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ABSTRACT. Let G be a connected graph of order n and let k£ be
a positive integer with kn even and n > 8k2 4 12k + 6. We show
that if §(G) > k and max{d(u),d(v)} > n/2 for each pair of vertices
u,v at distance two, then G has a k-factor. Thereby a conjecture of
Nishimura is answered in the affirmative.

1. INTRODUCTION

All graphs considered here are simple, that is, undirected without loops
or multiple edges. Let G be a graph of order n = |V(G)|, where V(G)
is the vertex set of G. For a vertex v € V(G) the neighborhood and the
degree in G are denoted by Ng(v) and dg(v), respectively. If no ambiguity
can occur, we write N(v) instead of Ng(v) and d(v) instead of dg(v). The
graph G is k-regular, if d(v) = k for every v € V(G). By §(G) we denote
the minimum degree and we let 02(G) = min{d(u) + d(v)}, where the
minimum is taken over all pairs of nonadjacent vertices u,v € V(G). The
distance, denoted by distg(u, v) or just dist(u, v), between any two vertices
u,v € V(G) is the minimum length of a 4 — v path. A subgraph H of G
with V(H) = V(G) is called a factor of G. If H is a k-regular factor of G,
then H is called a k-factor of G.

Ore [9] showed that every graph G with 2(G) > n > 3 has a hamilton
cycle, and therefore in particular a 2-factor. This degree condition guar-
antees the existence of many other regular factors as the following result
shows.

Theorem 1. (lida, Nishimura [5]) Let G be a graph of order n and let k be
a positive integer with kn even andn > 4k—5. If §(G) > k and 02(G) > n,
then G has a k-factor.
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This theorem improved a minimum degree condition due to Katerinis
[6] and Egawa and Enomoto [3] in the same way as Ore’s result improved
the well-known theorem of Dirac [2].

We will say that a graph G is of Fan type, if every pair of vertices
u,v € V(G) with dist(u,v) = 2 satisfies max{d(u),d(v)} > n/2, since Fan
[4] proved that for 2-connected graphs this degree condition is sufficient for
being hamiltonian. His result generalized Ore’s theorem in two directions;
first, by weakening the degree condition and, second, by restricting the con-
dition only to pairs of vertices at distance two. It was shown by Nishimura
that for k-factors a generalization of Theorem 1 in the first direction is also
possible.

Theorem 2. (Nishimura [8]) Let G be a connected graph of order n and
0(G) > k, where k > 3 is an integer with kn even and n > 4k — 3. If all
nonadjacent vertices u,v € V(G) satisfy

max{dg(u), de(v)} 2 7,
then G has a k-factor.

Moreover, Nishimura conjectured in the same paper that at least in a
weak sense a generalization in both directions is possible.

Conjecture. (8] Let G be a connected graph of order n with §(G) > k,
where k is a positive integer with kn even. If G is of Fan type and if n is
sufficiently large compared to k, then G has a k-factor.

The aim of this paper is to answer this conjecture in the affirmative by the
following theorem.

Theorem 3. Let G be a connected graph of order n with §(G) > k, where
k is a positive integer with kn even and n > 8k2+ 12k + 6. If G is of Fan
type, then G has a k-factor.

2. PRELIMINARY RESULTS

We need some further notation. Let G be a graph and let S C V(G).
For convenience we write dg(S) instead of ) _. 5 dg(z). By G[S] we denote
the subgraph of G induced by S. If u € V(G) — S, then eg(u,S) denotes
the number of edges joining u to a vertexin S. If T C V(G) — S, then we
write eg(T, S) instead of }, 7 ec(u, S). By w(G) we denote the number
of components of G.

Let now D, S C V(G) be disjoint sets. For a positive integer k we call a
component of G—(DUS) an odd component (of G with respect to (D, S, k)),
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if k|V(C)| + ec(C, S) is odd, and by gg(D, S, k) we denote the number of
odd components. Let ©¢(D, S, k) = k|D| - k|S|+ dg-p(S) — g¢(D, S, k).

The following theorem is a special case of Tutte’s f-factor Theorem [11],
which was first proved by Belck [1].

