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ABSTRACT. Suppose G and G’ are graphs on the same vertex
set V such that for each £ € V there is an isomorphism 6,
of G —z to G’ — z. We prove in this paper that if there is a
vertex £ € V and an automorphism o of G — z such that 8.
agrees with o on all except for at most three vertices of V — z,
then G is isomorphic to G’. As a corollary we prove that if a
graph G has a vertex which is contained in at most three bad
pairs, then G is reconstructible. Here a pair of vertices z,y of
a graph G is called a bad pair if there exist u,v € V(G) such
that {u,v} # {z,y} and G— {z,y} is isomorphic to G — {u,v}.

All graphs discussed here are finite simple graphs. The vertex set and
edge set of a graph G are denoted by V(G) and E(G) respectively. If A
is a subset of V(G), we use G|A and G — A to denote the subgraphs of G
induced by A and V(G) — A respectively. When A = {z} is a singleton,
we use G — z instead of G — {z}. For two subsets X,Y of V(G), we use
ec(X,Y) to denote the number of edges joining a vertex of X to a vertex of
Y. For brevity, we write eg(z, X) for ec({z}, X) and eg(X) for eg(X, X).
The degree of z in G is denoted by dg(x).

We shall use some notations defined in [4]. Two graphs G and H are
hypomorphic if there exists a bijection f: V(G) — V(H) such that G~z is
isomorphic to H — f(z) for each vertex z of G. Such a mapping f is called a
hypomorphism of G to H. Obviously each isomorphism is a hypomorphism.
The converse is not true. However the well-known reconstruction conjecture
(cf. [3]) asserts that the existence of a hypomorphism of G to H implies
the existence of an isomorphism of G to H. Let f: V(G) — V(H) be a
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hypomorphism; and for each z € V(G), let p;: G —z — H — f(x) be an
isomorphism. Define 8, = f~!p., where mappings are composed from right
to left. The mapping @. is a permutation of V(G) — z, and does not act on
z. We call 8. a partial permutation of V(G).

Note that H—f(z) = f0(G—z),s0 that H = U(H—f(z)) = f(Uz0:(G—
z)). The graph G’ = U.0.(G —xz) is called a hypomorph of G. A hypomorph
G’ of G is actually a graph on the same vertex set V = V(G) which is
hypomorphic to G with identity being a hypomorphism. We note that
G may have many hypomorphs, derived from different hypomorphisms. In
particular G is a hypomorph of itself. If all hypomorphs of G are isomorphic
then we say G is reconstructible.

W.L. Kocay [4] studied some basic properties of these partial permuta-
tions @ as well as the partial automorphisms 6., = 6716,. Some sufficient
conditions in terms of these mappings are given in [4] so that G is isomor-
phic to its hypomorph G’. It was shown in [4] that if there exist distinct
vertices z,y € V(G) such that 8, € Aut(G — z) and 8, € Aut(G — y) then
G is isomorphic to G'.

In this note, we show that if there is a vertex = € V(G) such that 8, is
very “close” to an automorphism of G — z, then G is isomorphic to G’. To
be precise, we will prove the following:

Theorem 1. Suppose G’ is the hypomorph of G defined as above. If for
a vertex z of G, there exists an automorphism o € Aut(G —z) of G —z
which agrees with 6, on all except for at most three vertices of G —z, then
G is isomorphic to G’.

We call an unordered pair of vertices {z, y} of a graph G a bad pairif there
exist u,v € V(G) such that {u,v} # {z,y} and G — {z, y} is isomorphic to
G — {u,v}. It was proved in [2] that if a graph G has a vertex = which is
contained in no bad pairs then G is reconstructible. As a consequence of
Theorem 1, we obtain the following result:

Corollary 1. If G has a vertex which is contained in at most three bad
pairs, then all hypomorphs of G are isomorphic to G and hence G is re-
constrcutible.

Proof: Suppose that G has a vertex z which is contained in at most three

bad pairs. We need to show that any hypomorph G’ of G is isomorphic to
G.

