Decomposition of Complete Bipartite Graphs

Charles Vanden Eynden Illinois State University Normal, Illinois

Abstract

Conditions are given for decomposing $K_{m,n}$ into edge-disjoint copies of a bipartite graph G by translating its vertices in the bipartition of the vertices of $K_{m,n}$. A construction of the bipartite adjacency matrix of the d-cube Q_d is given leading to a convenient α -valuation and a proof that $K_{d2^{d-2},d2^{d-1}}$ can be decomposed into copies of Q_d for d > 1.

1 Cyclic Decomposition of $K_{m,n}$

In [5] A. Rosa showed that the complete graph K_{2n+1} can be cyclically decomposed into edge-disjoint copies of a graph G with n edges if the vertices of G have a certain numbering, called a ρ -valuation. If Z_{2n+1} is taken to be the vertex set of K_{2n+1} , then the decomposition consists of the iterates of ϕ applied to G (regarded as a subgraph of K_{2n+1}), where ϕ is the graph isomorphism induced by the vertex permutation $i \to i+1$ of Z_n . The proof depends on the fact that the definition of a ρ -valuation guarantees that the lengths |i-j| run from 1 to n as $\{i,j\}$ runs through the edges of G.

Consider the complete bipartite graph $K_{m,n}$ to have the edge set $Z_m \times Z_n$, and let $\phi_{r,s}$ be the map from $Z_m \times Z_n$ into itself sending (i,j) into (i+r,j+s). Since the map $i \to i+r$ has order $m/\gcd(m,r)$ on Z_m , the map $\phi_{r,s}$ has order $q = \operatorname{lcm}(m/\gcd(m,r), n/\gcd(n,s))$. In fact for any edge (i,j) the order of $\phi_{r,s}$ is also the minimal k such that $\phi_{r,s}^k(i,j) = (i,j)$, and so each orbit of the map $\phi_{r,s}$ has exactly q elements.

If a bipartite graph G has exactly one edge in each orbit, then these do not overlap as $\phi_{r,s}$ is applied successively, yielding a decomposition of $K_{m,n}$ into copies of G. To apply this we need to choose m, n, r, and s so that the number mn/q of orbits equals the number of edges of G. Since r and s only enter into the formula for q in $\gcd(r, m)$ and $\gcd(s, n)$, we assume that r|m and s|n. Then the number of orbits is $mn/\operatorname{lcm}(m/r, n/s) = \gcd(ms, nr)$. The following lemma tells when two edges fall in the same orbit, thus giving an analog to Rosa's "length".

Lemma 1 Let r|m, s|n, $d = \gcd(r, s)$, R = r/d, S = s/d, and $k = \gcd(Sm, Rn)$. Define $\psi : Z_m \times Z_n \to Z_k \times Z_d$ by $\psi(i, j) = (Si - Rj, \lfloor i/R \rfloor)$. Then (i, j) and (I, J) are in the same orbit with respect to $\phi_{r,s}$ iff $\psi(i, j) = \psi(I, J)$.

Proof: First assume that (i, j) and (I, J) are in the same orbit. Then for some integer t

$$I \equiv i + rt \pmod{m} \tag{1}$$

and

$$J \equiv j + st \pmod{n}. \tag{2}$$

We must prove

$$SI - RJ \equiv Si - Rj \pmod{k}$$
 (3)

and

$$|I/R| \equiv |i/R| \pmod{d}. \tag{4}$$

From (1) and (2)

$$S(I-i) \equiv Srt \pmod{Sm}$$

and

$$R(J-j) \equiv Rst \pmod{Rn}$$
.

But Srt = Rst and k divides both moduli, so

$$S(I-i) \equiv R(J-j) \pmod{k},$$

yielding (3). Also from (1) there exists an integer x such that I = i + rt + mx. Then

$$\lfloor I/R \rfloor = \lfloor i/R + rt/R + mx/R \rfloor = \lfloor i/R \rfloor + dt + (m/r)dx,$$

proving (4).