Theorem 4. (k-Factor Theorem) Let G be a graph of order n and let k be
a non-negative integer with kn even. Then the following statements hold.
(39) [11] ©6(D, S, K) is even for any disjoint sets D, S C V(G);

(3) [1], [11] G does not have a k-factor if and only if G has a k-Tutte-pair,
that is a pair of disjoint subsets (D, S) of V(G) with ©g(D, S, k) < —2.

It is easy to see that ©g(D, S, k) cannot be lowered by adding edges to
G, and hence the following holds.

Lemma 5. Let G be a graph and let k be a non-negative integer. Then
Ou(D,S, k) < ©¢(D,S, k) for every factor H of G and all disjoint sets
D,SCV(G). =

Lemma 6. Let G be a graph without k-factor, where k > 2 is an integer.
If G has a (k — 2)-factor, then for every k-Tutte-pair (D, S) of G it holds
S| > |D] + 1.

Proof. Let (D,S) be a k-Tutte-pair of G, that is O¢g(D, S, k) < -2.
Since G has a (k — 2)-factor, we have O¢(D, S,k — 2) > 0 by the k-factor
theorem. With ¢¢(D, S, k) = gg(D, S, k — 2) we obtain

—2 > 0g(D, S, k) — 0a(D, S, k — 2) = 2|D| - 25|,
and thus |S| > |D|+1. =

We call a graph k-mazimal, if it has no k-factor and is edge-maximal with
respect to this property. Clearly, every graph without k-factor is a factor
of a k-maximal graph. A k-Tutte-pair (D, S) of a graph G is called tight,
if ©¢(D, S, k) = -2.

The following theorem is proved in Niessen [7].

Theorem 7. (k-Triple Theorem) Let G be a graph of order n and let k
be an integer with 1 < k < n—1 and kn even. If G is k-mazimal with
§(G) 2 k, then there ezists a triple (D, S,S') of subsets of V(G) with
S'C S and DNS =0 such that the following statements hold.

KO0: (D,S) and (D, S') are tight k-Tutte-pairs of G;

K1: dg_p(z) 2 k+1 for every vertez z € V(G) — (DU S);

K2: eg(z,5) < k=1 for every vertez z € V(G) — (DU S);

K3: |V(C)| > max{3,k+2 —|S|} for every component C of G — (DU S);
K4: dg-p(X) < k|X| -2+ ¢(X) < k|X| -2+ q6(D, S, k) for every
B # X C S, where ¢(X) denotes the number of odd components C of G
with respect to (D, S, k) with Ng(X)NV(C) # 0;
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KS5: the subgraph induced by S’ in G has mazimum degree at most k — 2;
K6: dg(y) =n — 1 for every verter y € D;

K7: every component of G— (DUS) or G— (DUS') is complete;

K8: every component of G— (DUS) or G— (DU S') is an odd component
of G with respect to (D, S, k) or (D, S',k), respectively;

K9: k—1<dg-p(z) <k for every vertezz € S - S5';

K10: for every component C' of G — (DU S') it holds either V(C') =
V(C)U M, where C is a component of G— (DUS) and M C {z€S-5'|
dg-p(z) =k}, or V(C') = {y}, wherey € S— S’ withdg_p(y) =k -1;

K11: ¢¢(D,S',k) = qc(D,S, k) + |{z € S— 5" |dg-p(z) = k - 1}].

Lemma 8. Let G be a connected graph of Fan type. Then it holds
w(G — A) < |A|+1 for every A C V(G).

Proof. The proof is by contradiction. Therefore we suppose that there
exists a set A C V(G) with w(G — 4) > |A| + 2. Let w = w(G — A)
and denote by C;,C>,...,C, the components of G — A. Without loss
of generality we may assume that |V(Cy)| < |V(C2)| < ... < |[V(Cu)I
holds. Since G is connected and w > 2, there exists a vertex z; € V(C;)
with N(z;) N A # @ for every i € {1,2,...,w}. So we can find vertices
zj, 21 € {21,22,...,%j4141} With dist(zj,z;) = 2. Thus at least one of
these vertices, say z;, has degree at least n/2 in G. This yields

3 Sda(z;) < V(C))l -1+ |4l
Therefore, we have for every i € {j,j +1,...,w}

V(Cl 2 5 - 141 +1.

