prove the following stronger result which generalizes Ore’s
theorem on hamiltonian cycles.
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Theorem 10 Let k be a positive integer and G be a 4(k — 1)-connected
graph of ordern > 3. If

IN(S)| +IN(T)| 2 n

for every two disjoint independent sets S and T of k vertices, then G is
Hamiltonian.

When k = 1, the above result generalizes Theorem 2. When k = 2,
the Petersen graph is an example showing that 4-connected is necessary in
some sense. We will also prove two similar results on hamiltonian paths
and hamiltonian connected graphs respectively listed below.

Theorem 11 Let k be a positive integer and G be a (4k — 5)-connected

graph of order n. If
IN(S)|+ IN(T)| 2n-1

Jor every two disjoint independent sets S and T of k vertices, then G con-
tains a hamiltonian path.

Theorem 12 Let k be a positive inleger and G be a (4k — 3)-connected

graph of order n. If
INGS)+INT)| 2n+1

for every two disjoint independent sets S and T of k vertices, then G is
hamiltonian connected.

Clearly, Theorem 11 follows directly from Theorem 10. When k = 1,
Theorem 12 generalizes a result of Ore [16] that if d(z) + d(y) > n + 1 for
each pair of nonadjacent vertices £ and y, then G is hamiltonian connected.
For the case k = 2, Gould and Yu recently proved the following result which
is independent to above result.

Theorem 13 (Gould and Yu [13]) Let G be a 3-connected graph of or-
dern, if
IN(SI+IN(T)| 2n+1

for each pair of distinct vertex sets of two vertices, then G is hamiltonian
connected.

2 Imsertible Vertices On Maximal Cycles

Let G be a graph. We assume that all cycles and paths of G are given
with a fixed orientation. For a path (or a cycle) X of G, we let X~ denote
X with the reverse orientation. For u, v € V(X), let X[u,v] denote the
subpath of X from u to v. We also use X[u,v] to denote V' (X[u,v]) when
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no confusion can arise. Set X (u,v] = X[u,v] — {u} and define X[u,v) and
X (u,v) similarly. For § C V(X), let St (S~) denote the set of successors
(predecessors) of vertices of S in X and let G(S) denote the subgraph of
G induced by the vertices of S. A uv-path of G is a path of G connecting
u and v with the fixed orientation from u to v. Let B be a connected
subgraph of G and let u and v be two vertices of B. Then uBwv will denote
an arbitrary uv-path in B. A maximal cycle C of G is a cycle such that no
other cycle in G contains all of vertices of C as a proper subset of vertices.

Let G be a given nonhamiltonian graph of order » and C be a maximal
cycle of G with an orientation. Let H be a connected component of G —
V(C) and let {v;, v2, ---, vn} be h vertices in No(H) such that z;v; €
E(G) where z; € H for 1 < i < h. We also assume that vy, vg, - -+, v are
labeled in the order along the orientation of C, that is v; € C(vi—1, vit1)-
The vertices vy, v, - -+, v, divides the cycle C into h segments,

Qi = C(vi,vi41] = winwiz - - Wigvi1 for 1<i<h,

where the subscripts of v;1; are taken modulo k.

Motivated by the algorithm used by C. Q. Zhang in [18], we define the
insertible vertices as follows. A vertex w; € Q; is called an insertible vertex
if there are a pair of consecutive vertices w and w* € C — Q; such that
wiw, wiw™ € E(G). If w is an insertible vertex, we define that I(w;) be
the vertex in C — @; U {v;} such that w;I(w;), w;(I(w;))* € E(G) and
|Clw, I(w;)]| is as large as possible.

Suppose that w;;, wgn, - -+, wy, are insertible vertices. Let B; be the
largest integer in [1, a] such that I(w;1) = I{wig,), and B be the largest
integer in [B1 + 1,a] such that I(wig,+1) = I(wig,), -+, Bt = a. Then
we insert the segment Clw;y, wip, ] between I(w;y) and (I(w;g,))*, the seg-
ment Clwig, +1, wig,] between I(wig, +1) and (I(wig, +1))*, - - -, the segment
Clw;g,_,+1, w;ig,) between w;g, ;11 and (wig,_,+1)*. Since we will use such
insertion very often, we call such insertion a segment insertion and denote
the insertion by SI[Clwi), win]].