Foreachz € V,let 8.: V —z — V — z be an isomorphism of G — z to
G’ —z. We now show that if 6 (y) # y for some vertex y € V(G — z), then
{z,y} is a bad pair of G. Indeed, let z = 6-(y) and let w = 0;!(z), where
0,: V —z — V —zis an isomorphism of G-z to G’ — 2. Then G —{=z,y} is
isomorphic to G’ — {z, z}, which is isomorphic to G — {z, w}. Since z # z,
and z #y, {z,y} # {2, w}, and hence {z, y} is a bad pair of G.
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Because z is contained in at most three bad pair of G, we have that
0(y) = y for at least |V (G)| —4 vertices y of G —z, i.e., the identity, which
is an automorphism of G —z, agrees with 6 on all except for at most three
vertices of G — z. Therefore G is isomorphic to G’ by Theorem 1.

We now proceed to prove Theorem 1. The following lemma is an easy
consequence of the fact that dg(v) = dgr(v) for all v € V (cf. [1]).

Lemma 1. Suppose ¢ € Aut(G — z) is an automorphism of G — z. If
there is a subset A C V —{z} such that o(A) = 0,(A), then let o(A) = B,
we have eg(z, B) = ec:/(z, B).

Proof: Since o € Aut(G — z) and (A) = B, we obtain eg(B) = ec(A) =
ec'(0z(A)) = eqr(B). Similarly eq(B, (V —z) — B) = e¢+(B, (V —z) — B).

It is clear that eq(B,V) = eq(B) + eq(B,(V — z) — B) + ec(z, B),
and ecl(B, V) = eGr(B) + egl(B, (V - :z:) - B) + eG:(z,B). Also we have
eg(B,V) = ¥ cpdc(v) — ec(B) = X, pde(v) — ec'(B) = ec!(B, V).
Therefore eq(z, B) = ec/(z, B). 0

Corollary 2. If v € V(G —xz) and 0(v) = u = 0;(v), while 0 € Aut(G—xz),
then (z,u) € E(G) if and only if (z,u) € E(G’).

Proof of Theorem 1: Let x € V be a vertex of G and let o € Aut(G —z)
be an automorphism of G — z which agrees with 8, on all except for at
most three vertices. We shall prove that G is isomorphic to G’.

If o(v) = 0(v) for all v € V(G — z) then G and G’ are identical. Indeed,
for any edge (u,v) € E(G) which does not contain z as an end point,
we have (0~'(u),07'(v)) € E(G). Therefore (6z(c™'(w)),0:(c~1(v))) €
E(G’). But 8; = 0, so (u,v) € E(G’). For an edge (z,u) € E(G) which
does contain z as an end point, we have (z,u) € E(G’) by Corollary 2.
Thus G is isomorphic to G’.

Next we consider the case that there are exactly two vertices, say vy, vs,
of G — z, such that o(v;) # 6z(v) (i —1,2). Let u; = o(w;) for i = 1,2.
Then we must have 0,(v1) = up and 6,(v2) = u;. By Lemma |, we have
(z,v) € E(G) if and only if (z, v) € E(G’) for all vertices v € V —z not equal
to uy or up; and eg(z, {u1,u2}) = eg(z, {u1,u2}). If eg(z, {u;, uz}) = 2
or 0, then it is easy to show (similar to the argument in the previous
paragraph) that the mapping g: V — V defined by g =0.0-'onV —z
and g(z) = z is an isomorphism of G to G'.

Thus we assume that e(z, {u1,u2}) = 1. Without loss of generality we
assume that (z,u1) € E(G). If (z,u2) € E(G’) then again the mapping g
defined in the previous paragraph is an isomorphism of G to G’. Thus we
assume that (z,u;) € E(G’). We claim that in this case G is identical to
G, i.e., the identity is an isomorphism of G to G’.

Otherwise there are vertices a,b € V such that (a,b) € E(G) and (a, b) ¢
E(G'). It is easy to verify (similar to the proof of the case o = 6.) that
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G and G’ are identical on V — {u;,u2}, and they are also identical on
{z,u1,u2}. Thus we may assume that o € {u;,uz} and b € V —{z, u;, up}.
Without loss of generality, we can assume that a = u;. (If @ = us then we
have the equivalent of a = u; in G’ and we may interchange the roles of G
and G’). Since G—b is isomorphic to G’ —b, these two graphs have the same
degree sequence. However for all vertices v # u;,u2, we have dg_p(v) =
dg—p(v) (as dg(v) = dgr(v) and (b,v) € E(G) if and only if (b,v) € E(G")).
Therefore we must have {dg_s(u1), de-s(u2)} = {de'—s(u1), de'—s(u2)}.

