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ABSTRACT. We report on difficulties in applying traditional
clustering procedures to discrete data. We describe a graph the-
oretical approach in clustering binary vectors where the number
of clusters is not given in advance. New clustering procedures
are combined from several algorithms and heuristics from graph
theory.

1 Introduction

In clustering problems the data are usually represented by vectors from R™
(see, e.g., [1, 2]). A distance function d(z,y) is assumed to be defined for
any z,y € R™. Given a set of vectors from R™, the problem is to partition
it into subsets called clusters under various conditions. Clustering methods
are expected to produce clusters which have the property that vectors from
the same cluster in some sense are “closer” to one another than the vectors
from different clusters. The number of clusters may, but need not be, given
in advance. Sometimes cardinalities of clusters are given or limited by
additional conditions.

We consider clustering of discrete data. A typical example of discrete
data is provided by binary vectors, i.e. elements of B™ where B = {0,1}.
In [5] we have considered clustering into a given number of clusters. In this
paper the number of clusters is not given in advance.

When standard clustering procedures (see, e.g., [1, 2]) are applied to
binary vectors, the resulting clustering usually has a low quality. Among
other things, the clustering is highly dependent of the ordering of vectors
4, 5].
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To avoid these difficulties it seems reasonable to use specific properties of
discrete data and to apply combinatorial, including graph theoretical, tools
in handling the problem. We have developed a number of complex graph
theoretical procedures for clustering binary vectors [4]. These procedures
are described in [5] and in this paper.

Section 2 contains necessary definitions while our clustering procedure is
described in Section 3. Section 4 contains several arguments showing the
inadequacy of standard clustering procedures in clustering discrete data.
The graph theoretical approach is justified in Section 5.

2 Some Definitions

We shall give definitions of some specific graph theory notions. For basic
graph theory terminology see, for example, [9].

The number of coordinates in which n-tuples z,y € B™ differ is called
the Hamming distance between = and y. A hypercube H,, of dimension n is
the graph whose vertex set is B™ and two n-tuples are adjacent if they are
at Hemming distance 1.

For a graph G we define its k-th power G*. The graph G* has the same
vertex set as G and vertices z and y are adjacent in G* if they are at (graph
theoretical) distance at most k in G. For k = 0 the graph G* consists of
isolated vertices. For k = 1 we have G* = G. If X is a subset of the vertex
set of a graph G then G(X) denotes the subgraph of G induced by X.

Let X C B™ be a set of binary vectors (n-tuples) which is to be clustered.
Our procedures for clustering makes use of the graph sequence

HQ(X), Ho(X), H(X), ..., HY(X) ¢y

which is called the basic graph sequence and is denoted by Hn(X).

Note that two vectors z,y € X are at the Hamming distance k if they
are not adjacent in H¥~1(X) and are adjacent in H¥(X). Fori=1,...,n
the graph Hi(X) has all edges from H:~1(X) plus those ones connecting
vectors at Hamming distance i. HS(X) has only isolated vertices while
H}(X) is a complete graph.

Let the vertex set X of a graph G be partitioned into subsets X, X5, ...,
Xm. A condensation of G is a weighted graph on vertices x1,2,...,Tm
(called supervertices) in which z; and z; are connected by an edge if there
is at least one edge between X; and X; in G. Both supervertices and edges
in the condensation carry weights. The weight of the supervertex z; is
equal to |X;| while the weight of the edge between z; and z; is equal to
the number of edges between X; and X;. We consider a condensation as a
multigraph where edge weights are interpreted as edge multiplicities while
supervertices as vertices and supervertex weights are ignored.
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Let A be the adjacency matrix of a (multi-)graph G and let D be a
diagonal matrix with vertex degrees of G on the diagonal. The matrix
C = D - A is called the Kirchhoff (or Laplacian or admittance) matriz of
G. Let py,p2,...,pn (21 = p2 > --+ 2 pn) be eigenvalues of C. We have
Un = 0 and the quantity a(G) = pn—1 is called the algebraic connectivity
of G (see [8] or [6], pp. 265-266).

The algebraic connectivity is known to be a very useful parameter for
describing the “shape” of a graph (see, e.g., [6], p. 266). Indeed, low alge-
braic connectivity shows small connectivity and girth and high diameter,
although such a statement lacks a precise formulation. In the context of
clustering, low algebraic connectivity indicates good clustering properties.