Since j < |A| + 1, we obtain
l1A1+2 n
n> A+ 3 V(G| 2 2|A|+2(§— [l +1) =n+2,
i=1
a contradiction. =

3. PROOF OF THEOREM 3

The proof is by contradiction. We suppose that G is a graph without
k-factor, where G and k satisfy the hypotheses of the theorem and k is
chosen as small as possible.

If k = 1, then it follows from Tutte’s 1-factor Theorem [10] that there
exists a set A C V(G) such that o(G — A) > |A|, where o(G — A) denotes
the number of components of G — A having odd order. Since G is of even
order, it follows that o(G — A) > |A| + 2. This contradicts Lemma 8.

Let now k > 2. We call the vertices of G having degree at least n/2 rich
vertices.
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Our main goal in the first four claims will be to find a k-Tutte-pair
(D, S’') of G such that S’ contains no rich vertex. This enables us to show
in Claim 5 that the number of edges joining vertices of D with vertices of
S’ is relatively small, that is, eg(D, S') < (k- 1)|D|.

G is a factor of a k-maximal graph G,. The graph G, satisfies the hy-
potheses of the k-triple Theorem, and so there exists a triple (D, S, S’)
of subsets of V(G1) = V(G) with DNS = @ and S’ C S such that
the statements K0-K11 hold with respect to G;. By Lemma 5 we obtain
©¢(D,S,k) < O, (D, S, k) and ©g(D, S, k) < O¢,(D,S', k). Therefore,
(D, S) and (D, S") are k-Tutte-pairs of G by KO0.

Next we show that G has a (k — 2)-factor. This is obvious, if ¥ = 2. For
k > 3 it follows by the choice of k, since G and k — 2 satisfy the hypotheses
of the theorem. So, Lemma 6 can be applied to the k-Tutte-pair (D, S’) of
G, and thus

(1) IS1 > 1S'| 2 1P| + 1.
CLam 1. |D| < (n — 4k)/2.
Suppose that |D| > (n — 4k)/2, that is, n — 2|D| < 4k. This yields
(2) IS|-|D|=n-2|D|-|V(G) - (DUS)| < 4k — ¢c(D, S, k).
Since (D, S) is a k-Tutte-pair of G, we have by (2)
dg-p(S) < k|S|-k|D|+q¢c(D,S,k)-2
k(4k - QG(D) S) k)) + QG(Ds S)k) -2
(3) 4k - 2.

Let d = dg-p(S)/|S| (note that |S| > 0 by (1)). By (1), (3) and our
assumption we obtain

_dg_p(S) _ 4k?-2 8k -4 k-1
() =I5 STl Sn-wmizS F
where the last estimation follows from n > 8k2 + 12k + 6.

Let now T' = {z € S | dg-p(z) = 0}. Then it holds dg(z) < |D| < n/2
for every z € T by (1). Since T is an independent set in G and since G is
of Fan type, it follows thereby that the neighborhoods of vertices in T are
disjoint. These neighborhoods are subsets of D and hence

(5) D12 | Nola)| 2 8G)ITI 2 KT,
z€T
Moreover, we obtain |T'| > |S|/k with (4) by

<
<

k-1
—5— 1512 dIS| = de-p(5) 2 IS| - T},
and therefore it holds with (5) |D| > k|T| > |S], contradicting (1).
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CLAM 2. eg(y,S’) < k — 1 for every vertexy € V(G) — (DU S).

Letye V(G)- (DUS'). f y€ V(G) — (DUS), then it holds eg(y, S’) <
ec(y,S) <eg,(v,S) <k—1byK2. Ify¢g V(G)-(DUS), theny e S-9'.
By K9 we have k — 1 < dg,-p(y) < k. So, if dg,-p(y) = k — 1, we have
already eg(y,S') < dg,-p(y) < k— 1. Finally, if dg,—p(y) = k, then y is
in G, adjacent to at least one vertex in V(G) — (DU S) by K10, and so we
have again eg(y,S') < dg,-p(y) —1=k-1.

We call a component of G—(DUS’) a rich component, if it contains a rich
vertex of G. Furthermore, we let p denote the number of rich components.

CLAM 3. Every rich component contains at least n/2—|D|—k+2 vertices,
and p < 3.

Let C be a rich component containing the rich vertex y. By Claim 2 we
obtain

V(C)l 2 da(y) +1—(ID]+ec(v,5"))
(6) > g—+1—|D|—(k-1) = g-|D|-k+2.

