On the bondage number of block graphs

Ulrich Teschner Lehrstuhl II für Mathematik, RWTH Aachen

December 16, 1994

Abstract

Let $\gamma(G)$ be the domination number of a graph G. The bondage number b(G) of a nonempty graph G is the minimum cardinality among all sets of edges X for which $\gamma(G-X) > \gamma(G)$. In this paper we show that $b(G) \leq \Delta(G)$ for any block graph G, and we characterize all block graphs with $b(G) = \Delta(G)$.

1 Introduction

Let G = (V(G), E(G)) be a finite, undirected graph with neither loops nor multiple edges. For $u \in V(G)$ we denote by N(u) the open neighborhood of u. More general we define $N(U) = \bigcup_{u \in U} N(u)$ for a set $U \subseteq V(G)$ and $N[U] = N(U) \cup U$.

A set D of vertices in G is a dominating set if N[D] = V(G). A dominating set of minimum cardinality in G is called a minimum dominating set (MDS), and its cardinality is termed the domination number of G, denoted by $\gamma(G)$.

The bondage number b(G) of a nonempty graph is the minimum cardinality among all sets of edges X for which $\gamma(G-X)>\gamma(G)$ holds. Brigham, Chinn, and Dutton [2] defined a vertex v to be critical if $\gamma(G-v)<\gamma(G)$. A vertex v of a graph G is called a cut vertex of G if G-v has more components than G. A connected graph without cut vertices is called a block. A block of a graph G is a subgraph of G which is itself a block and which is maximal with respect to that property. A block H of G is called an end block of G if G has at most one cut vertex of G. If a block has at least 3 vertices, we call this block a large block. A graph G is called a block graph if each block of G is complete. For graph theory not presented here we follow [4].

In 1990, Fink, Jacobson, Kinch and Roberts [3] introduced the bondage

number, and they proved $b(T) \leq 2$ for every tree T. Two years later Hartnell and Rall [5] characterized all trees with bondage number 2. Further results on the bondage number were published in the articles of Hartnell and Rall [6] and Teschner [7-9]. Results on the bondage number of cactus graphs can be found in Teschner and Volkmann [10]. In the sequel, we will need the following known results.

Proposition 1.1 [1] If there is a vertex $u \in V(G)$ with $\gamma(G-u) \ge \gamma(G)$ (that means, u is not critical), then $b(G) \le deg \ u \le \Delta(G)$.

Proposition 1.2 [2] If G has a nonisolated vertex v such that N(v) is complete, then the neighbors of v are not critical.

Corollary 1.3 If G has a large end block E, then $b(G) \leq |V(E)| - 1 < \Delta(G)$.

Proposition 1.4 [9] Let G be a nonempty graph and $u, v \in V(G)$. Then $b(G) \leq \min \{ deg \ u + deg \ v - 1 \ ; \ d(u, v) \leq 2 \}.$

Proof: If u is adjacent to v, then the result is due to [3]. In the case d(u,v)=2 let w be a vertex adjacent to u and v. Now we remove all edges of G which are incident to u and v, except of the two edges uw and vw. In the resulting graph G', the vertex w is adjacent to the end vertices u and v. Obviously b(G')=1, and hence our hypothesis is valid.

2 The general upper bound

Theorem 2.1 If G is a nontrivial connected block graph, then $b(G) \leq \Delta(G)$.

Proof: If $G = K_n$, then $b(G) = \lceil \frac{n}{2} \rceil \le n - 1 = \Delta(G)$ is immediate. If G has at least two blocks, let E be an end block of G with the cut vertex v, and let $u \in V(E)$ with $u \neq v$. Then N(u) is complete, and by Proposition 1.2 the vertex v is not critical. Hence Proposition 1.1 yields $b(G) \le \Delta(G)$.

That the upper bound of Theorem 2.1 is best possible may be seen by the next result.

Let G be a graph with the vertex set $V(G) := \{v_1, \ldots, v_n\}$. Then the corona $G \circ K_1$ of G and K_1 is the graph with the vertex set $\{v_1, \ldots, v_n\} \cup \{w_1, \ldots, w_n\}$ and the edge set $E(G) \cup \{v_i w_i : 1 \le i \le n\}$.