Let Y be a subset of the vertex set X of a graph G. The set of edges
connecting vertices from Y with vertices from X \ Y is called a separating
set. A non-trivial graph, in which every separating set has at least k (k > 0)
edges, is called edge k-connected. A maximal k-connected induced subgraph
of G is called a k-component for any k > 1.

In [10, 11, 12, k-components are recommended as clusters if they do not
contain (k + 1)-components. It was proved in [10, 11] that k-components
in a graph are disjoint sets.

In the clustering procedure, which will be described in the next section,
the following algorithms, described in the literature, will be used.

Algorithm CP. This is an algorithm for finding components of a graph
([14], pp. 398-405). One starts from a graph without edges when each
vertex represents a component. Gradually, we introduce edges of the actual
graph thus uniting two components if the edge added links them.
Algorithm KCP. This is an algorithm for finding k-components in a
graph. The algorithm has been developed by D.W. Matula [10, 11, 12].

3 A clustering procedure

Let X be a set of binary vectors of dimension n. We shall formulate a pro-
cedure for partitioning the set X into clusters. The number of clusters is
not given in advance. It is determined from the data by the clustering pro-
cedure. The procedure contains several variants for some steps or/and op-
tional steps. It is up to the user to select variants he wishes and to compare
results obtained in different ways. The variants can be selected by spec-
ifying some parameters either before the procedure starts or interactively
during the procedure execution which depends on the implementation.
We consider the basic graph sequence (1) and the process of forming
components by Algorithm CP in graphs from this sequence. A component
is created in one of graphs H:(X) by uniting two or more components
from H:1(X). The birth time ¢ of this component is equal to the index
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i of the graph Hi(X) in which it was created. The particular component
can appear in the next several graphs from sequence (1) before it is united
with some other components. The number of graphs from sequence (1) in
which a component appears is the life time v of the component.

Trivially, we have v > 1. However, we are interested in components

whose life times are large. Such components are good candidates for the
clusters. The explanation is as follows.

The birth time ¢ of a component C is, for ¢ > 0, equal to the maximal
Hamming distance between binary vectors represented by the vertices of C.
The sum ¢+ is equal to the minimal Hamming distance between the vectors
represented by vertices of C and the remaining vectors. Therefore the
component C is the better candidate for a cluster the greater the quotient
(t+v)/tis.

Our procedure consists of three parts. In each part some clusters may,
but need not, appear.

1. Let us consider components with v > 1 and greatest quotient (¢+v)/t
and among them those with a minimal number of vertices. We select
one such component C. Let Y be the vertex set of C and let Z =
X \Y. We continue the clustering process by analyzing the basic
graph sequence H,(Z).

If there are no components with a long life time, we cannot extract
clusters in the above sense and we would try to partition the vertex
set according to other criteria.

2. Suppose that the life time of any components is equal to 1. Now
we are interested in components which have been created by uniting
a big number of components from the previous level in a complex
manner. The following parameters and their various combinations
(which depend on the user) can be used in formulating criteria for
the selection of a component for a cluster:

(i) the number of components from which the components has been
created;

(ii) the number of edges by which the earlier components are inter-
connected;

(iii) edge connectivity of the component.
(iv) the birth time of the component.

If there are no ways to extract further clusters on the basis of these
parameters, then the rest of the vertices is considered as one cluster.

3. The clusters obtained in the way described in 1. or 2. can be option-
ally split further with the following procedure.
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Each of the clusters W obtained is represented by the first graph in
the graph sequence H:(W) (i = 0,1,...,n) which is connected. We
form the condensation of Hi(W) with supervertices corresponding
to components of Hi~}(W). Using the ratio a of the algebraic con-
nectivity and the number of vertices we test each cluster (i.e. the
corresponding condensation) to determine its suitability for further
partitioning. If « is below a value given in advance by the user, we
split this cluster using the algorithms KCP for finding k-components.
The k-components obtained by KCP are taken as clusters (if they do
not contain (k + 1)-components).

