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ABSTRACT. A {0,1}-matrix M is tree graphic if there exists a
tree T such that the edges of T are indexed on the rows of M
and the columns are the incidence vectors of the edge sets of
paths of T. Analogously, M is ditree graphic if there exists
a ditree T such that the directed edges of T are indexed on
the rows of M and the columns are the incidence vectors of
the directed-edge sets of dipaths of T'. In this paper, a simple
proof of an excluded-minor characterization of the class of tree-
graphic matrices that are ditree-graphic is given. Then, using
the same proof technique, a characterization of a “special” class
of tree-graphic matrices (which are contained in the class of
consecutive 1's matrices) is stated and proved.

1 Introduction

A standard graph theory reference is Bondy and Murty [1]. Throughout, if
G is a graph, then V(G) denotes its vertex set and E(G) denotes its edge
set. Moreover, for convenience trees and cycles are equated with their edge
sets.

A {0,1}-matrix M is tree graphic if there exists a tree T such that the
edges of T are indexed on the rows of M and the columns are the incidence
vectors of the edge sets of paths of T. If such a tree T exists, then T is a
tree realization for M. (Note that not every path of T' need correspond to
a column of M.) A M-path of T is a path in T, the incidence vector of the
edge set of which is a column of M.
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Next, by replacing edges with directed edges in the above definition, the
class of ditree (ie., directed tree) graphic matrices is defined as follows. A
{0,1}-matrix M is ditree graphic if there exists a ditree T such that the
directed edges of T are indexed on the rows of M and the columns are the
incidence vectors of the directed-edge sets of dipaths of T'. If such a ditree
T exists, then T is a ditree realization for M.

Tree-graphic and ditree-graphic matrices have a wide variety of applica-
tions. For instance, the tree-graphic class arises from topological analysis
of electrical networks and identifying network structures in linear program-
ming problems, and the ditree-tree graphic class arises from satisfiability
in propositional logic, information-storage-retrieval, and network-reliability
problems. Moreover, testing whether a given {0, 1}-matrix is tree (ditree)
graphic and if so, constructing a tree (ditree) realization can be done in
“almost-linear” (in the number of non-zero entries) time. See Bixby and
Wagner [2], and Swaminathan and Wagner [5)], [6], [7] for more details.

A {0,1}-matrix M is a consecutive 1’s matriz, abbreviated C1M, if for
some permutation of its rows and columns, the 1’s in every column are
arranged consecutively. Observe that if M is a C1M, then M is tree (ditree)
graphic and some tree (ditree) realization of M is a path (dipath). In [8],
Tucker gave an excluded-minor characterization of C1Ms. In this paper,
first, a simple proof of an excluded-minor characterization of the class of
tree-graphic matrices that are ditree-graphic is given. Then, using the same
proof technique, Tucker’s characterization [8] when restricted to a “special”
class of tree-graphic matrices that are C1Ms is stated and a short proof is
given.

2 Ditree-Graphic Matrices

A minor of a {0,1}-matrix is a submatrix obtained by deleting subsets
(possibly empty) of its row and column sets. A wheel-matriz, denoted W,
forn > 3, is a n x n {0,1}-matrix having exactly two non-zero entries
in every row and column such that no two rows or columns are identical.
Observe that the wheel-matrix W, for odd n > 3, is tree graphic and is not
ditree graphic. Furthermore, it is interesting to note that for every n > 3,
Wy, is not a C1M and that Tucker’s characterization [8] of C1Ms using a
set of five excluded minors contains W,,.

Theorem 1 below is the first main result of the paper. It was proved by
Bland and Ko [3], and independently by Swaminathan and Wagner in an
unpublished report [5] with extensions to matroids and totally unimodular
matrices. The alternate proof given here is short and simple.

Theorem 1. A tree-graphic matrix M is ditree graphic if and only if M
does not have the wheel-matrix W, for any odd n > 3, as a minor.



Proof: One half of the theorem is easy. In particular, suppose that a tree-
graphic matrix M is ditree graphic. It is easily verified that if M is ditree
graphic, then so is every minor of M, and that no wheel-matrix W,,, for
odd n > 3, is ditree graphic. Thus, M does not have W, for any odd n, as
a minor.

