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1. INTRODUCTION AND MAIN RESULT

Throughout. this section, let G be a finite abelian group, which will be
written additively.

Let 8 = (91,...,91) Dbe asequence of elements of G. Then |S] =1
denotes the length of S and

i

1
L‘(S) = Z Ul'(l(.(]-,')

i=1

its cross number. We say that S is a zero sequence, if Z:= 19 =0
and that S is zero free, il Yo, 0: # 0 forall @ #1C {1,...,1}.
Furthermore, S is called a minimal zero sequence, if it is a zero sequence
and cach proper subsequence is zero free.

Suppose G = Cp, ® -+ ® Cp, where Cpy,...,Cp, are cyclic groups
of prime power order and let exp(G) denote the exponent of (7. Inves-
tigations of the following invariants arc motivated mainly by arithmetical
problems in Krull domains (¢f. [Cl]):

(

W(G) = {k(S)| S is a minimal zero sequence in G},
K(G) = exp(GmaxW (G),
k(G)

(G) = max{k(S)| S is a zero free sequence in G},
T r
n; — 1
lii* (w — 2
(G) E o
i=1
and

K*(G) =1+ exp(G)E*(G) .
It is casy to sce that

K*(G) < 1+ exp(G)K(G) < K(G) (1)
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(ef. [G-S2; Lemma 1]). For p-groups and some further series of groups
K*(G) = K(G) holds (sce the references). Up to now there is known no
group with K*(G) < K(G). Apart from the case of prime cyclic groups,
we have almost no information abont the structure of zero free sequences
S (resp. minimal zero sequences) with large cross munbers i.e., with k(S9)
close to k(G) . In this paper we Lackle the question about the structure in
the very special case that ¢ is a direct snm of two elementary p-gronps.
Before we can state onr main result we need a further definition.

Let p(G)  denote the smallest integer [ osuch that every sequence S
in G with exp(G)E(S) > 1 coutains a non-cpty zero sequence §' C S
with k(S") < 1.

For every prime p we have p(C,) =p and /)((/';f) =3p=2.10 p is
the wminimal prime dividing |G, then

1+ exp(GHR(G) € p(G) <

cx]')f(,') . @

1

Proofs may be found in [G-S1).

Theorem. Let G = Ch 0 Cy o with integers r.s € Ny and primes p,q
with p > max{q,p(C;) — (s = 1)(g = 1)} . Let S he a zero free sequence
in G with | | ,
p— q— -2
[T [ i prign. L Ry
]) q l?(/

Then S =AUDB where A is asequence iu C) with |Al=7(p—1) aud
B is ascquence in C with |B| = s(qg—1).

This result describes the structure of S and yields imnediately the
following; corollary.

Corollary 1. Let ¢ be as above. Then K*(G) = K(G).

Proof. The Theoremn implies that,

=1 q-=1

k(€ < 3
r q

Henee by (1) it follows that. k*((F) = k() . Therefore, a simple calenlation
(or Corollary 1 in [G-S2]) gives the assertion. O

Recall that Davenport’s constant D((G) of (7 is defined as

4

D(G) = max{|S

a

| S is & mininal zero sequence in G} .
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If ¢ is as in the Theorem, then the exact value of D{G) is unknown

and there is no inforiation at all about the structure of long minimal zero

sequences. Davenport’s coustant. of G =, @ 5 was studied in [Ma].
By definition we have

W(G) C { jl2sis /\'((:)} : (3)

exp(G

If G isa p-group for some odd prime p, then equality holds. This
was proved in [C-G]. The next corollary gives the first example of groups
of odd order, for which the inclusion in (3) is strict.

Corollary 2. Let G be as above. Then

W(G) C {c.\'I:(G) |2<i < K(G)—g+1ori= 1\'((;)} .

Proof. Let Sy be a minimal zero sequence distinet to (0). Suppose that
k(So) = ,—)16([\’((7) —¢+2). Obviously, So=gUJS forsome g€ (7 with
ord(g) = exp(G7) = pg and some zero free sequence S Therefore

y |
k(S) = k(So) — ”
L |
> —(KN(G)—q+2) - —
- pq(l\ (( ) 7+ ) P
1 I
= —(N((NY-(g—2)) — —
W(I\ ((7) = (q-2)) "

= ;lq-('rq(p — D +splg—1)—(g— 2))

Then the Theorem implies that  k(S) = 7"',;,1 + .s'ﬂ,'l—l whenee k(Sp) =
,,—l.,K(G)‘ O

2. PROOF OF THE THEOREM

We start, with a siiple leinna.
Lemma. Let (¢ be a fuite abelian gronp, H < G a subgroup and
7 G — G/H the canonical cpimorphism. Let S be a sequence in G
and S =7(S) its image.
a) Supposc k(S) > k(G/H)+ m}.m . Then there exists a nou-cmpty
subsequence Sp € S with deso g €11.

