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Abstract

Conditions are given for decomposing K » into edge-disjoint copies of
a bipartite graph G by translating its vertices in the bipartition of the vertices
of K'm,n. A construction of the bipartite adjacency matrix of the d-cube Qq
is given leading to a convenient a-valuation and a proof that K ja-2 45¢-1
can be decomposed into copies of Q4 ford > 1.

1 Cyclic Decomposition of K, ,

In [5] A. Rosa showed that the complete graph K, can be cyclically decom-
posed into edge-disjoint copies of a graph G with n edges if the vertices of G have
a certain numbering, called a p-valuation. If Z,,,, is taken to be the vertex set of
K3541, then the decomposition consists of the iterates of ¢ applied to G (regarded
as a subgraph of K,.1), where ¢ is the graph isomorphism induced by the vertex
permutation ¢ — ¢ + 1 of Z,. The proof depends on the fact that the definition
of a p-valuation guarantees that the lengths |i — j| run from 1 to n as {i, j} runs
through the edges of G.

Consider the complete bipartite graph K, » to have the edge set Z,, x Z,,
and let ¢, , be the map from Z,, x Z, into itself sending (¢, j) into (¢ + r, j + 5).
Since the map ¢ — ¢ + r has order m/ gcd(m, r) on Z,,, the map ¢, ; has order
g = lem(m/ ged(m, ), n/ ged(n, s)). In fact for any edge (%, §) the order of ¢,
is also the minimal & such that ¢’,‘,,(i »J) = (¢, 7), and so each orbit of the map ¢, ,
has exactly ¢ elements.

If a bipartite graph G has exactly one edge in each orbit, then these do not
overlap as ¢, is applied successively, yielding a decomposition of Ky, , into
copies of G. To apply this we need to choose m, n,r, and s so that the number
mn/q of orbits equals the number of edges of G. Since r and s only enter into the
formula for ¢ in ged(r, m) and ged(s, n), we assume that r|m and s|n. Then the
numbser of orbits is mn /lem(m/r, n/s) = ged(ms, nr). The following lemma tells
when two edges fall in the same orbit, thus giving an analog to Rosa’s “length”.
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Lemma 1 Letr|m, s|n, d = ged(r, s), R=r/d, S = s/d, and k = gcd(Sm, Rn).
Define ) : Z X Zpn — Zi X Zg by ¥(3,j) = (St — Rj, |i/ R]). Then (i, j) and
(I, J) are in the same orbit with respect to ¢, s iff ¥(i, j) = v, J).

Proof: First assume that (z, j) and (I, J) are in the same orbit. Then for some
integer ¢

I=i+rt (mod m) 1)
and
J=j+st (modn). (2)
We must prove
SI-RJ=Si—-R; (modk) ?3)
and
lI/R] = |i/R] (mod d). “4)
From (1) and (2)
S(I—1i)=Srt (mod Sm)
and

R(J — j) = Rst (mod Rn).
But Srt = Rst and k divides both moduli, so

S(I -4 =R(J —-j) (mod k),

yielding (3). Also from (1) there exists an integer & such that I = i + rt + mz,
Then

LI/R] = |i/R+rt/R+mz/R| = |i/R| + dt + (m/r)dz,

proving (4).

Now assume that ¥(z, j) = ¥(I, J), so that (3) and (4) hold. Then (3) yields
RJ-75)—-SI-4=0 (mod gcd(Sm, Rn)), so there exist integers x and y
such that

Smz + Rny = R(J — j) — S — ).

Then S(mz + I — i) = R(—ny + J — j), and so R divides mz + I — i. Let
mz + I — i = Ru,s0 —ny + J — j = Su. These equations yield

I=i+Ru (modm)

and
J=3j7+Su (modn),

so to prove (1) and (2) it suffices to show that d divides u. But we have

u = u+|i/R| - |i/R| = |u+i/R] - |i/R] =
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Lem/R)e + I/R| — |i/R] = (m/r)dz + |I/R| — |i/R],
and this is a multiple of d by (4). a

Consider the edges of Ky, t0 be Zp, X Z,,. We say an edge-disjoint decompo-
sition of Ky, into a set T of graphs is 7, s-cyclic in case whenever G and G’ are
in T, then ¢} (G) = G’ for some integer ¢. This is stronger than Rosa’s definition
of cyclic, but necessary to make the theorem that follows if and only if.