Lemma 1 For each Q; there i3 a non-insertible verter in Q; — {vi+1}.

Proof: We assume, to the contrary, that all vertices in Q; — {vi+1} are
insertible. Using the segment insertion SI{w;y, w;q;], we obtain a v v;-
path Pviy1,v;] with V(P[vi1,v]) = V(C). The existence of the cycle
v;Zi Hzi 4 19341 P[vi41, vi] contradicts the maximality of C. O

For each 1 < i < k, let £; be the smallest integer such that w;, is not
an insertible vertex and let S; = {wi1, wi2, -+, wi;}. Notice that from
Lemma 1, S; N No(H) = ¢. Further, we have

Lemma 2 Let 1 < ¢ # j < h be two distinct integers. Then for any
1<s; <t and 1 < s; < tj, the following two properties hold.
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I There does not erist a path Rlwis,, wjs;] such that

Rlwis,, ss;] N C = {wie,, wje, }.

II For every w € Clw} , wj,], if wwy,, € E(G), then w™wj,, ¢ E(G).
Simélarly, for any w € Clwjs;, wis,), if wwjs; € E(G), then w™w;,, ¢
E(G).

Proof: We prove this lemma by induction on s; + 8;. For 8; = s; = 1,
Clearly w;i,, = ¥ and wj,; = v}. By standard argument on maximal
cycles in a nonhamiltonian graph, we see that both I and II hold. Assume
that both I and II are true for any pairof r; +r; < s;+3; with1 <r; < s;
and 1 < Tj < 8j.

From the induction hypothesis on I, there is no edges between the
vertex sets {'w,-l, Wi, * - ,w;‘} and {wjl, Wy, +- -, wj,,}. Thus no ver-
tices in {w;1, wiz, - -+ ,wy,,} are inserted between any pair of vertices in
{wj1, wja, - -+ ,wjs;} when we use the segment insertion SI[Clw;, ws,]).
Using the segment insertion SI[Clw;1, w,,]], we obtained a path Plws,, vi]
such that V(P[w;,,,%;]) = V(C). From the induction hypothesis on II,
I(wjr,) # I(wiy,) forany 1 <r; < 8;—1and 1 < 7; < 8;—1. Then I'(w;.,)*
is also the immediate successor of I(w;;) on the path Plw,,,v;]. Using
the segment insertion SI[C[wjl,w;j]], we can insert wjy, wja, - -, wy,, in
Plw;s,,vj] or Plwjs,,v;] to obtained two vertex disjoint paths Q[w;,,,v;]
and Q[w;j,,, v;] such that V(Q[ws,,, v;]) UV (Q[wjs,, v:]) = V(C) and for any
pair of two consecutive vertices w and w™ of C' — Clw, i, JUC[wj1, wj, ],
one and only one the following three properties holds.

e w and w™ are two consecutive vertices on one of the paths Q[w;,,,v;]
and Q[sz,-) 'U.'],

o there is a segment Clwir,, wir;] inserted between w and w~ with
N(w,',.‘) n N(w‘,;) 2 {w, w™},

o there is a segment C[wj,,,w,-,.;] inserted between w and w— with
N(w_.,-,-,) n N(wj,.;) 2 {w, 'w‘}.

To prove property I, we assume, to the contrary, there is a path
Rwis,, wjs;] such that Rlwy,,,wjs;]NV(C) = {wis;, wjs; }. By Lemma 1,
Rlwis,, wjs;] NV(H) = ¢. Then the existence of the cycle
Qlwia,, v5)v; 7 Hzivi Q™ [vi, wja, | Rlwjs s, wis, ]

contradicts the maximality of C.