Now assume that $\psi(i, j) = \psi(I, J)$, so that (3) and (4) hold. Then (3) yields $R(J - j) - S(I - i) \equiv 0 \pmod{\gcd(Sm, Rn)}$, so there exist integers x and y such that

$$Smx + Rny = R(J - j) - S(I - i).$$

Then S(mx + I - i) = R(-ny + J - j), and so R divides mx + I - i. Let mx + I - i = Ru, so -ny + J - j = Su. These equations yield

$$I \equiv i + Ru \pmod{m}$$

and

$$J \equiv j + Su \pmod{n},$$

so to prove (1) and (2) it suffices to show that d divides u. But we have

$$u = u + \lfloor i/R \rfloor - \lfloor i/R \rfloor = \lfloor u + i/R \rfloor - \lfloor i/R \rfloor =$$

$$\lfloor (m/R)x + I/R \rfloor - \lfloor i/R \rfloor = (m/r)dx + \lfloor I/R \rfloor - \lfloor i/R \rfloor,$$

and this is a multiple of d by (4).

Consider the edges of $K_{m,n}$ to be $Z_m \times Z_n$. We say an edge-disjoint decomposition of $K_{m,n}$ into a set Γ of graphs is r, s-cyclic in case whenever G and G' are in Γ , then $\phi^t_{r,s}(G) = G'$ for some integer t. This is stronger than Rosa's definition of cyclic, but necessary to make the theorem that follows if and only if.

Theorem 1 Let G be a bipartite graph with vertex bipartition (V_1, V_2) and edge set E. Suppose that m and n are positive integers and r, and s are integers such that r|m, s|n, and $|E| = \gcd(ms, nr)$, and let d, k, and ψ be as in Lemma 1. Then there exists an r, s-cyclic decomposition of $K_{m,n}$ into copies of G if and only if there exist one-to-one functions N_1 and N_2 from V_1 and V_2 into Z_m and Z_n , respectively, such that the function $\theta: E \to Z_k \times Z_d$ defined by $\theta(v_1, v_2) = \psi(N_1(v_1), N_2(v_2))$ is one-to-one.

Proof: First assume that N_1 and N_2 exist that make θ one-to-one. Notice that since E and $Z_k \times Z_d$ contain the same number $\gcd(ms, nr) = dk$ of elements, if θ is one-to-one it must also be onto. We consider G as a subgraph of $Z_m \times Z_n$ by identifying the edge $\{v_1, v_2\}$ of G with the edge $\{N_1(v_1), N_2(v_2)\}$ of $Z_m \times Z_n$. Since θ is one-to-one, by Lemma 1 each edge of G is in a distinct orbit with respect to $\phi_{r,s}$. Thus applying $\phi_{r,s}$ to the subgraph G lcm(m/r, n/s) times gives an r, s-cyclic decomposition of $Z_m \times Z_n$ into copies of G.

Now suppose that $K_{m,n}$ (considered to have edge set $Z_m \times Z_n$) has an r,s-cyclic decomposition into copies of G. Let $G^* = (V_1^* \cup V_2^*, E^*)$ be one of the subgraphs of the decomposition, and let τ be a graph isomorphism from G to G^* taking V_1 into V_1^* and V_2 into V_2^* . Define N_1 and N_2 to be the restrictions of τ to V_1 and V_2 , respectively. We must show that the function θ defined in the theorem is one-to-one. If not, then there are distinct edges e_1 and e_2 of G^* with the same image under the function ψ . Thus by Lemma 1 e_1 and e_2 are in the same orbit with respect to the function $\phi_{r,s}$, and so there exists an integer t such that $\phi_{r,s}^t(e_1) = e_2$. Since $\phi_{r,s}$ has order $\operatorname{lcm}(m/r, n/s)$ and the decomposition is r, s-cyclic, the graphs $\phi_{r,s}^i(G^*)$, $i=1,\ldots,\operatorname{lcm}(m/r,n/s)$ are exactly the edge-disjoint graphs of the decomposition. They are disjoint because $\operatorname{lcm}(m/r,n/s)|E| = mn$. Thus we must have $\operatorname{lcm}(m/r,n/s)|t$, and so $e_1 = e_2$, contrary to the assumption.

2 Cubes

The d-dimensional cube is usually defined as the graph Q_d with vertex set Z_2^d , where $\{x, y\}$ is an edge if and only if x and y differ in a single component. It is