Theorem 1 Let G be abipartite graph with vertex bipartition(V), V2) and edge set
E. Suppose that m and n are positive integers and v, and s are integers such that
r|m, s|n, and |E| = gcd(ms, nr), and let d, k, and ) be as in Lemma 1. Then there
exists an r, s-cyclic decomposition of Km n into copies of G if and only if there
exist one-to-one functions Ny and N, from'V, and V into Z,, and Z,,, respectively,
such that the function 8 : E — Zi x Z4 defined by 0(vy, v2) = Y(N1(v1), N2(v2))
is one-to-one.

Proof: First assume that N} and N, exist that make 8 one-to-one. Notice that
since E and Z; x Z4 contain the same number gcd(ms, nr) = dk of elements, if
@ is one-to-one it must also be onto. We consider G as a subgraph of Z,, x Z,, by
identifying the edge {v;,v,} of G with the edge {N,(v1), N2(v2)} of Zp X Z,.
Since @ is one-to-one, by Lemma 1 each edge of G is in a distinct orbit with respect
to ér . Thus applying ¢,,, to the subgraph G lem(m/r, n/s) times gives an r, s-
cyclic decomposition of Z,,, x Z, into copies of G.

Now suppose that K, , (considered to have edge set Z, X Z, ) hasan r, s-
cyclic decomposition into copies of G. Let G* = (V" U V5, E*) be one of the
subgraphs of the decomposition, and let 7 be a graph isomorphism from G to G*
taking V; into V{* and V; into V5. Define N; and N; to be the restrictions of
7 to V; and V3, respectively. We must show that the function & defined in the
theorem is one-to-one. If not, then there are distinct edges e, and e; of G* with
the same image under the function %. Thus by Lemma 1 ¢, and e; are in the same
orbit with respect to the function ¢, ,, and so there exists an integer ¢ such that
¢,‘.’,(el) = e;. Since ¢, has order lem(m/r, n/s) and the decomposition is 7, s-
cyclic, the graphs 4% ,(G*),i = 1, ...,lcm(m/r, n/s) are exactly the edge-disjoint
graphs of the decomposition. They are disjoint because lem(m/r, n/s)|E| = mn.
Thus we must have lem(m/r, n/s)|t, and so e; = e, contrary to the assumption.

a

2 Cubes

The d-dimensional cube is usually defined as the graph Q4 with vertex set Z,
where {z, y} is an edge if and only if = and y differ in a single component. It is
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Figure 1: Bipartite adjacency matices of the first four cubes

bipartite, since every edge joins vertices with odd and even numbers of nonzero
components. A definition more convenient for our purposes is that Q4 is the graph
product of K, with itself d times. This leads to a construction of the bipartite adja-
cency matrix of the cube based on the recursion Qg+ = Q4 x K. The cases with
d =1, 2, 3, and 4 are shown in Figure 1. In fact we define the cube Q4 by the posi-
tions of the 1’s in these adjacency matrices. (This is an abuse of language; properly
the d-cube is the graph with vertex set {ry, r5,...,72¢-1} [ J{c1, €2, ..., €2a-1} with
{ri,c;} an edge iff (1, j) € Qq4.) Namely, let @, = {(1, 1)}, and for d > 1 let

Qan = QalJ@Qa+ 2" 2 ) (G, 20+ 1 - ) 11 < i < 29)

Itis easily proved by induction that Qg is a subset of {1,2, ...,29~'}2 with ¢2¢-!
elements. The next theorem will allow us to compute directly whether an ordered
pair is in Qq. If n is a positive integer, let {(n) = gcd(n, 2™).

Theorem 2 If1 < i,j < 2971, then (3, j) € Qaifand only if |i— | < t(i+j—1).

Proof: The proof will be by induction on d. If d = 1, the statement says (1, 1) €
@, iff 0 < (1), which is true.