Theorem 2.2 Let $G = K_n \circ K_1$, then $b(G) = \Delta(G) = n$.

Proof: Assume, there exists a set $X := \{x_1, \ldots, x_{n-1}\} \subseteq E(G)$ such that $\gamma(G - X) > \gamma(G) = n$.

Without loss of generality let $\{x_1,\ldots,x_s\}$ be the end edges of X (where $0 \le s \le n-1$). Furthermore let $\{w_1,\ldots,w_s\} \subseteq V(G)$ be the end vertices incident to $\{x_1,\ldots,x_s\}$, and let $\{w_{s+1},\ldots,w_n\}$ be the remaining end vertices. Finally let $\{v_1,\ldots,v_n\}\subseteq V(G)$ be the neighbors of the vertices $\{w_1,\ldots,w_n\}$. Then we will show that $D:=\{w_1,\ldots,w_s,v_{s+1},\ldots,v_n\}$ dominates G-X.

Obviously D dominates all the vertices w_i in G-X. If $s \ge 1$, assume that one of the vertices v_j (where $j \le s$) is not dominated by D in G-X, say v_1 . That implies that (in G-X) v_1 only is adjacent to vertices v_j (where $j \le s$, $j \ne 1$). Now we count the removed edges: s end edges plus at least n-1-(s-1) edges of the K_n , which is a contradiction to |X|=n-1. Hence D dominates G-X such that $\gamma(G-X) \le n$, a contradiction to the main assumption.

Theorem 2.3 Let G be a block graph with exactly one large block. Then $b(G) = \Delta(G)$ if and only if

1) $G = K_3$ or

2) $G = K_n \circ K_1$ (where n > 3)

Proof: Let Ω be the set of end vertices of G. If $v \in V(G)$ then we denote by c(v) the distance from v to the unique large block of G.

<u>Case 1:</u> If $G = K_n$, then $b(G) = \lceil \frac{n}{2} \rceil$. $\Delta(G) = n - 1$ equals $\lceil \frac{n}{2} \rceil$ if and only if n = 2 or n = 3. Since G must have a large block, the case $G = K_3$ remains. <u>Case 2:</u> Let $\Omega \neq \emptyset$ and c(v) = 1 for all $v \in \Omega$.

If $G = K_n \circ K_1$, then $b(G) = \Delta(G)$ follows from Theorem 2.2. If there exists a vertex adjacent to two end vertices, we obtain b(G) = 1 from Proposition 1.4. In the remaining case there exists a vertex $w \in V(K_n)$ with $N(w) = V(K_n)$. Obviously w is not critical in G. Hence Proposition 1.1 yields $b(G) \leq deg \ w = n - 1 < \Delta(G)$.

<u>Case 3</u>: There exists an $u \in \Omega$ with $c(u) \ge 2$. Now choose a vertex $v \in \Omega$ with $c(v) \ge c(w)$ for all $w \in \Omega$. Let s be the unique neighbor of v. Then there are two possibilities: $deg \ s = 2$ or s is adjacent to at least two end vertices. In each case we obtain $b(G) \le 2$ according to Proposition 1.4.

3 The coalescence

The coalescence of two disjoint graphs G and H, denoted by $G \cdot H$, is obtained by identifying a vertex v_1 of G and a vertex v_2 of H. Thus the identified vertex v becomes a cut vertex of $G \cdot H$.

If v_1 is critical in G and v_2 is critical in H, the coalescence is called simple. If

a property of G and H is also valid for the graph $G \cdot H$ obtained by a simple coalescence, then the property is called hereditary. In this connection we will call the graphs G and H original graphs.

Some of the following results have been shown in [10].

Proposition 3.1 [10] Let $G \cdot H$ be a coalescence where at least one of the identified vertices v_1 and v_2 is critical in its original graph, e.g. a simple coalescence. Then $\gamma(G \cdot H) = \gamma(G) + \gamma(H) - 1$.

Proposition 3.2 [10] The vertex property of being critical is hereditary.

Proposition 3.3 [10] The vertex property of being not critical is hereditary.

Proposition 3.4 [10] Let $G \cdot H$ be any coalescence of G and H such that $\gamma(G \cdot H) = \gamma(G) + \gamma(H) - 1$. Then $b(G \cdot H) \leq \min\{b(G), b(H)\}$.