Now consider the other half of the theorem. That is, suppose a given
tree-graphic matrix M has no wheel-matrix Wy, for odd n > 3, as a minor.
Let T be a tree realization of M. For every vertex v of T, define a graph
T(v) as follows. The vertex set of T'(v) is the set of vertices of T that are
adjacent to v by an edge of T; two vertices of T'(v), say u; and ug, are
adjacent in T'(v) if there exists a M-path in T containing the edges u,v
and ugv.

First, consider the case when for some vertex v of T, the graph T'(v) is
non-bipartite. Then, T'(v) has an odd cycle (cdd number of edges) C. Let
u1,... ,ux be the vertex set of C, and let ¢; be the edge of T that joins u;
and v. Without loss of generality, assume u; and u;;, are adjacent in C,
with subscripts taken modulo k. By the definition of T'(v), for each f, there
exists a M-path which contains e; and e;;; (mod k). Now a wheel-matrix
W, for some odd n, is obtained from M by deleting the set of rows that
corresponds to the edges in T' — {ey, ... ,ex}, a contradiction.

Next, consider the case when for each vertex v of T, the graph T'(v)
is bipartite. Then, for each v of T, the vertices of T adjacent to v are
partitioned into two sets. This induces a partition of the edges of T incident
to v such that any two such edges that are in a M-path are in different
members of the partition.

Choose a vertex v of T, and assign directions to the edges of T incident
to v so that all of the edges of one member of the partition are directed
into v and all of the edges of the other member of the partition are directed
out of v. Next choose an edge e € T that is incident to v, and let u be the
other end of e. Now assign directions to the edges of T incident to u in
an analogous manner with the restriction that u and v induce a consistent
direction on e. Continuing this procedure for each vertex of T yields a
direction on all of the edges of 7.

The assignment of directions to the edges of T constructed above proves
T is a ditree realization of M as follows. Consider a M-path P of T. Let e;
and ez be adjacent edges of T in P, and let v be the common end of e; and
e2. Thus, e; and e are in different members of the partition associated
with v. Therefore, by the above construction, one of e; and ej is directed
into v and the other is directed out of ». It follows that P is a dipath, and so
T is a ditree realization of M. That is, M is ditree graphic, as required. O
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A wheel-graph, denoted W,, for n > 3, is a graph with vertex set
{vo,v1,... ,vn} and edge set {ey,...en, f1,... f»} such that e; = vov; and
fi = viviz1 (mod n). A minor of a connected graph G is a subgraph
obtained by deleting a subset and contracting a disjoint subset of E(G).

Let G be a connected graph and T be a spanning tree of G. Then, the pair
(G, T) is a gt-pair. Every edge in E(G)—T induces a unique cycle in G, and
is called a fundamental cycle of (G, T). If M is a tree-graphic matrix and T
is a tree realization of M, then T can be extended to a graph G by adding
a unique edge between the two ends of every M-path of T. Clearly, the
resulting pair (G, T) is a gt-pair, and is referred to as a gi-realization of M.
Observe that every row or column of M corresponds to a unique edge in G.
Therefore, for any n > 3, if the wheel-matrix W,, is a minor of M obtained
by deleting the set of rows I and columns J, then the wheel-graph W,, is a
minor of G obtained by contracting the set of edges of T' corresponding to
I and deleting the set of edges of E(G) — T corresponding to J.

A gt-pair (G, T) is orientable if for some assignment of directions to the
edges of G, every fundamental cycle of (G, T') becomes a dicycle. Since the
proof of Theorem 1 implies that M is ditree graphic (given that M is tree
graphic) if and only if any gt-realization of M is orientable, it follows that
any gt-realization (G, T) of M is orientable if and only if G has no wheel-
graph W,,, for odd n > 3 as a minor, obtained by contracting a subset of
T and deleting a subset of E(G) - T.

Let G = (V, E) be a connected graph and let F be a non-empty subset of
edges. The subgraph of G induced by F is denoted by G’[F] Let {E), Ez}
be a partition of E. For k > 0, the partition {E;, E,} is a k-separation of
Gif|Ey| 2 k < |E2], and |V(G[E1])nV(G[E2])| = k. For a positive integer
n, the graph G is n-connected if it has no k-separation for k < n.

Corollary 2 below is an extension of Theorem 1. It can also be viewed
as a characterization of 2-connected series-parallel graphs (graphs obtained
from two parallel edges on two vertices by subdividing edges with a new
vertex and adding parallel edges, repeatedly). See Purdy and Swaminathan
[4] for a proof and related characterizations of series-parallel graphs.

