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Abstract
Let 7(G) be the domination number of a graph G. The bondage
number 5(G) of a nonempty graph G is the minimum cardinality
among all sets of edges X for which v(G - X) > ¥(G).
In this paper we show that b(G) < A(G) for any block graph G, and
we characterize all block graphs with ¥(G) = A(G).

1 Introduction

Let G = (V(G), E(G)) be a finite, undirected graph with neither loops nor
multiple edges. For u € V(G) we denote by N(u) the open neighborhood
of u. More general we define N(U) = Uuer N(u) for a set U C V(G) and
N[Ul=NU)UU.

A set D of vertices in G is a dominating set if N[D] = V(G). A domi-
nating set of minimum cardinality in G is called a minimum dominating
set (M DS), and its cardinality is termed the domination number of G,
denoted by ¥(G).

The bondage number §(G) of a nonempty graph is the minitnum cardinal-
ity among all sets of edges X for which v(G — X) > 7(G) holds. Brigham,
Chinn, and Dutton [2] defined a vertex v to be critical if 7(G — v) < 7(G).
A vertex v of a graph G is called a cut vertex of G if G — v has more
components than G. A connected graph without cut vertices is called a
block. A block of a graph G is a subgraph of G which is itself a block and
which is maximal with respect to that property. A block H of G is called
an end block of G if # has at most one cut vertex of ;. If a block has
at least 3 vertices, we call this block a large block. A graph ¢ is called a
block graph if each block of G is complete. For graph theory not presented
here we follow [4].

In 1990, Fink, Jacobson, Kinch and Roberts [3] introduced the bondage
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number, and they proved b(T') < 2 for every tree 1. Two years later Hart-
nell and Rall [5] characterized all trees with bondage number 2. Further
results on the bondage number were published in the articles of Hartnell
and Rall [6] and Teschner [7-9]. Results on the bondage number of cactus
graphs can be found in Teschner and Volkmann [10].

In the sequel, we will need the following known results.

Proposition 1.1 [I] If therc is a vertex u € V(G) with (G —u) > ¥(G)
(that means, u is not critical), then b(G) < deg u < A(G).

Proposition 1.2 [2] If G has a nonisolated verlex v such that N(v) is
complele, then lhe neighbors of v are not crilical.

Corollary 1.3 If G has a large end block E, then b(G) < [V(E)| -1 <
A(G).

Proposition 1.4 [9] Let G be a nonempty graph and u, v € V(G). Then
b(G) < min {deg u+ deg v—1; d(u,v) <2}.

Proof: If u is adjacent to v, then the result is due to [3]. In the case
d(u,v) = 2 let w be a vertex adjacent to u and v. Now we remove all edges
of G which are incident to u and v, except of the two edges uw and vw. In
the resulting graph G’, the vertex w is adjacent to the end vertices u and
v. Obviously b(G’) = 1, and hence our hypothesis is valid.e

2 The general upper bound

Theorem 2.1 If G is a nonirivial connected block graph, then b(G) <
A(G).

Proof: I G = Ky, then 8(G) = [5] < n— 1 = A(G) is immediate. If G
has at least two blocks, let £ be an end block of & with the cut vertex v,
and let u € V(E) with u # v. Then N(u) is complete, and by Proposition
1.2 the vertex v is not critical. Hence Proposition 1.1 yields b(G) < A(G).
[ ]

That the upper bound of Theorem 2.1 is best possible may be seen by the
next result.

Let G be a graph with the vertex set V(G) := {v1,...,va}. Then the
corona G o K| of G and K is the graph with the vertex set {v),...,v,}U
{wi,...,wn} and the edge set E(G)U {viw; ; 1 <i<n}.

Theorem 2.2 Let G = K, o K3, then b(G) = A(G) = n.
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Proof: Assume, there exists a set X = {z,.. ., Zn—1} C E(G) such that
WG - X)>9(G) =n.

Without loss of generality let {z;....,z,} be the end edges of X (where
0 < s < n-1). Furthermore let {w;,...,w,} C V(G) be the end ver-
tices incident to {w1,...,z,}, and let {weyy,..., Wy, } be the remaining end
vertices. Finally let {v,...,v,} C V(G) be the neighbors of the vertices
{wi,...,wn}. Then we will show that D := {w1,.. ., w5, Vs41,...,v,}
dominates & — X.