Figure 1: Bipartite adjacency matices of the first four cubes

bipartite, since every edge joins vertices with odd and even numbers of nonzero components. A definition more convenient for our purposes is that Q_d is the graph product of K_2 with itself d times. This leads to a construction of the bipartite adjacency matrix of the cube based on the recursion $Q_{d+1} = Q_d \times K_2$. The cases with d=1,2,3, and 4 are shown in Figure 1. In fact we define the cube Q_d by the positions of the 1's in these adjacency matrices. (This is an abuse of language; properly the d-cube is the graph with vertex set $\{r_1,r_2,\ldots,r_{2^{d-1}}\}\bigcup\{c_1,c_2,\ldots,c_{2^{d-1}}\}$ with $\{r_i,c_j\}$ an edge iff $(i,j)\in Q_d$.) Namely, let $Q_1=\{(1,1)\}$, and for $d\geq 1$ let

$$Q_{d+1} = Q_d \bigcup (Q_d + (2^{d-1}, 2^{d-1})) \bigcup \big\{ (i, 2^d + 1 - i) : 1 \le i \le 2^d \big\}.$$

It is easily proved by induction that Q_d is a subset of $\{1, 2, ..., 2^{d-1}\}^2$ with $d2^{d-1}$ elements. The next theorem will allow us to compute directly whether an ordered pair is in Q_d . If n is a positive integer, let $t(n) = \gcd(n, 2^n)$.

Theorem 2 If $1 \le i, j \le 2^{d-1}$, then $(i, j) \in Q_d$ if and only if $|i-j| \le t(i+j-1)$.

Proof: The proof will be by induction on d. If d = 1, the statement says $(1, 1) \in Q_1$ iff $0 \le t(1)$, which is true.

Now assume that if $1 \le i, j \le 2^{k-1}$, then $(i, j) \in Q_k$ iff $|i-j| \le t(i+j-1)$. We must prove this with k replaced by k+1. Assume $1 \le i, j \le 2^k$. Case 1: $1 \le i, j \le 2^{k-1}$.

Then the conclusion is clear since $\{(i, j) \in Q_{k+1} : 1 \le i, j \le 2^{k-1}\} = Q_k$. Case 2: $2^{k-1} < i, j < 2^k$.

Then $(i,j) \in Q_{k+1}$ iff $(i-2^{k-1},j-2^{k-1}) \in Q_k$ iff $|i-j| \le t(i+j-1-2^k)$. Thus it suffices to show $t(i+j-1-2^k) = t(i+j-1)$. Note that $0 < i+j-1-2^k < i+j-1 < 2^{k+1}$. Thus if $t(i+j-1-2^k) = 2^r$ and $t(i+j-1) = 2^s$, we have $r \le k$ and $s \le k$. Then $2^r | (i+j-1-2^k) + 2^k = i+j-1$, so $r \le s$, and $2^s | (i+j-1) - 2^k$, so $s \le r$. Thus r = s. Case 3: $1 \le i \le 2^{k-1} < j \le 2^k$.

$$i$$
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 $N_1(r_i)$ 1 2 4 3 6 5 7 8 14 15 13 16 11 10 12 9 $N_2(c_i)$ 9 10 12 11 1 4 2 3 7 8 6 5 13 16 14 15

Table 1:

(⇒) Suppose $(i, j) \in Q_{k+1}$. Then $i+j=2^k+1$. Thus $t(i+j-1)=t(2^k)=2^k$, and clearly $|i-j| \le 2^k$.

(\Leftarrow) Suppose $|i-j| \le t(i+j-1) = 2^r$. Clearly $r \le k$. Let $i = 2^{k-1} - a$, $a \ge 0$, and $j-1=2^{k-1}+b$, $b \ge 0$. Now $2^r|i+j-1=2^k+b-a$, so $2^r|b-a$. But $2^r \ge |i-j| = j-i = 2^{k-1}+b+1-2^{k-1}+a=a+b+1 > |b-a|$. Thus a=b. Then $i+j=2^k+1$ and so $(i,j) \in Q_{k+1}$.

We now use our characterization of Q_d in an application of Theorem 1.

Theorem 3 The complete bipartite graph $K_{20,20}$ can be decomposed into five copies of Q_5 .

Proof: We apply Theorem 1 with m=n=20 and r=s=4. Then d=4, R=S=1, and k=20. Note that $\gcd(ms,nr)=80$, which is the number of edges of Q_5 . The map $\psi: Z_{20} \times Z_{20} \to Z_{20} \times Z_4$ works out to $\psi(i,j)=(i-j,i)$. We define the functions N_1 and N_2 on the vertex partition $\{r_1,r_2,\ldots r_{16}\}\bigcup\{c_1,c_2,\ldots c_{16}\}$ of Q_5 as in Table 1. To complete the proof it only remains to check that the values of $(N_1(r_i)-N_2(c_j),N_1(r_i))$ are distinct in $Z_{20}\times Z_4$ for (i,j) in Q_5 , that is for $|i-j|\leq t(i+j-1), 1\leq i,j\leq 16$.