Now assume that if 1 < 7,5 < 2%~ then (3, j) € Qy iff |i — j| < t(G+j — 1).
We must prove this with k replaced by & + 1. Assume 1 < 7, j < 2F.

Casel: 1 <i,j <2k,

Then the conclusion is clear since {(7, 7)) € Q41 : 1 < 4,5 < 2571} = Q.
Case 2: 25-! < i, j < 2%,

Then (i, j) € Qua iff (i =251, j — 2~y € Qp iff |i — j| < t(i+j — 1 —2%).
Thus it suffices to show t(i+5—1—2%) = ¢(i+j—1). Note that0 < i+j—1—2*% <
i+j—1< 2 Thusift(i+j—1—2%)=2" and t(i + j — 1) = 2°, we have
r<kands <k Then2|i+j—1-2¥)+2F =i+j— 1,507 < 5, and
2°|i+j~—1)—2F,s0s <r.Thusr = s.

Case3: 1 <i<2F < j<2k,
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i 1 2 3 4 567 8 9 10 11 12 13 14 15 16
Niir) 1 2 4 3 65 7 8 14 15 13 16 11 10 12 9
Nae;) 9 10 12 11 1 4 2 3 7 8 6 5 13 16 14 15

Table 1:

(=>) Suppose (i, ) € Qrs1. Theni+j =25 +1. Thust(i+j — 1) = 1(2¥) = 2%,
and clearly |i — j| < 2.

(<) Suppose |i — j| < t(i+j5 — 1) =2". Clearly r < k. Leti =2¥"! — g,
a>0,andj—1=25"1456>0.Now2'|i+j—1=2F+b—a,s027[b—a.
But2 >|i—jl=j—i=2"1+b+1—-2"4a=a+b+1>|b—a| Thus
a=>b. Theni+j=2%+1andso(ij) € Qrs- 0

We now use our characterization of Q4 in an application of Theorem 1.

Theorem 3 The complete bipartite graph Ko 20 can be decomposed into five
copies of @s.

Proof: We apply Theorem | withm =n=20andr =s=4. Thend =4, R =
S =1, and k = 20. Note that gcd(ms, nr) = 80, which is the number of edges of
Qs. Themap ¥ : Zx X Zag — Zap X Z4 works out to 9(¢, j) = (i— j, 1). Wedefine
the functions N, and N, on the vertex partition {r, 72, ...716} U{c1,¢2,...ci6}
of Qs as in Table 1. To complete the proof it only remains to check that the values
of (N1(r;) — Na(cj), Ni(r;)) are distinct in Zao x Z4 for (4, 7) in Qs, that is for
3 An a-valuation of ()4

Lemma?2 If1 < r < 2% thenr+1t(r) < 2%

Proof: Let2¢ = r + 5, where 0 < s < 29. Then t(s) < 29, and so r + t(r) =
29 54124 —s5) =20 —s+1(s) <29 —s+s5 =24 g

Lemma3 Let2 < k <2% Then|{(i,j) € Qa:i+j=k}| =tk - 1)
Proof: Fix k with 2 < k < 2¢, and suppose i + j = k. Then (i, j) € Qq iff
[<ij<2i7t, )

and
li—jl=12i—k| <tE+5—1)=t(k - 1). (6)
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n 1 234 5 6 7 8 9 10
t(n) 1214 1 2 1 8 1 2
T(n) 013 4 8 9 11 12 20 21
Tn)+n 1 3 6 8 13 15 18 20 29 31
Table 2:
Inequality (6) is equivalent to
k—tk—-1)<2i<k+t(k-1). @))]

Note that both extremes of (7) are odd, the left side is positive, and from Lemma
2 (with » = k — 1) the right side is < 24 + 1. Thus (7) implies 0 < 2i < 29,
and so that i satisfies (5); by symmetry the same goes for j. But the number of 2
satisfying (7) is [k +t(k — 1) — (k = t(k = 1))/2=t(k — 1). a

We define T by T(n) = »_ (). Thus T(n + 1) = T(n) + t(n) forn > 1.
0<i<n
See Table 2. Note that by Lemma 3 we have T(2%) = | Q4| = d24-".

Lemmad If1 < i < 29 then (a) TG) + T2 + 1 — i) = T(2%), and (b) T(3) +
TR+ 1)=TG+2%.