Lemma 3.5 The property that any critical vertex of a graph remains critical, even after removing t arbitrary edges (where the domination number remains unchanged), is hereditary.

Proof: Let $v_1 \in V(G)$ and $v_2 \in V(H)$ be the identified critical vertices which become the vertex v in $G \cdot H$ (a simple coalescence). Assume there are edges $X := \{x_1, \ldots, x_t\} \subseteq E(G \cdot H)$, so that the vertex w which is critical in $G \cdot H$ is not critical anymore in $G \cdot H - X$, i.e.

$$\gamma(G \cdot H - X - w) \ge \gamma(G \cdot H - X) = \gamma(G \cdot H) > \gamma(G \cdot H - w).$$

By Proposition 3.3 w is critical in its original graph, say G, too, since w is critical in $G \cdot H$. Without loss of generality let $X_1 := \{x_1, \ldots, x_s\} \subseteq E(G)$ and $X_2 := \{x_{s+1}, \ldots, x_t\} \subseteq E(H)$ (where $0 \le s \le t$). By the hypothesis we have $\gamma(G - X_1 - w) < \gamma(G - X_1) = \gamma(G)$ as well as $\gamma(H - X_2 - v_2) < \gamma(H - X_2) = \gamma(H)$. Since

$$\gamma(G \cdot H - X - w) \le \gamma(G - X_1 - w) + \gamma(H - X_2 - v_2) \le$$
$$\gamma(G) - 1 + \gamma(H) - 1 < \gamma(G \cdot H) = \gamma(G \cdot H - X) ,$$

we obtain a contradiction and w is critical in $G \cdot H - X$ as well.

Theorem 3.6 Let G, H be block graphs with $b(G) = \Delta(G) = \Delta(H) = b(H)$ where the property of Lemma 3.5 is valid for $t = \Delta(G) - 2 = \Delta(H) - 2$. And let $G \cdot H$ be a simple coalescence of G and H such that $\Delta(G \cdot H) = \Delta(G) = \Delta(H)$. Then $b(G \cdot H) = \Delta(G \cdot H)$.

Proof: Let $v_1 \in V(G)$ and $v_2 \in V(H)$ be the identified critical vertices which become the vertex v in $G \cdot H$. Proposition 3.4 shows that $b(G \cdot H) \leq \Delta(G) = \Delta(G \cdot H)$. Let $\Delta := \Delta(G \cdot H)$.

Assume that $b(G \cdot H) \leq \Delta - 1$. Let $X := \{x_1, \ldots, x_{\Delta-1}\} \subseteq E(G \cdot H)$ be edges, so that $\gamma(G \cdot H - X) > \gamma(G \cdot H)$.

<u>Case 1:</u> All the edges of X belong to the same original graph, say G.

Since $b(G) = \Delta(G)$, we have $\gamma(G - X) = \gamma(G)$. Let D be a MDS(G - X). Then $|D| = \gamma(G)$, and let $D' \in MDS(H - v_2)$. The set $\tilde{D} := D \cup D'$ dominates $G \cdot H - X$, and \tilde{D} has the cardinality $\gamma(G) + \gamma(H) - 1 = \gamma(G \cdot H)$, a contradiction.

<u>Case 2</u>: The edges $X_1 := \{x_1, \ldots, x_k\}$ belong to G, and the edges $X_2 := \{x_{k+1}, \ldots, x_{\Delta-1}\}$ belong to H (where $1 \le k \le \Delta - 2$).

By the hypothesis the vertex v_1 remains critical in $G-X_1$, since $b(G)=\Delta(G)$ and thus $\gamma(G)=\gamma(G-X_1)$ (the property of Lemma 3.5). Hence there is a $D\in MDS(G-X_1)$ with $v_1\in D$. Analogously v_2 remains critical in $H-X_2$, since $b(H)=\Delta(H)$ and thus $\gamma(H)=\gamma(H-X_2)$ (the same property again). Hence there is a $D'\in MDS(H-X_2)$ with $v_2\in D'$. We have $|D|=\gamma(G)$ and $|D'|=\gamma(H)$. Now $\tilde{D}:=D\cup D'$ dominates $G\cdot H-X$, and D has the cardinality $\gamma(G)+\gamma(H)-1=\gamma(G\cdot H)$, a contradiction again. Hence $b(G\cdot H)=\Delta(G\cdot H)$.