4 Inadequacy of the standard clustering algorithms in clustering
discrete data

As stated in [5], both theoretical considerations and experiments on a com-
puter have indicated the inadequacy of standard clustering methods for
handling binary vectors. For example, in hierarchical methods (e.g. sin-
gle or complete linkage) at each step there are usually very many pairs of
clusters which are equally good candidates to be united. Hence, we can get
very different clusterings depending of the original ordering of vectors, if
this ordering determines the choice.

Concerning computer experiments, we used the system PARIS (3] for
standard clustering techniques and the system GRAPH (7] as well as some
newly developed software [13] for graph theoretical techniques.

The distances between binary vectors (the Hamming distance and other
distances) of a given dimension belong to a finite set. If the number of
vectors is big we come across many pairs of vectors with the same distance
between the vectors in a pair. If we have n binary vectors of dimension
m, then the possible values of the Hamming distance between these vectors
belong to the set {1,2,...,m}. An average number of pairs with the same
distance between the vectors from the pair is (3)/m = n(n — 1)/2m. For
example, if we have to cluster 1000 binary vectors of dimension 1000 (i.e.
n = m = 1000), the average number of pairs with the same distance is
equal to 999/2 = 500.

Both hierarchical and non-hierarchical clustering methods encounter dif-
ficulties in such a situation.

In hierarchical methods we unite at each step two temporary clusters ac-
cording to some rules which include the definition of the distance between
temporary clusters. The set of possible distances between the clusters is
again finite and we can expect a big average number of pairs of clusters at
the same distance. Hence, we may have a big choice of equally good alter-
natives for uniting the temporary clusters, as already mentioned. Hence,
the final clustering is highly dependent of the concrete choice in particu-
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lar steps. Below we quote some examples and theorems supporting these
statements.

In non-hierarchical clustering methods, alternatives in step selection can
arise in the following ways:

1. The choice of the initial cluster centres depends on a random gener-
ator or, equivalently, on the order of input vectors. (Note that this
fact is not characteristic only for discrete data; it appears in clustering
real vectors, as well).

2. In assigning vectors to clusters according to their distances from the
centres of temporary clusters, we often come across the situation that
a vector is at the same (minimal) distance from several cluster centres.

3. When determining new cluster centres we have to round the coordi-
nates to 0 or 1. However, it can occur very frequently that the value
of a coordinate of a new cluster center is equal exactly to 1/2. Hence,
we have two equally valid possibilities of rounding.

The problem of multiple choice of alternatives in each step of clustering
procedures, as described in both hierarchical and non-hierarchical clustering
methods, is called the problem of choice.

The above analysis shows the inadequacy of standard clustering methods
when they are applied to discrete data. Namely, we see that in discrete
data we get a great number of possible solutions of the clustering problem
depending on the decision in each concrete step of the algorithm. This fact
sometimes becomes drastic and makes the clustering procedure unreliable,
i.e., practically, useless.

We shall illustrate these ideas with some examples.

We start with the single linkage method, the Hamming distance and the
clustering into two clusters. This is perhaps the worst combination. We
shall see that under some conditions and limitations we can get as a solution
any partition of the data into two parts.

We shall prove this statement for the following variant of the single link-
age method. Binary vectors, which are to be clustered, are labeled by
1,2,...,n. They represent initial clusters. If clusters i and j (i < j) are
united, the new cluster gets the number ¢ while cluster labels greater than
J become smaller by 1. Clusters at the minimal mutual distance are united.
If there are several cluster pairs at a minimal distance, those are united in
which the difference of labels is minimal and if there are several such cluster
pairs we chose those with minimal labels.

Theorem. Let G be a connected graph. Let {X;, X3} be a partition of
the vertex set X such that subgraphs G, and G, induced by X; and X,
respectively, are connected. Suppose there exists a vertex z in Xo which is
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adjacent to no vertex from X;. Let the single linkage method, as described
above, be applied to X in order to get a partition into two clusters. The
length of a path is the number of edges in the path. The distance between
two vertices x and y of X is defined to be the length of the shortest path
joining z and y. Then there exists a labelling of X such that the single
linkage method yields the partition {X1, X2}.