To prove property II, we assume, again to the contrary, there are two
consecutive vertices w and w™ in Cu}, vjs,;] such that wwy,, € E(G) and
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w™wj,; € E(G). Because of ww;,, € E(G), by our induction hypothesis,
we have w™wjr; ¢ E(G) for every 1 < 7; < s; — 1. Hence no vertices
in Clwj1,wj,,] are inserted between w and w™. In the same manner, we
can show that no vertices in 'C[wu,'w;‘] are inserted between w and w—.
Thus w and w™ are two consecutive vertices on the path Qwis,, vj]. The
existence of the cycle

Q[w.-,‘., w']w—wj,,Q[wj,, s vg]v.-ngzjva‘ [v_,-, w]ww.-..,‘

contradicts the maximality of C. a

Let w; = wy, for 1 <i < handlet W = {wy, wo, ---, wp}. If h > k, we
let W; = {w;, wi_1, -+, wi—k41} for 1 < i < h, where the subscripts are
taken modulo A.

Lemma 3 If h > maz{4(k —1),2}, then there is an io such that
IN(Wip)l + IN(Wig16)| < [V(G)| - 1.

Proof: It is readily seen that h > max{4(k — 1),2} > 2k. To show the
above inequality, we only need to show that

h
SUNW)| + IN(Werk)]) < RIV(G)),

i=1

which is equivalent to show that

h h
>IN < 5IV(G).
i+1

We define an additive weight function 7 on V(G) such that
T@)=|{i : ze NW)}| and r(A)= ) 7(a)
acV(A)

for every v € V(G) and every subgraph A of G. Clearly, 7(v) = 0 if and
only if v & N(W). Notice that

h

Y ) =) IN(W)I.

'UGV(G) i=1

We will show that ¥,cy(q) 7(v) < 3IV(G)|.
Since N(W)NV(H) = ¢, 7(v) = 0 for each v € V(H). Thus

7(H) =0 1)
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For each v € V(G — CU H), by I of Lemma 2, |[N(v) N W| < 1. Then
7(v) < k. Thus

(G - CUH) <k|V(G - CUH)| )
We will show that
7(C) < SV ®)
Notice that, from (1), (2), and (3), we have
7(G) = 7(C)+r(H)+7(G—-CUH)
< HVEI+HVG-CUH)|

INA

ng(G)I - |V(HE))) < gl"((’”

since h > 2k. Thus we only need to prove (3) to complete the proof.

Since W is an independent vertex set, it is readily seen that the cycle
C is a disjoint union of intervals T = Cf[a,c] with a,ct ¢ N(W) and
C(a,c] C N(W). Notice that C(a,c] = ¢ if @ = c. Such intervals are called
W — segments. To show that 7(C) < %|V(C)|, we only need to prove that
7(T) < #|V(T)| for each W-segment T.

Let T be a W-segment. From I of Lemma 2, there is ¢ such that T C
Clwi,wi4+1). Without loss of generality, we assume that T C Clwn, w:).
By II of Lemma 2,

N(wn), N(wh-1), -+ , N(wz), N(w1)

form consecutive closed subintervals of T' (possibly some of them are empty)
which can only have their endvertices in common. Further, we assume that

T ={a,b1,b2,-¢ ,bs, €1, €2, -, ct, dy, -+ , dr}
such that
e ag N(W),
o {by, - ,b}=¢if [Nwp)NT| L1,

® c; is the last vertex of T', along the orientation of C, adjacent to wy
if [IN(wp)NT| > 2,

o {dy, -, d} =if INw)NT| <1,

® ¢, is the first vertex of T, along the orientation of C, adjacent to w,
if [IN(wy)NT| > 2,
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Notice that {dy, ---, dr} C C[v1, wy] since w; is a non-insertible vertex.
Clearly, [V(T)|=s+t+r+1and

8

ZT(bi) =

i=1
r

> o r(d)

i=1

a
%
IA

I

beud

S

IN
STEC -

Since w;, ws, -+, wy are not insertible vertices and T' C Clwy, wy), it
follows that |N(w;) N Cley,¢]| <1 foreach1 <i<h. For1 <i<¢, let

a;=max{j : qwj € E(G)} and S =min{j : qw; € E(G)}.
Then we have
h>a1 >2p>a2p> - > 2 pe.