3 An α -valuation of Q_d

Lemma 2 If $1 \le r < 2^d$, then $r + t(r) \le 2^d$.

Proof: Let $2^d = r + s$, where $0 < s < 2^d$. Then $t(s) < 2^d$, and so $r + t(r) = 2^d - s + t(2^d - s) = 2^d - s + t(s) < 2^d - s + s = 2^d$.

Lemma 3 Let $2 \le k \le 2^d$. Then $|\{(i, j) \in Q_d : i + j = k\}| = t(k - 1)$.

Proof: Fix k with $2 \le k \le 2^d$, and suppose i + j = k. Then $(i, j) \in Q_d$ iff

$$1 \le i, j \le 2^{d-1},\tag{5}$$

and

$$|i-j| = |2i-k| \le t(i+j-1) = t(k-1). \tag{6}$$

Table 2:

Inequality (6) is equivalent to

$$k - t(k-1) \le 2i \le k + t(k-1).$$
 (7)

Note that both extremes of (7) are odd, the left side is positive, and from Lemma 2 (with r = k - 1) the right side is $\leq 2^d + 1$. Thus (7) implies $0 < 2i \leq 2^d$, and so that i satisfies (5); by symmetry the same goes for j. But the number of i satisfying (7) is [k + t(k - 1) - (k - t(k - 1))]/2 = t(k - 1).

We define T by $T(n) = \sum_{0 \le i \le n} t(i)$. Thus T(n+1) = T(n) + t(n) for $n \ge 1$.

See Table 2. Note that by Lemma 3 we have $T(2^d) = |Q_d| = d2^{d-1}$.

Lemma 4 If $1 \le i \le 2^d$, then (a) $T(i) + T(2^d + 1 - i) = T(2^d)$, and (b) $T(i) + T(2^d + 1) = T(i + 2^d)$.

Proof: The proofs of (a) and (b) will be by induction on i. If i=1 both parts hold since T(1)=0. Now assume (a) and (b) hold for a particular value of i, $1 \le i < 2^d$. Then (a) $T(i+1) + T(2^d + 1 - (i+1)) = T(i) + t(i) + T(2^d + 1 - i) - t(2^d - i) = T(2^d)$ by the induction hypothesis and since $t(i) = t(2^d - i)$. Likewise (b) $T(i+1) + T(2^d + 1) = T(i) + t(i) + T(2^d + 1) = T(i+2^d) + t(i)$ by the induction hypothesis. But this equals $T(i+2^d+1) - t(i+2^d) + t(i) = T(i+2^d+1)$ since $t(i+2^d) = t(i)$.

Lemma 5 $If(i, j) \in Q_d$, then

$$2T(i) + 2T(j) + i + j = 2T(i + j - 1) + t(i + j - 1) + 1.$$
(8)

Proof: We use induction on d. If d = 1, then i = j = 1 and (8) is easily checked. Assume the result for d, and let $(i, j) \in Q_{d+1}$, so that $1 \le i, j \le 2^d$. Case 1: $1 \le i, j \le 2^{d-1}$.

Then $(i, j) \in Q_d$ and we can use the induction hypothesis.

Case 2: $2^{d-1} < i, j \le 2^d$.

Then $(i-2^{d-1}, j-2^{d-1}) \in Q_d$, so we have

$$2T(i-2^{d-1})+2T(j-2^{d-1})+i+j-2^d = 2T(i+j-2^d-1)+t(i+j-2^d-1)+1$$
 (9)

by the induction hypothesis. But by Lemma 4(b) we have

$$T(i-2^{d-1}) + T(2^{d-1}+1) = T(i),$$

 $T(i-2^{d-1}) + T(2^{d-1}+1) = T(i),$

and

$$T(i+j-1-2^d)+T(2^d+1)=T(i+j-1).$$

Thus (using (9) for the second equality)

$$2T(i) + 2T(j) + i + j = 2T(i - 2^{d-1}) + 2T(j - 2^{d-1}) + 4T(2^{d-1} + 1) + i + j =$$

$$2T(i + j - 2^{d} - 1) + t(i + j - 2^{d} - 1) + 1 - (i + j - 2^{d}) + 4T(2^{d-1} + 1) + i + j =$$

$$2T(i + j - 1) - 2T(2^{d} + 1) + t(i + j - 2^{d} - 1) + 1 + 2^{d} + 4T(2^{d-1} + 1).$$