Proof: Since graph G, is connected, we can label its vertices in such a
way that each vertex, except for the first one, is adjacent to a vertex with
a smaller label. Such a labelling of G; is extended by the labelling of Ga.
Let z be the next vertex. Further, we assign labels to vertices of G2 in such
a way that each vertex is adjacent to a vertex of G, with a smaller label.
This is possible since G» is connected. Now it is easy to see that the single
linkage yields the partition {X;, X2}.
This completes the proof.

Suppose now that we modify the single linkage method in such a way
that always clusters with minimal indices (among those with a minimal
distance) are united. When clustering vertices of a connected graph into
two clusters, we would get a cluster containing all but one vertex and the
other cluster with a single vertex.

The complete linkage method is a little better than the single linkage.
Nevertheless, the problem of choice appears also in complete linkage. Con-
sider, as an example, the graph in Figure 1 (we assume that the distance
between vertices is the usual graph theoretical distance as given in the
above theorem) which has a natural bipartition (one hexagon belongs to
one cluster, the other hexagon goes to the other cluster). However, if we
label the vertices as in Figure 1, the complete linkage will yield the biparti-
tion shown in Figure 1 by a broken line. The numbers associated to edges
show the order in which the complete linkage method includes them. It is
not difficult to find the labelling yielding the two hexagons as clusters.
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Another example in which the complete linkage method yields several
different solutions is shown in Figure 2.

Figure 2

Beside these theoretical explanations, we used the system PARIS [3] for
making experiments with standard clustering techniques which are imple-
mented within this system. All standard algorithms showed a sensitivity
to the order of binary vectors.

5 Graph theoretical approach

The insufficiency of standard clustering algorithms in clustering discrete
data could be perhaps eliminated by further development. However, a
successful solution of the problem of choice requires the consideration of all
alternatives in each step (i.e. backtracking) or the introduction of additional
criteria for closing a single alternative or a narrow class of alternatives.
Criteria for the choice of alternatives obviously should depend of global
properties of the set of binary vectors under clustering and not only on
local properties such as the distance between temporary clusters. Global
properties in question should not depend on the order of binary vectors i.e.
they must be invariant under a permutation of vectors.

Since the set of binary vectors is very suitably presented by a graph
and since the theory of graphs considers exactly those properties of graphs
which are invariant under permutations (relabelling) of vertices, it turns out
that the theory of graphs is just the mathematical tool which is suitable
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for problems of clustering discrete structures. Clustering results obtained
by the theory of graphs are, in principle, unique, i.e. not sensitive to the
relabelling of vertices. For example, a good graph theoretical procedure
should always cluster the data presented in Figure 1 into two hexagons
(when the clusters are required) independently of the labelling of vertices
(vectors). In this way, by introducing the theory of graphs we solve the
problem of choice.

Nevertheless, in some cases graph theoretical techniques can yield sev-
eral solutions. However, this is not caused by the insufficiency of these
techniques; it is the result of some characteristics of particular clustering
problems. We quote some cases in which we do not get unique solutions:

1. The data set can have some symmetry properties. This is reflected in
the richness of the automorphism group of the correspondary graph.
If a solution of the clustering problem is optimal in some sense, then
another optimal solution is obtained by an automorphic mapping.
(For example, any bipartition with the given cardinalitics of the parts
of a complete graph is optimal, in this case by any optimality crite-
rion).

2. Even if the data set lacks any symmetry, there might exist several
optimal solutions.

3. If a graph theoretically formulated clustering problem is solved by a
heuristic, the suboptimal solution obtained can depend on the mech-
anism of the heuristic (for example, on a random number generator
or on some intervention of the user).

Concerning 3., note that the standard clustering method can be realized
as heuristics but, for the case of discrete data, as bad ones having in view
the problem of choice.

A direct comparison of the efficiency of the standard and graph theoret-
ical clustering procedures in clustering discrete data is not suitable since
these two groups of procedures have different goals. While the standard
clustering procedures ignore the problem of choice (or treat it inadequately),
graph theoretical clustering procedures solve this problem by imposing ad-
ditional optimality criteria. Therefore one can expect higher running times
in the second group of procedures but, of course, with better solutions.
However, well selected graph theoretical procedures can compete in the
time complexity with the standard procedures. Without going into details,
most of the standard procedures have the running times of the order of the
third power of the cardinality of the data set. The same complexity has, for
example, the procedure for clustering binary vectors into a given number
of clusters, described in [5].
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