Obviously 1) dominates all the vertices w; in ¢ — X. If s > 1, assume that
one of the vertices v; (where j < s) is not dominated by D in G — X, say
v1. That implies that (in G — X)) v; only is adjacent to vertices vj (where
J <5, j#1). Now we count the removed edges: s end edges plus at least
n—1—(s—1) edges of the K,, which is a contradiction to |X|=n-1.
Hence D dominates G — X such that 4(G — X) < n, a contradiction to the
main assumption.e

Theorem 2.3 Let (& be a block graph with exactly one large block. Then
b(G) = A(G) if and only if

1)G=K;3 or

2) G =K,oK; (where n>3)

Proof: Let Q be the set of end vertices of G. If v € V(G) then we denote
by ¢(v) the distance from v to the unique large block of G.

Case 1 : Il G = Ky, then b(G) = [2]. A(G) = n —1 equals [2] if and
only if n = 2 or n = 3. Since G must have a large block, the case G = A3
remains. Case 2: Let Q # 0 and ¢(v) =1 for all v € Q.

If G = R, o R}, then §(G) = A(G) follows from Theorem 2.2. If there
exists a vertex adjacent to two end vertices, we obtain 6(G) = 1 from
Proposition 1.4. In the remaining case there exists a vertex w € V(K,)
with N(w) = V(K,). Obviously w is not critical in G. Hence Proposition
1.1 yields 8(G) < deg w =n — 1 < A(G).

Case 3 : There exists an v € Q with ¢(u) > 2. Now choose a vertex v € Q2
with ¢(v) > e(w) for all w € Q. Let s be the unique neighbor of v. Then
there are two possibilities: deg s = 2 or s is adjacent to at least two end
vertices. In each case we obtain 8(G) < 2 according to Proposition 1.4.e

3 The coalescence

'The coalescence of two disjoint graphs G and H, denoted by G - H, is
obtained by identifying a vertex v, of G and a vertex vy of H. Thus the
identified vertex v becomes a cut vertex of G- H.

If v; is critical in G and v, is critical in H, the coalescence is called simple. If
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a property of G and H is also valid for the graph G- H obtained by a simple
coalescence, then the property is called hereditary. In this connection we
will call the graphs G and H original graphs.

Some of the following results have been shown in [10}].

Proposition 3.1 [10] Let G-H be a coalescence where at least one of the
identified vertices vy and v is critical in ils original graph, e.g. a simple
coalescence. Then ¥(G - H) = v(G) +v(H) — 1.

Proposition 3.2 [10] The vertez property of being critical is hereditary.

Proposition 3.3 [10] The vertez property of being not critical is hered-
ttary.

Proposition 3.4 [10 ] Let G- H be any coalescence of G and H such
that v(G - H) = v(G) + v(H) — 1. Then (G - H) < min{b(G), b(H)}.

Lemma 3.5 The property that any crilical vertez of a graph remains cril-
ical, even after removing t arbilrary edges (where the domination number
remains unchanged), is heredilary.

Proof: Let vy € V(G) and vy € V(H) be the identified critical vertices
which become the vertex v in G - H (a simple coalescence).

Assume there are edges X := {z1,...,2:} C E(G - H), so that the vertex
w which is critical in G - H is not critical anymore in G- H — X, i.e.

WG H=-X-w)2YG-H-X)=79G-H)>y(G-H-w).

By Proposition 3.3 w is critical in its original graph, say G, too, since w is
critical in G - H. Without loss of generality let X, := {z1,...,z,:} C E(G)
and X3 := {Zs41,--.,21} C E(H) (where 0 < s < t). By the hypothesis
we have (G — X1 — w) < 7(G — X1) = 7(G) as well as y(H — X2 — v2) <
7(H — X2) = 7v(H). Since

VG H=-X-w) <G -X1—w)+v(H - X2—v2) <
1G) - 1+v(H)-1<¥(G-H)=+G - H-X),
we obtain a contradiction and w is critical in G- H — X as well.e

Theorem 3.6 Let G, H be block graphs with b(G) = A(G) = A(H) =
b(H) where the property of Lemma 3.5 is valid fort = A(G)-2 = A(H)-2.
And let G - H be a simple coalescence of G and H such that A(G - H) =
A(G) = A(H). Then b(G-H)= A(G - H).
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Proof: Let vy € V(G) and v € V(H) be the identified critical vertices
which become the vertex v in G- H. Proposition 3.4 shows that 8(G - H) <
A(G)=A(G-H). Let A := A(G - H).