Lemma 3.7 For a block graph $G = K_n \circ K_1$ the property of Lemma 3.5 is valid for $t \leq \Delta(G) - 2 = n - 2$.

Proof: Let $G = K_n \circ K_1$, then by Theorem 2.2 we have $b(G) = \Delta(G) = n$. Exactly the end vertices are the critical vertices of G. Assume that the end vertex w is not critical in the graph G - X (where $X := \{x_1, \ldots, x_{n-2}\} \subseteq E(G)$). Then $\gamma(G - X - w) \ge \gamma(G - X)$, and w can not be isolated in G - X because isolated vertices always are critical. Then Proposition 1.1 yields $b(G - X) \le deg_{G - X}w = 1$, and hence $b(G) \le |X| + 1 = n - 1 < \Delta(G)$, a contradiction. \bullet

Corollary 3.8 Any block graph G obtained by successive simple coalescences of the graphs $K_n \circ K_1$ (where n is arbitrary, but fixed) such that the maximum degree never changes, has the property $b(G) = \Delta(G) = n$.

4 Decomposition

Theorem 4.1 Let $G = (K_n \circ K_1) \cdot H$ be a block graph with $b(G) = \Delta(G)$, and let v be the cut vertex belonging to $K_n \circ K_1$ and H (obtained from identifying an end vertex $v_1 \in V(K_n \circ K_1)$ and a vertex $v_2 \in V(H)$ by an arbitrary coalescence).

Then $b(H) = \Delta(H) = \Delta(G) = n$ and v_2 is critical in H.

Proof: Since the end vertex v_1 is critical in $K_n \circ K_1$ we have $\gamma(G) = \gamma(K_n \circ K_1) + \gamma(H) - 1$ by Proposition 3.1. Then Proposition 3.4 yields $\Delta(G) = b(G) \leq \min\{b(K_n \circ K_1), b(H)\} = \min\{n, b(H)\}.$ $\Delta(G) \geq n$ is obvious because of the structure of G, hence $\Delta(G) = n$.

Assume that $\Delta(H) < n$. Since H is a block graph we would have $b(H) \le \Delta(H) < n$ by Theorem 2.1, and by Proposition 3.4 $\Delta(G) = b(G) \le b(H) < n$, a contradiction. If b(H) < n, we would obtain the same contradiction. Hence $b(H) = \Delta(H) = n$.

Now assume that v_2 is not critical in H, i.e. $\gamma(H - v_2) \ge \gamma(H)$.

Let $w \in V(K_n \circ K_1)$ be the unique neighbor of v_1 in $K_n \circ K_1$, and let $\{w_1, \ldots, w_{n-1}\} \subseteq V(K_n \circ K_1)$ be the remaining neighbors of w. Finally, let $\{x_1, \ldots, x_{n-1}\} \subseteq V(K_n \circ K_1)$ be the end edges incident to $\{w_1, \ldots, w_{n-1}\}$. Then

$$\gamma(G) = \gamma(G - \bigcup_{i=1}^{n-1} x_i) \ge \gamma(H - v_2) + \gamma(K_n \circ K_1) \ge \gamma(H) + \gamma(K_n \circ K_1) > \gamma(G).$$

a contradiction. Thus v_2 must be critical in H, which completes the proof.

5 Characterization

Theorem 5.1 Let G be a connected block graph without large blocks.

Then $b(G) = \Delta(G)$ if and only if

1) $G = K_2$ or

2) $G = P_n$ with $n \equiv 1 \pmod{3}$

Proof: By the hypothesis G is a tree. Then from [3] we know that $b(G) \leq 2$. If $b(G) = \Delta(G) = 1$, then $G = K_2$ is obvious. If $\Delta(G) = 2$, then G is a path. From [3] we know that $b(P_n) = 2$ if and only if $n \equiv 1 \pmod{3}$. Hence the proof is complete.

Theorem 5.2 Let G be a connected block graph with at least one large block.