Corollary 1. For every spanning tree T of a 2-connected graph G, the
gt-pair (G, T) is orientable if and only if G does not have W3 as a minor. O

3 Consecutive 1’s Matrices

An grrow is a tree of four edges with one degree-3 vertex, one degree-2
vertex and three degree-1 vertices. Consider the gt-pair (W, T.;) where W,
is wheel on four vertices and T} is an arrow, and define W4 as a tree-graphic
matrix whose gt-realization is (W, T4) Observe that W is a non-C1M.

A tree-graphic matrix M is 3-connected if the graph G of any gt-realization
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(G,T) of M is 3-connected. In this case, using a theorem of Whitney [9],
it can be shown that (G, T) is unique for M. The details are omitted.
Theorem 3 below is the second and final result of the paper. It is precisely
Tucker’s excluded-minor characterization [8] of C1Ms when restricted to 3-
connected tree-graphic matrices. See Tucker [8] for more details.

Theorem 2. A 3-connected tree-graphic matrix M is a CIM if and only
if M does not have Wy or W,,, for any n > 3, as a minor.

Proof: One half of the theorem is easy. Namely, if M is a C1M, then since
every minor of a C1M is also a C1M and the matrices W, and W,,, for any
n > 3, are not C1Ms, it follows that M does not have Wy and W, as a
minor.

Now consider the other half of the theorem. Assume that M does not
have Wy and W,,, for any n > 3, as a minor. Suppose M is not a C1M.
Let (G,T) be a gt-realization of M. If the degree of every vertex in T is
at most two, then M is a C1M. Therefore, T has at least one vertex whose
degree is at least three and G is not a triangle (cycle of three edges). For
every vertex v of G, define T'(v) as in the proof of Theorem 1. Clearly, T'(v)
has no loops. For some v of G, if T(v) has a cycle having three or more
edges, then as shown in the proof of Theorem 1, every such cycle induces a
wheel-matrix W,,, for some n > 3, as a minor of M, a contradiction. Thus,
for every vertex v of G, either T'(v) has no cycles or every cycle of T'(v) has
exactly two edges.

Since G is 3-connected, every edge of T'(v) is in a cycle. This is seen
as follows. Suppose T'(v) has an edge ujup that is not in any cycle. By
the definition of T'(v), v is adjacent to u; and up, and all the three vertices
v,u3, u2 are in a fundamental cycle C of (G, T). Let ugu, denote the unique
edge in C — T. Then, since every cycle of T'(v) has exactly two edges and
G is not a triangle, G has a 2-separation {E;, E»} such that |Ey| 2 2 <
| E5|, and V(G[E1)) N V(G[E,)) is either {v,us} or {v,u4}, a contradiction.
Thus, every edge of T'(v) is in a cycle.

Pick a degree-3 vertex of T and call it y. Since every edge of T'(y) is in
a cycle and every cycle of T(y) has exactly two edges, it follows that there
are three edges p, q,r incident to y such that each of the pairs p and gq,
and g and r is in at least two distinct fundamental cycles of (G, T'), and
p and r are not in any fundamental cycle of (G,T). Moreover, since G
is not a triangle, if all those edges in E(G) — T each of which induce an
unique fundamental cycle of (G, T) containing the edges p and ¢ (or q and
r) are incident to the same vertex z (say) in G, then G has a 2-separation
{E\, Ep} such that |Ey| > 2 < |E,| and V(G[E{])NV(G[E]) is {y, z}. This
contradicts the hypothesis that G is 3-connected. Therefore, there are at
least two edges in E(G) — T having distinct end vertices such that each of
them induce an unique fundamental cycle of (G, T') containing p and q (or
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q and r). Let a,b € E(G) — T (respectively, c,d € E(G) — T) denote two
such edges, and let C, and C,, (respectively, C. and Cy) denote the unique
fundamental cycles containing both p and q (respectively, q and r). But for
the edges in C,UC,UC.UCy, delete all the edge of G not in T and contract
all the edges of G in T and call the resulting gt-pair (G',T"). It is easy to
verify that T’ has T (arrow) as a minor (w1th y as the degree-3 vertex)
obtained by contracting some of the edges in T”. Therefore, (G',T’) has
(Wa, T3) has a minor. Since (G’,T’) is a minor of (G,T), it follows that
(G, T) has (W, T4) as a minor. This in turn implies that the matrix M has
W4 as a minor, a contradiction to the assumption that M does not have
W, as a minor. o
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