Assume that 6(G- H) < A—1. Let X :={zy,...,za-1} C E(G - H) be
edges, so that (G - H — X) > 9(G - H).

Case 1 : All the edges of X belong to the same original graph, say G.
Since b(G) = A(G), we have v(G — X) = ¥(G). Let D be a MDS(G - X).
Then |D| = ¥(G), and let D' € MDS(H — v3). The set D := DU D'
dominates G-H — X, and D has the cardinality v(G)+v(H)—1 = v(G- H),
a contradiction.

Case 2 : The edges X := {zi,...,zr} belong to G, and the edges X, :=
{Zk+1,.-.,2a—1} belong to H (where 1 <k <A -2).

By the hypothesis the vertex v; remains critical in G — X, since §(G) =
A(G) and thus v(G) = ¥(G — X1) (the property of Lemma 3.5). Hence
there is a D € M DS(G— Xy) with v; € D. Analogously v, remains critical
in H — Xy, since b(H) = A(H) and thus y(H) = y(H — X3) (the same
property again). Hence there is a D' € MDS(H — X3) with v, € D'. We
have |D| = ¥(G) and || = y(H). Now D := DU D’ dominates G-H— X,
and D has the cardinality 9(G) + y(H) — 1 = (G - H), a contradiction
again. Hence b(G-H)=A(G-H).o

Lemma 3.7 For a block graph G = K, o Ky the property of Lemma 3.5 is
valid for t <A(G)-2=n-2.

Proof: Let G = K, o K, then by Theorem 2.2 we have (G) = A(G) = n.
Exactly the end vertices are the critical vertices of G. Assume that the end
vertex w is not critical in the graph G — X (where X := {z),...,2,-2} C
E(G)). Then y(G—X —w) > ¥(G—X), and w can not be isolated in G— X
because isolated vertices always are critical. Then Proposition 1.1 yields
(G — X) < degg_xw =1, and hence §(G) < | X|+1=n-1< A(G), a
contradiction. e

Corollary 3.8 Any block graph G oblained by successive simple coales-
cences of the graphs K, o Ky (where n is arbitrary, but fized) such thai the
mazimum degree never changes, has the property b(G) = A(G) =n.

4 Decomposition

Theorem 4.1 Let G = (K, 0 K1)- H be a block graph with b(G) = A(G),
and let v be the cut vertezx belonging to K, o Ky and H (obtained from
identifying an end vertez vi € V(K, o K1) and a vertex v € V(H) by an
arbitrary coalescence).

Then b(H) = A(H) = A(G) = n and vy is crilical in H.
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Proof: Since the end vertex v; is critical in &, o Ay we have ¥(G) =
YK, o K1) + v(H) — 1 by Proposition 3.1. Then Proposition 3.4 yiclds
A(G) = (G) < min{b(K, o K1),6(H)} = min{n,b(H)}. A(G) > n is
obvious because of the structure of G, hence A(G) = n.

Assume that A(H) < n. Since H is a block graph we would have b(H) <
A(H) < n by Theorem 2.1, and by Proposition 3.4 A(G) = (G) < b(H) <
n, a contradiction. If b(H) < n, we would obtain the same contradiction.
Hence b(H) = A(H) = n.

Now assume that vs is not critical in H, i.e. y(H — v2) > v(H).

Let w € V(K, o K) be the unique neighbor of vy in K, o K, and let
{wy,...,wn_1} C V(N,0K}) be the remaining neighbors of w. Finally, let
{£1,..., 201} C V(K 0 K1) be the end edges incident to {w;,...,wa_1}.
Then

n-1

1G) = (G- U x;) > v(H—=v2)+y(KnoRy) > y(H)+y(Kno K1) > 1(G) .

i=1

a contradiction. Thus vy must be critical in H, which completes the proof.e

5 Characterization

Theorem 5.1 Let GG be a connected block graph withoul large blocks.
Then b(G) = A(G) if and only if

1)G=Ky or

2) G = P, with n = 1(mod 3)

Proof: By the hypothesis G is a tree. Then from [3] we know that (G) < 2.
If (G) = A(G) = 1, then G = K is obvious. If A(G) = 2, then G is a
path. From [3] we know that b(P,) = 2 if and only if n = 1(mod 3). Hence
the proof is complete.o

Theorem 5.2 Lel G be a connected block graph with at least one large
block.