This proves the first statement of this claim.

Suppose now that p > 4. Then we obtain with (6) and (1)

n> |D|+|s'|+4(g ~|D| —k+2) > 9n —2|D| — 4k + 9,

and therefore |D| > (n — 4k + 9)/2. This contradicts Claim 1.
CLAIM 4. It holds dg(z) < n/2 for every z € S'.
Let z € §’. Then
Q) dg,-p(z) < k—2+c({z})
by K4, where ¢({z}) denotes the number of odd components C of G with
respect to (D, S, k) such that Ng,(z)NV(C) # 0.

Let now ¢, denote the number of components C of G — (D U S’) with
Ng(z) NV (C) # 0. Note that ¢; < p+1 < 4 by Claim 3, since G is of Fan

type.
Since every component of G; —(DUS’) is an odd component of G; with
respect to (D, S, k) by K8, it follows

¢({z}) — ¢z < dg,-p(z) — dc-p(%).
This yields together with (7) and ¢, < 4

dg-p(z) <dg,-p(z) —c({z})+cz <k—-2+4+c; < k+2
Finally, we obtain with Claim 1 and & > 2
— 4k
dolz) < 1|+ do-p(z) < 251

as required.

n n
k42==-—-k+2< =
+k+ ) + S
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The remainder of the proof can be explained as follows. By (11) we know
that D U S’ separates at least two rich components, say C; and C3, where
we assume without loss of generality that |V(C1)| < |V(C2)|. Thereby it
follows

V(G < 5(n = 1D =15,

and hence we see with (1) that every rich vertex y of C is joined to at
least two vertices of S’ by
+1> -

ec(v,8) 2 5 - (IV(C)| - 1)~ DI 2 >3
Thus, if we let W = {y € V(C1) | dg(y) > n/2}, we obtain with (11)
(12) 2|W[< ec(V(C1),S') < (k+2)|5'].
Our final aim is to obtain a lower bound for |W| and an upper bound for
|S’|, which can be used to show that (12) is impossible.
Let y € W and z € §' N Ng(y) and consider the set (V(Cy1) N Ng(y)) —
Ng(z). The vertices in this set belong to C; and have distance two from

z. Since dg(z) < k +2 < n/2 by (11) and since G is of Fan type, this set
is a subset of W. So, we have with Claim 2 and (11)

W|+|D] > |(V(C1) N Ng(y)) — Ne(z)|+ | D]
[V(C1) N Ng(y)| — de(z) + | D|

dg(y) — (ID| + ec(y, S')) — dg(z) + | D|
g-@-u—@+a=g-u-L

15"l - 1D} 3
2

vV IV IV

(13)
Now it follows with (13), Claim 3 and (9)
n 2 W4 DI+ + V(G| +4a(D, 5, k) -2
> (%-21:—1) +15'+ (§—|D|-k+2) +|D|
n—3k+1+|5,
and hence we have
(14) || < 3k-1.
Thereby it follows with (13) and (1)
W22 -2k-1-|D|2 5 -2k—1-(IS'|-1)2 5 —5k+1.
This yields together with (12) and (14)
n—10k+2<2|W|< (k+2)|S'| < (K +2)(3k - 1),
contradicting n > 8k2 + 12k + 6. m

Remark. Here we would like to discuss the condition n > 8k2+ 12k +6
of Theorem 3. As the proof shows, this condition is not necessary for
k = 1. Moreover, also for k = 2 this condition can be dropped (this follows
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by a simple investigation of graphs with connectivity 1, since otherwise
the result is implied by Fan’s result). For k¥ > 3, Nishimura [8] presented
the graphs Kox-3 + (K3 U (k — 1)K2) and Kak—4 + (K1 U Cok-1), where
+ denotes join, U denotes union, and K, and C, denote the complete
graph and the cycle of order n, respectively. These graphs show that the
condition n > 4k — 3 in Theorem 2 is best possible and also that for k > 3
the condition n > 8k2 + 12k + 6 in Theorem 3 cannot be replaced by a
condition weaker than n > 4k - 3.

Since we expect that Theorem 3 holds with a much smaller bound for
the order, we made no efforts to obtain small improvements of the given
bound.
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