Since (u1,b) € E(G), we have (¢~ (u1),071(b)) € E(G) and hence
(02071 (w1), 02071 (b)) € E(G'), ie, (u,b) € E(G’). Similarly, (u1,b) ¢
E(G") implies (uz,b) ¢ E(G). Therefore dg(u1) = dg—s(u1) + 1, dg(uz) =
dg-p(u2), dgr(v1) = dgr—p(u1), and der(uz) = der—p(uz) + 1.

As dg(uy) = dcf('u,l), da(’u.g) = dal(’u.z), we conclude that da(ul) =
dc(ug) = dcf(‘ul) = dcl('u,z), which lmpl]es that dc_,.,_.(ul) 75 dgl_z(’uz).
This is a contradiction, as 00! is an isomorphism of G —z to G’ — z
which sends u; to us. Therefore G and G’ are identical.

Finally we consider the case that there are three vertices of G — z, say
v, V2, v3, such that o(v;) # 0:(v;) (i =1,2,3). Without loss of generality,
we may assume that 0,(v,) = o(v2) = up,0z(v2) = o(v3) = v3 and 0,(v3) =
o(v) = uy.

By Lemma 1, (z,v) € E(G) if and only if (z,v) € E(G’) for all ver-
tices v of G — z not equal to u;, uz or us; and eg(z, {u1,uz,u3}) =
egr(z, {u1, u2,us}). If eg(z, {u1,u2,us}) = 3 or 0, then again it is easy
to verify that the mapping g: V — V defined as g =60.0~! on V — z and
g(z) = z is an isomorphism of G to G'.

We now consider the case that eg(z, {u;1,u2,u3}) = 1. The case ec(z,
{u1, u2,us}) = 2 will follow easily by considering the complement graphs.

Without loss of generality, we assume that (z,u;) € E(G). If (z,u2) €
E(G’) then again the mapping g defined above is an isomorphism of G to G’.
We now assume that (z,u2) ¢ E(G’'). Thus we have either (z,u,) € E(G’)
or (x,u3) € E(G’)

Case 1: Suppose (z,u1) € E(G’). We shall show that in this case the map-
ping g which sends u2 to us, sends u3 to up, and fixes every other vertices
of V is an isomorphism of g to G’. Suppose dg(u1) = k+ 1. then it is easy
to see that dG’—z(‘UQ) = da(‘u.z) = d(;_,,('u.s) = da(u:;) =k Let S=V -
{11, u2, uz}. For any vertex u € S, we have {dg_,,(u1), dg_u(u2), dg—u(u3)}
= {dgr—u(u1), de'—u(u2), dg'—u(us)}, because G —u is isomorphic to G’ —u
(hence these two graphs have the same degree sequence), and dg—_,(v) =
dgr—u(v) for all vertices v # uy,u2,u3 (as dg(v) = der(v) and (u,v) € E(G)
if and only if (v,u) € E(G')). This implies that for any vertex u € S, we
have (u;,u) € E(G) if and only if (uy, u) € E(G’). Indeed if (u;,u) ¢ E(G)
and (u;,u) € E(G’), then dg_y(u;) =k +1 and dgr_y(u;) < k forall i =
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1,2,3; and hence {dg_u(u1), do—u(u2), do—u(u3)} # {do'—u(u1), dor—u(u2),
dgr—y(ug)}. Similar contradiction can be derived if (u;,u) € E(G) and
(uv1,u) ¢ E(G').

Recall that 6,07 1(u3) = u; and 0,0~ !(u;) = uy, we conclude that for
any u € S— {z}, (u,us) € E(G) if and only if (u,u;) € E(G’) if and only if
(u,u1) € E(G) if and only if (u,us) € E(G’). Furthermore (z,u3) ¢ E(G)
and (z,u2) ¢ E(G’). Thus for all u € S, we have (u,u3) € E(G) if and
only if (u,u2) € E(G’). To prove that the mapping g defined above is an
isomorphism of G to G’, it remains to show that (u;,u;) € E(G) if and
only if (g(us), 9(u;)) € E(G") for 4,5 € {1,2,3}.