Then $b(G) = \Delta(G) = m \geq 3$ if and only if G is obtained by successive simple coalescences of the graphs $K_m \circ K_1$ (where $m \geq 3$ is arbitrary, but fixed) such that the maximum degree never changes.

Proof: Let n be the number of large blocks of G. If $b(G) = \Delta(G)$, then we will prove the theorem by induction on n. For n = 1, it follows from Theorem 2.3 that we only obtain a block graph G with $b(G) = \Delta(G) \geq 3$, if $G = K_m \circ K_1$ for arbitrary $m \geq 3$. For $n \geq 2$ we assume that the assertion is valid for n - 1. Since $b(G) = \Delta(G) \geq 3$, we first observe that no vertex is adjacent to two end vertices and that no vertex of degree 2 is

adjacent to an end vertex or to a neighbor of an end vertex. Furthermore, if there is a large end block in G, then Corollary 1.3 yields $b(G) < \Delta(G)$, a contradiction.

Hence each end block is isomorphic to the K_2 . Now let v_0, v_1, \ldots, v_t be a path between two end vertices of G such that the largest possible number of blocks is 'visited'. If B_0 is the end block containing v_0 , then there exists exactly one block B_1 with $V(B_0) \cap V(B_1) = \{v_1\}$. Necessarily B_1 is a complete subgraph K_s (where $s \geq 3$), and Proposition 1.2 yields that v_1 is not critical in G. By Proposition 1.1 $\Delta(G) = b(G) \leq \deg v_1 \leq \Delta(G)$, thus $s = \deg v_1 = \Delta(G) = m$. Now assume that $\deg w < \deg v_1$ for some vertex $w \in V(B_1)$, $w \neq v_1$. Since B_1 is a complete subgraph of G, $\deg w = m-1$, and Proposition 1.4 yields $b(G) \leq \deg v_0 + \deg w - 1 = m-1 < \Delta(G)$, a contradiction. Since $\deg w \leq \Delta(G) = \deg v_1$ is obvious, we have $\deg w = m = \Delta(G)$ for each vertex $w \in V(B_1)$.

Hence G has the form $G = (K_m \circ K_1) \cdot H$, where the coalescence is obtained by identifying the end vertex v_3 of $K_m \circ K_1$ and a vertex u of H. Therefore Theorem 4.1 yields $b(H) = \Delta(H) = \Delta(G) = m$ and u critical in H, so that the coalescence $(K_m \circ K_1) \cdot H$ is simple as required. Since H is a connected block graph with $n-1 \geq 1$ large blocks, we deduce from the induction hypothesis that H has the desired form.

For the opposite direction we have $b(K_m \circ K_1) = \Delta(K_m \circ K_1) = m$ for $m \geq 3$ from Theorem 2.3. Now Proposition 3.2 and Corollary 3.8 yield $b(G) = \Delta(G) = m. \bullet$

Acknowledgement

I am grateful to Professor L.Volkmann for his valuable suggestions.

References

- [1] D.Bauer, F.Harary, J.Nieminen and C.L.Suffel, Domination alteration sets in graphs, Discrete Math. 47 (1983), 153-161.
- [2] R.C.Brigham, P.Chinn and R.D.Dutton, Vertex domination-critical graphs, Networks 18 (1988), 173-179.
- [3] J.F.Fink, M.S.Jacobson, L.F.Kinch and J.Roberts, The bondage number of a graph, Discrete Math. 86 (1990), 47-57.
- [4] F.Harary, Graph Theory, (Addison-Wesley, Reading, 1969).

- [5] B.L.Hartnell and D.F.Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combinatoria 33 (1992), 65-76.
- [6] B.L.Hartnell and D.F.Rall, Bounds on the bondage number of a graph, Discrete Math. 128 (1994), 173-177.
- [7] U.Teschner, A counterexample to a conjecture on the bondage number of a graph, Discrete Math. 122 (1993), 393-395.
- [8] U.Teschner, The bondage number of a graph G can be much greater than $\Delta(G)$, Ars Combinatoria, to appear.
- [9] U.Teschner, New results about the bondage number of a graph, submitted.
- [10] U.Teschner and L.Volkmann, On the bondage number of cactus graphs, submitted.