Then b(G) = A(G) = m > 3 if and only if G is obtained by successive
simple coalescences of the graphs K., o Ky (where m > 3 is arbitrary, bul
fized) such that the mazimum degree never changes.

Proof: Let n be the number of large blocks of G. If 5(G) = A(G), then
we will prove the theorem by induction on n. For n = 1, it follows from
Theorem 2.3 that we only obtain a block graph G with ¥(G) = A(G) > 3,
if G = Km o K, for arbitrary m > 3. For n > 2 we assume that the
assertion is valid for n — 1. Since b(G) = A(G) > 3, we first observe that
no vertex is adjacent to two end vertices and that no vertex of degree 2 is
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adjacent to an end vertex or to a neighbor of an end vertex. Furthermore,
if there is a large end block in G, then Corollary 1.3 yields 5(G) < A(G),
a contradiction.

Hence cach end block is isomorphic to the Ka. Now let vg, vy, ..., v be a
path between two end vertices of (' such that the largest possible number
of blocks is ‘visited’. If By is the end block containing vo, then there exists
exactly one block By with V(By) N V(B;) = {v1}. Necessarily B; is a
complete subgraph K, (where s > 3), and Proposition 1.2 yields that v; is
not critical in G. By Proposition 1.1 A(G) = b(G) < deg vy < A(G), thus
s =deg v = A(G) = m. Now assume that deg w < deg v, for some vertex
w € V(B), w # v;. Since B is a complete subgraph of G, deg w = m—1,
and Proposition 1.4 yields b(G) < deg vo + deg w — 1 = m — 1 < A(G),
a contradiction. Since deg w < A(G) = deg v, is obvious, we have
deg w = m = A(G) for each vertex w € V(B;).

Hence G has the form G = (K,,0K))- I, where the coalescence is obtained
by identifying the end vertex vz of K, o 'y and a vertex u of H. 'L'herefore
Theorem 4.1 yields )(H) = A(H) = A(G) = m and u critical in H, so that
the coalescence (K, o R'y) - H is simnple as required. Since H is a connected
block graph with n — 1 > 1 large blocks, we deduce from the induction
hypothesis that H has the desired form.

For the opposite direction we have b(Ky, o K1) = A(K,, o K1) = m for
m > 3 from Theorem 2.3. Now Proposition 3.2 and Corollary 3.8 yield
(G) = A(G) =m.e

Acknowledgement

I .am grateful to Professor L.Volkmann for his valuable suggestions.

References

[1] D.Bauer, F.Harary, J.Nieminen and C.L.Suffel, Domination alteration
sets in graphs, Discrete Math. 47 (1983), 153-161.

[2] R.C.Brigham, P.Chinn and R.D.Dutton, Vertex domination-critical
graphs, Networks 18 (1988), 173-179.

(3] J.F.Fink, M.S.Jacobson, L.F.Kinch and J.Roberts, The bondage num-
ber of a graph, Discrete Math. 86 (1990), 47-57.

[4] F.Harary, Graph Theory,(Addison-Wesley, Reading, 1969).

31



[5] B.L.Hartnell and D.F.Rall, A characterization of trees in which no edge

is essential to the domination number, Ars Combinatoria 33 (1992),
65-76.

(6] B.L.Hartnell and D.F.Rall, Bounds on the bondage number of a graph,
Discrete Math. 128 (1994), 173-177.

[7] U.Teschner, A counterexample to a conjecture on the bondage number
of a graph, Discrete Math. 122 (1993), 393-395.

[8] U.Teschner, The bondage number of a graph G can be much greater
than A(G), Ars Combinatoria, to appear.

[9] U.Teschner, New results about the bondage number of a graph, sub-
mitted.

[10] U.Teschner and L.Volkmann, On the bondage number of cactus graphs,
submitted.

32