Now $1 \le i+j-2^d-1 \le 2^d-1$, so $t(i+j-2^d-1)=t(i+j-1)$. Also $T(2^d+1)=2^d+d2^{d-1}$ and $T(2^{d-1}+1)=2^{d-1}+(d-1)2^{d-2}$ by the remark before Lemma 4. Thus

$$2T(i) + 2T(j) + i + j =$$

$$2T(i+j-1) - 2(2^d + d2^{d-1}) + t(i+j-1) + 1 + 2^d + 2^{d+1} + (d-1)2^d =$$

$$2T(i+j-1) + t(i+j-1) + 1.$$

Case 3: $0 < i \le 2^{d-1} < j \le 2^d$ or $0 < j \le 2^{d-1} < i \le 2^d$. Then since $(i, j) \in Q_{d+1}$ we have $i + j = 2^d + 1$. Thus

$$\begin{split} 2T(i) + 2T(j) + i + j &= 2T(i) + 2T(2^d + 1 - i) + 2^d + 1 \\ &= 2T(2^d) + 2^d + 1 = 2T(2^d) + t(2^d) + 1 \\ &= 2T(i + j - 1) + t(i + j - 1) + 1, \end{split}$$

П

where the 2nd equality uses Lemma 4(a).

We define $\alpha: Q_d \to Z^+$ by $\alpha(i, j) = T(i) + T(j) + j$.

Lemma 6 Let $2 \le k \le 2^d$, and let $j_0 = \min\{j : (i, j) \in Q_d, i + j = k\}$. Then $j_0 = (k - t(k - 1) + 1)/2$. Furthermore, if $(i, j) \in Q_d$ and i + j = k, then $\alpha(i, j) = T(k - 1) + j - j_0 + 1$.

Proof: By Lemma 3 there are t(k-1) elements of Q_d with i+j=k. By the construction of Q_d these range consecutively from (i_0,j_0) to (j_0,i_0) , where $i_0+j_0=k$. Thus we have $i_0-j_0+1=k-j_0-j_0+1=t(k-1)$, and so $2j_0=k+1-t(k-1)$. For the second statement note that by Lemma 5 we have

$$2\alpha(i,j) = 2T(i) + 2T(j) + 2j = 2T(i+j-1) + t(i+j-1) + 1 + j - i$$

$$T(i) = \Omega(r_i) \begin{vmatrix} \Omega(c_j) & 32 & 30 & 27 & 25 & 20 & 18 & 15 & 13 \\ T(j) + j & 1 & 3 & 6 & 8 & 13 & 15 & 18 & 20 \\ \hline 0 & 1 & 3 & * & 8 & * & * & * & 20 \\ 1 & 2 & 4 & 7 & * & * & * & 19 & * \\ 3 & * & 6 & 9 & 11 & * & 18 & * & * \\ 4 & 5 & * & 10 & 12 & 17 & * & * & * \\ 8 & * & * & * & 16 & 21 & 23 & * & 28 \\ 9 & * & * & 15 & * & 22 & 24 & 27 & * \\ 11 & * & 14 & * & * & * & 26 & 29 & 30 \\ 12 & 13 & * & * & * & 25 & * & 31 & 32 \\ \hline \end{cases}$$

Figure 2: An α -valuation of Q_4

$$= 2T(k-1) + t(k-1) + 1 + j - i$$

$$= 2T(k-1) + t(k-1) + 1 - i - j + 2j$$

$$= 2T(k-1) + t(k-1) - 1 - k + 2j + 2$$

$$= 2T(k-1) - 2j_0 + 2j + 2.$$

Figure 2 illustrates the following theorem for d = 4.

Theorem 4 If we define a $2^{d-1} \times 2^{d-1}$ array with i, j-entry $\alpha(i, j)$ whenever $(i, j) \in Q_d$, then the entries run consecutively from I to $d2^{d-1}$ as j increases along the diagonals $i + j = 2, 3, ..., 2^d$.

Proof: Note that $\alpha(1,1) = 1$. Lemma 3 and the definition of T imply that there are T(k-1) elements of Q_d in the diagonals $i+j=2,3,\ldots,k-1$, and Lemma 6 tells us that the entries with i+j=k start at T(k-1)+1 and increment by 1 as j does.