299



b) Suppose k(S) > % + 1 for some | € Ng. Then there ex-

ist disjoint subscquences Sg,...,S; with U:=0 S; C S such that
Yoes; 9 €H forall 0<i<I.

c) Suppose S =S"U U:':o S; such that h; =3 o g € H for all
0<i<l. Theu 8* = S U(hg,...,) is ascquence in G with
k(S*) > k(S)+ W";‘z—lm . Morceover, if S is a zero sequence, a minimal
zero sequence or zero free, then the same is true for S* .

Proof. a) By [G-S1; Lenina 1] there exists a non-cinpty subsequence T C
S with sum zero. Hence T has a preimage So € S with deso g €H.
b) We proceed by induction on . Suppose 1 = 0. Taking (2) into
acconnt the assertion follows from a). To do the induction step one just
Lias to use the very definition of p(G/H).
¢) Straightforward. 0O

Proof of the Theorem. Set S = AUBUC where A is a sequence in
C, with |A] =«, B isascquencein G5 with |[Bl=f and C isa
sequence in G\ (C, U Cy) with [C]=1.

Since D(Cj) = 1+ 7(p—1) (cf. [AL section 6.1]) and since S s
zero free, we infer that o < r(p — 1). An analogous argnment shows that,
#<s(g—1). Suppose y=0.1f a« <r(p—-1)-1, then

rip—1)—1 +Sq——l Zk(S')Z'rp_l-{-sq_l _q=2 ,

P q r q ra

a contradiction. If < s(g—1)—1, then

p—1  s(qg—-1)-1 ) —1 -1 -2
7"" + ut ) > k(S) > 1'1 + $7 1
r q 'y q n
which implics that g —2 > p, contradicting our assumption on p and q.
Hence, if v =10, then the assertion follows.

Assume to the coutrary, that v > 1. We distingnish two cases.
Case 1. k(B) = sfl;—l Let H=C3,m: G- G/H =Cj the canonical
epimorphism, A = m(A) and C = n(C). Then k(AUC) = “T";'l Clearly,
-1

p—1
=z + 2= k(S) — «d > rL -
r pq q P Pq

q—2

and thus
aq+y>rqp—-1)—(g-2).
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Since
qa+y)=aq+y+{g-1y>aq+y+q-12rq(p-1)+1,

we infer that

— 1
ph(A J)—(v+')>1(p—1)+5_pl.((”)

However, becanse pk(AUC) € Ny and pk(C}) € Ny it follows that
ph(AUC) > pk(C,) + 1

By Lennna a) there exists a subsequence Sp € AUC with b= ZJE 59 €
Cs. Then T = hU B is a zero free sequence in € with

kgg=$+u3pwﬂgm

a contradiction.

Case 2. k(D) < 59;—1 Let H=Ch,m: G — G/H =Cy the canonical
epimorphisim, B =7(B) and C = 7(C). Obviously, we have E(BUC) =
887 | Define

q

We verify in a moment that 1 is a non-negative integer. Since

p—-1
l=|pk(S)—o—-f—— -
[p() o —/ p

B
ws) =S+l 2
P T q

it. follows that,

P
=pk(S) - = -«
ph(S) .

and hence

— P+ p—1
q
(@54
> mCy) +

q
_ G/
exp(G/H)

=pk(S) — o — f——

+1
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By Lommma b) thoere exist sequences Sp,..., S8 with Ui=0 S; CBUC

such that h; = s g € H for 0<i<!. By Lemna ¢) the sequence
gES;’ 3

S* = AU (hg,..., ) is zero free and k(S*) > o+ 'lL,l . However,

-1 7 — (054
atitl > k(S) - p L_neq)
VY g »q
. — - — - cs
Ssppol, a-l a=2 1 pCy)
P q rq rq Pq
- 1. ps(q—=1) = (¢ —2) = (s(g = 1) = 1)(p = 1) = p(C})
P Py
»-— 1 ~r
> = k(C}) »

P

where the last inequality follows from the Lypothesis p > mey) — (s —
1){qg—1). Since « < v(p— 1), this calculation shows in particular that 1
is non-negative. Furthennore, it contradicts the zero freeness of §*. O

Acknowledgement: We thank the referee for his carcful reading,.
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