Proof: The proofs of (a) and (b) will be by induction on 7. If i = 1 both parts
hold since T'(1) = 0. Now assume (a) and (b) hold for a particular value of i,
1<i< 2% Then (@) TGE+1)+TQR4+1—(i+1)=TE+t(E)+T2%+1—1i) —
(24 — i) = T(24) by the induction hypothesis and since () = t(2% — 7). Likewise
®) TG+ 1)+ T(24 + 1) = T(@) +1(3) + T4 + 1) = T (i +2%) +1(3) by the induction
hypothesis. But this equals T + 2% + 1) — t(i + 2%) + t(5) = TG + 2¢ + 1) since
1 +29) = (). a

Lemma 5 If(i, j) € Qq, then
2T +2TGY+i+7=2TGE+5— 1)+t(E+j— 1)+ 1. ¢))

Proof: We use induction ond. If d = 1, then i = j = 1 and (8) is easily checked.
Assume the result for d, and let (¢, j) € Qg41, so that 1 < 4,5 < 29,
Casel: 1< i,j <241,
Then (2, ) € Q4 and we can use the induction hypothesis.
Case 2: 29-! < 4,7 < 29,
Then (i — 29-!, j — 29-1) € Qq, so we have

2T(i—29"1)42T(G =2 ) +i+j =29 = 2T (45 —29 —1)+1(i+j =20 = 1)+1 (9)
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by the induction hypothesis. But by Lemma 4(b) we have
TG -2+ TR +1)=TG0),
TG - 24"+ T +1) = T(),

and
TG+j—1-2%+TQ+1)=TG+5 - 1).

Thus (using (9) for the second equality)
2TE) +2T(G) +i+j =2TG - 2% )+ 2T — 24" ) +4TQ " + D+i+j =

W(+j—2¢ = D#t(i+j—20— D+ 1 — G+ —29)+4TQ"  + D+i+j=
2T+ —1)—2TQ%+ 1) +1(i+j — 2% — )+ 1+2¢4 +4T24 " + 1),
Nowl <i+j—20—1<2¢—1,s0t(i+j—2¢—1)=1t(+j—1). Also
T@24+1) = 2¢ +d29-" and T2~ +1) = 24! +(d — 1)242 by the remark before

Lemma 4. Thus
2T+ 2T (Y +i+j =
WG +5— 1) —202% +d2% Y+ ti+j— N+ 1429428 4 (d - 12% =
TGE+7— D +tE+j—1)+1.
Case3:0<i<29l<j<2d0r0<j<24 1 <ig2d,
Then since (z, j) € Qd+1 we have i + j = 2% + 1. Thus

ITE) +2T(G) +i+j = 2TE)+2TQRI+1—-)+2%+1
= 2T(2H+2%+1=2T2% +t(2%) +1
= 2TG+j—D+tGE+j—1)+1,
where the 2nd equality uses Lemma 4(a). a

We define o : Qq — Z* by a(i,7) =T @)+ T(G) +J.

Lemma6 Let2 < k < 29, and let jo = min{j : (3,j) € Qq4,i+j = k}. Then
jo = (k — t(k — 1) + 1)/2. Furthermore, if (i,j) € Qa and i + j = k, then
a(t,j)=Tk—-1)+j—jo+ 1

Proof: By Lemma 3 there are t(k — 1) elements of Qg with ¢ + j = k. By the

construction of Q4 these range consecutively from (¢, jo) to (jo, %), where io+jo =

k. Thus we have ig— jo+1 = k—jo—jo+1 = t(k—1), and s0 2jo = k+1—1(k—1).
For the second statement note that by Lemma 5 we have

20(3,5) = 2T@+2TG)+2j=2TGE+j— D +t@E+j—D+1+j—1
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Q(c;)| 32 30 27 25 20 18 15 13
TGH+511 3 6 8 13 15 18 20
of1 3 = 8 * = x 20
1{2 4 7 * *x x 19 =«
. 3l 6 9 11 *x 18 =«
TG = Qr) 415 % 10 12 17 * x «
8 * =+ 16 21 23 x 28
9« x 15 x 22 24 27 =«
I 14 = x *x 26 29 30
12113 % =+ x 25 * 31 32

Figure 2: An a-valuation of Q4

= 2Ttk —D+ik—D+1+5—12

= 2Tk —D+tk-D+1—-7i—jF+25
= 2Tk—-D+tk—-1D=-1—-k+2j+2
= 2T(k—1)—2jo+2j +2.