Rosa [5] defines an α -valuation of a graph G with e edges to be a one-to-one map Ω from its vertex set to $\{0,1,\ldots,e\}$ such that (1) $\{|\Omega(x)-\Omega(y)|:\{x,y\}$ an edge of $G\}=\{1,2,\ldots,e\}$, and (2) there exists an integer λ such that if $\{x,y\}$ is an edge of G, then $\min\{\Omega(x),\Omega(y)\} \leq \lambda < \max\{\Omega(x),\Omega(y)\}$. We can see that Q_d has an α -valuation by taking $\Omega(r_i)=T(i)$ and $\Omega(c_j)=d2^{d-1}+1-T(j)-j$. Condition (1) follows from Theorem 4, and it is easily checked that $\Omega(r_i)\leq \lambda < \Omega(c_j)$ with $\lambda=(d-1)2^{d-2}$. The d=4 case is also illustrated in Figure 2. This result is not new; Kotzig [3] and Maheo [4] showed that the d-cube has an α -valuation, and another proof appears in [1, pp. 65-67]. In these proofs the map Ω is defined recursively and is harder to compute than in the above formulation. For

a fixed d that is not too large the easiest plan is to start with the numbering of the edges of Q_d guaranteed by Theorem 4, set the label on row 1 equal to 0, and then deduce the remaining values of T(i) and T(j) + j (and so Ω) from the definition of $\alpha(i, j)$.

4 Decompositions of $K_{m,n}$ into Cubes

The following theorem is proved in [2]; here is a proof using Theorems 1 and 4.

Theorem 5 If $d \ge 1$ then $K_{d2^{d-1},d2^{d-1}}$ can be decomposed into edge-disjoint copies of Q_d .

Proof: We apply Theorem 1 with $m=n=d2^{d-1}$, $G=Q_d$, r=-1, and s=1. Then $|E|=d2^{d-1}=\gcd(sm,rn)$. Note that $d=\gcd(r,s)=1$, R=-1, S=1, and $k=d2^{d-1}$. Also $\psi(i,j)=(Si-Rj,\lfloor i\rfloor)=(i+j,0)$ in $Z_k\times Z_d$ since d=1. Take $N_1(i)=T(i)$ and $N_2(j)=T(j)+j$. Then $N_1(i)+N_2(j)$ is one-to-one in Z_k on Q_d by Theorem 4.

A slight adjustment of the numbering of the vertices of Q_d produces the following improvement of the last result.

Theorem 6 If $d \ge 2$ then $K_{d2^{d-2},d2^{d-1}}$ can be decomposed into edge-disjoint copies of Q_d .

Proof: We apply Theorem 1 with $m=d2^{d-2}$, $n=d2^{d-1}$, $G=Q_d$, r=-1, and s=2. Then $|E|=d2^{d-1}=\gcd(sm,rn)$. Note that $d=\gcd(r,s)=1$, R=-1, S=2, and $k=d2^{d-1}$. Also $\psi(i,j)=(Si-Rj,\lfloor i\rfloor)=(2i+j,0)$ in $Z_k\times Z_d$ since d=1. Take $N_1(i)=T(i)$ and $N_2(j)=2(T(j)+j)-e_j$, where e_j is 0 if $j\leq 2^{d-2}$ and 1 if $j>2^{d-2}$. Then $2N_1(i)+N_2(j)=2\alpha(i,j)-e_j$. Note that by Theorem 4 the values of $\alpha(i,j)$ for (i,j) in Q_d run from 1 to k/2 for $e_j=0$ and from k/2+1 to k for $e_j=1$. Thus $2\alpha(i,j)-e_j$ yields exactly all even elements of Z_k for $e_j=0$ and all odd for $e_j=1$, and so Theorem 1 applies.

References

- [1] Juraj Bosák, *Decompositions of Graphs*, Kluwer Academic Publishers, Dordricht, 1990.
- [2] Saad El-Zanati and Charles Vanden Eynden, Decompositions of $K_{m,n}$ into Cubes, submitted to J. Comb. Designs.
- [3] Anton Kotzig, Decompositions of Complete Graphs into Isomorphic Cubes, J. of Comb. Theory, Series B 31 (1981) 292-296.

- [4] Maryvonne Maheo, Strongly Graceful Graphs, *Discrete Mathematics* 29 (1980) 39-46.
- [5] A. Rosa, On certain valuations of the vertices of a graph, *Théorie des graphes: Journées internationales d'étude, Rome, 1966* Dunod, Paris (1967) 258-267.