First observe that because G—u, is isomorphic to G'—u;, and dg_y, (u) =
dg'—u, (u) for any u € S, we have {dg_u, (u2), dg'—u, (u3)} = {dg’—u, (u2),
dgr—u, (u3)}-

We now consider two subcases:

Case 1(a): Suppose that (uj,u2) € E(G). Then (ug,u3) € E(G'),
as 007 (u1) = up and 0,07 (uz) = u3. Since dg_,,(u2) = k-1 €
{dgr—u, (v2), dg’—u, (u3)}, we must have (uj,u3) € E(G’) or (uj,u3) €
E(G).

If (u1,u2) € E(G’), then (u;,u3) € E(G), and hence {dg—_y, (u2), dg—u,
(u3)} = {k—1,k—1}. In order that {dg/_u, (u2),dg/—u, (u3)} = {k—1,k~
1}, we must have (u,,us) € E(G’). This implies that (ug,u3) € E(G), and
hence {u;,u2,u3} induces a complete graph in both graphs G and G'.

If (u1,u2) ¢ E(G’) then (u1,us) € E(G'). This implies that (uz,u3) €
E(G) and (u1,u3) ¢ E(G), as 8,0~} is an isomorphism of G to G".

In any case the restriction of g to {u1,u2, us} is an isomorphism.

Case 1(b): Suppose that (uy,up) ¢ E(G). Then (ug,u3) ¢ E(G’).
If (u1,u3) € E(G) then (uj,uz) € E(G'). This implies that (uj,us) ¢
E(G') for otherwise we would have {dg_u, (u2),dG—v, (u3)} = {k,k -1}
and {dg'—u, (u2),dg’—u, (u3)} = {k — 1,k — 1}. Since 0,0~ (u;) = u3 and
6z0~(uz) = uy, we know that (u,u3) ¢ E(G). Thus the restriction of g
to {uy,us,u3} is an isomorphism.

If (u1,u3) ¢ E(G) the (u1,us) ¢ E(G’). This implies that (uj,u3) ¢
E(G'), for otherwise we would nave {dg_., (u2), dg—u, (u3)} = {k, k} and
{de'—u, (u2), dg—u, (u3)} = {k, k—1}. Thus again we have (up, u3) ¢ E(G),
and therefore the restriction of g to {u1,u2,u3} is an isomorphism.

Case 2: Suppose that (z,u3) € E(G’). We shall show that in this case
the mapping g which sends u, to us, sends us to u;, and fixes every other
vertex of V, is an isomorphism of G to G’. The proof is very similar to that
of Case 1 and we omit some details.

Let k = dg_z(u1). Then dg(u1) = dg(u1) = de(uz) =dgr(us) =k +1
and do(uz) = dgy (o) = k.
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Similar to the argument in the proof of Case 1, we can show that for any
vertexu € S = V—{ul,‘ll,g,u;;}, we have {d(;_u('u.l), dg_u(uz), dc_u(‘u,g)} =
{dg'—u(u1),dg'—u(u2), do'—u(u3)}. This implies that for any vertex u € S,
we have (u2,u) € E(G) if and only if (uz,u) € E(G’) (cf. the proof of Case
1).

It remains to show that g restricted to {ui,us,us} is an isomorphism.
Similarly {dG'—uz ('u'l)’ dc—uz (u3)} = {dG'—'uz (ul)v de'—u, (‘u,3)}, because G—
ug is isomorphic to G’ —u2, and dg—, (u) = dgr—y, (u) for any u € S. Again
we consider two subcases:

Case 2(a): Suppose that (ug,u3) € E(G). Then (u;,uz) € E(G').
This implies that (u;,u3) € E(G’) for otherwise {dg—_u,(u1), dg—u,(u3)} #
{d¢'—u,(v1),dc'—u,(u3)}. This then implies that (uy,u3) € E(G), and
hence the restriction of g to {u1,u2,u3} is an isomorphism.

Case 2(b): Suppose that (uz, u3) € E(G). Then (u1,u3) ¢ E(G’). Sim-
ilarly by using the condition that {dg—_u,(u1),dg—u,(u3)} = dgr—u,(u1),
dgi—u,(u3)}, we can show that g restricted to {ui,us,u3} is an isomor-
phism. This completes the proof of Theorem 1.
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