Figure 2 illustrates the following theorem for d = 4.

Theorem 4 If we define a 24-! x 24-! array with i, j-entry a(i, j) whenever
(3,7) € Qa, then the entries run consecutively from 1 to d2°~' as j increases
along the diagonals i+ j = 2,3,...,2%

Proof: Note that a(1, 1) = 1. Lemma 3 and the definition of T imply that there

are T'(k — 1) elements of Q)4 in the diagonals i +j =2,3,...,k — 1, and Lemma
6 tells us that the entries with ¢ + j = k start at T'(k — 1) + 1 and increment by 1 as
j does. a

Rosa {5] defines an a-valuation of a graph G with e edges to be a one-to-one
map 2 from its vertex set to {0, 1,..., e} such that (1) {|Q(z) — Q(y)| : {z,¥} an
edge of G} = {1,2,..., e}, and (2) there exists an integer A such that if {z, y} is
an edge of G, then min{Q(z), Q(y)} < A < max{Q(z), Q(y)}. We can see that
Qa has an a-valuation by taking Q(r;) = T'(i) and Q(c;) = d2¢~! + 1 — T(j) — j.
Condition (1) follows from Theorem 4, and it is easily checked that Q(r;) < A <
Q(c;) with A = (d — 1)24-2, The d = 4 case is also illustrated in Figure 2. This
result is not new; Kotzig [3] and Maheo [4] showed that the d-cube has an a-
valuation, and another proof appears in [1, pp. 65-67]. In these proofs the map Q
is defined recursively and is harder to compute than in the above formulation. For
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a fixed d that is not too large the easiest plan is to start with the numbering of the
edges of Q4 guaranteed by Theorem 4, set the label on row | equal to 0, and then
deduce the remaining values of T'(Z) and T'(j) + j (and so Q) from the definition
of a(i, j).

4 Decompositions of K, , into Cubes

The following theorem is proved in [2]; here is a proof using Theorems 1 and 4.

Theorem 5 Ifd > 1 then Kga-1 ga-1 can be decomposed into edge-disjoint
copies of Qa.

Proof: We apply Theorem | withm =n =d24"!,G=Qq4,r=—l,ands = 1.
Then |E| = d24~! = ged(sm, rn). Note that d = ged(r,s) =1, R=—-1,5 =1,
and k = d29-1. Also ¥(i, 5) = (Si— Rj, [{]) = (¢ +4,0)in Z} x Zg sinced = 1.
Take N;(i) = T(?) and Nao(j) = T(j) + j. Then Ny(2) + Na(j) is one-to-one in Zj
on (4 by Theorem 4. a

A slight adjustment of the numbering of the vertices of (24 produces the following
improvement of the last result.

Theorem 6 [fd > 2 then K ga-1 4pa-1 can be decomposed into edge-disjoint
copies of Q.

Proof: We apply Theorem 1 with m = d2%~2,n = d2%~!,G = Qq,7 = —1, and
s = 2. Then |E| = d24~" = gcd(sm, rn). Note that d = ged(r,s) = 1, R = —1,
S =2,and k = d29-1. Also ¥(i,5) = (Si — Rj, [i]) = Qi +4,0)in Z x Z4
since d = 1. Take N1(i) = T(G) and N2(j) = 2(T'(§) + j) — ej, where ¢; is 0 if
j <292 and 1ifj > 2972, Then 2N,(3) + N2(j) = 2a(i, §) — e;. Note that by
Theorem 4 the values of a(i, ) for (¢, j) in Q4 run from 1 to k/2 for e; = 0 and
from k/2 + 1 to k for e; = 1. Thus 2a(i, j) — e; yields exactly all even elements
of Zj, for e; = 0 and all odd for e; = 1, and so Theorem 1 applies. o
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