By the definition of Wy, Wa, ---, Wh, we have ¢; € N(W;) only if j €
{oi+k—-1,04+k—=2,---, B;}. Hence 7(¢;) < a; — f; + k. Thus

Z'r(c,)<z:(a; B) +tk<Z(a. Bi+1) —t(k—1) < h+t(k—1).

i=1 i=1

If t > 2, then =5 < 4. Then we have

Zv—(c, <h+tk- 1)<h+—l-2—t(k 1)<h+——h<—(t+1)

i=1

Ift=1, 7(c1) < h= %(t +1). Hence, in any case, we have

: h

Z‘r(c;) < E(t +1).

i=1

Thus
T) = Z (b:) + Z'r(c,) + Z‘T(de)
i=1 £=1
h h h
< §(t+ 1)+ P8t oT= §(s+t+r+ 1) = —2-|V(T)|,
which completes our proof of Lemma 3. a
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3 Proofs of Theorems 10 and 12
3.1 Proof of Theorem 10

Let G be a 4(k — 1)-connected nonhamiltonian graph of order n > 3 such
that

INOI+INY) 2
for each pair of two disjoint vertex sets X and Y with |X| = |Y|=k.

If k = 1, the condition d(z) + d(y) > n, for any pair of nonadjacent
vertices, implies that G is a 2-connected graph. If k > 2, 4(k—1) > 2k > 2.
Hence G is a 2-connected graph.

Let C be a maximal cycle of G and H be a connected component of
G - C. Clearly, |Nc(H)| > max{2,4(k — 1)}. Hence by Lemma 3, there
are two disjoint vertex sets Xo and Yp with |Xo| = |Yo| = k such that
IN(Xo)| + IN(Yo)| < |V(G)| - 1, a contradiction. (]

3.2 Proof of Theorem 12

Let G be a (4k—3)-connected graph of order n such that |N(X)|+|N(Y)| >
n -+ 1 for every pair of two disjoint vertex sets X and Y of k vertices. If
k =1, the condition d(z)+d(y) > n+1 for any pair of nonadjacent vertices
implies that G is 3-connected. If k > 2,4k -3 >2k+1>3. Hence Gis a
3-connected graph.

Suppose that, to the contrary, G is not hamiltonian connected. There
exist a pair of vertices zo and yo such that there is no zgyo-path containing
all vertices of G. Let G* be a new graph obtained from G by adding
a new vertex up and two new edges ugzo and ugyp. Clearly, G* is not
hamiltonian. Note that the neighborhood of » in G and the neighborhood
in G* are same for every v € V(G) — {zo,y0}. We use N(v) to denote both
the neighborhood of » in G and the neighborhood of v in G* . In the same
manner, we use N(A) for each A C V(G) — {zo, yo}. Let C be a longest
cycle containing ug in G*. Clearly, C is a maximal cycle in G*. Let H be
a connected component of G* — C and k = max{4(k — 1), 2}. Since G is
an h + 1-connected graph, |[Nc(H)| > h+1. Let {vy, v2, - -+ , vh, Vn41} C
N¢(H) such that ug € C(va+1,v1). Let w; be the first non-insertible vertex
in C(v;, viy1] for 1 < i < h+ 1. Clearly, w; & {uo, zo, yo} for every
1 <1 < h. Denote

W = {wl, wy, *-, w;.} and
W'i = {w‘i) Wi—1, ", w"—k-}-l} for 1 <ig h:

where the subscripts are taken modulo k. By Lemma 3 thereisan 1 < i <
h such that

IN(Wio)l + IN(Wio—s)l < IV(G™)| =1 =mn,
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a contradiction. O
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