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ABSTRACT. H-transformation on a simple 3-connected cubic
planar graph G is the dual operation of flip flop on the triangu-
lation G* of the plane, where G* denotes the dual graph of G.
We determine the seven 3-connected cubic planar graphs whose
H-transformations are uniquely determined up to isomorphism.

1 Introduction

In this paper all graphs are simple and planar. Let G be a graph. Let V(G)
and E(G) denote the vertex set and the edge set of G, respectively. For a
vertex = of G, we denote the neighbourhood of z by Ng(z). The number
of edges incident to z is called the degree of z, and is denoted by deg(z).
A graph G is said to be cubic if deg(z) = 3 for all z € V(G). An edge e
of a 3-connected graph G is said to be contractible if the contraction of e
results in a 3-connected graph.

A plane graph is an embedding of a planar graph into the sphere. Let G
be a plane graph and let F be a face of G. We denote the boundary of F
by OF. We write V(F) and E(F) for V(3F) and E(8F), respectively. Let
F and F’ be two distinct faces of G. If e € E(F) N E(F') we say that F
is adjacent to F’ along e. An edge e € E(G) is said to be a triangle edge
if there is a triangle T whose boundary contains e, otherwise we call it a
non-triangle edge. We denote the set of non-triangle edges of G by E(G).

Let G be a 3-connected cubic planar graph. We denote the face set of G
by F(G). Then Euler’s formula |V(G)| — |E(G)| + | F(G)| = 2 holds. Since
G is cubic, 3|V(G)| = 2|E(G)|. Then, from the Euler’s formula together
with this equality, we get —|E(G)| + 3|F(G)| = 6.

By Whitney’s theorem, the embedding of a 3-connected planar graph
into the sphere is unique and we can regard G as a plane graph. Let
e = zy be a non-triangle edge of G and let F; and F5 be two adjacent faces
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which share the edge e in common. Let R; and Ry be the faces such that
V(R)) NV (e) = {z} and V(Rp) N V(e) = {y}. Write Ng(z) = {z1,Z2, ¥}
and write Ng(y) = {¥1,%2,z}. Since neither F} nor F is a triangle, all six
vertices z, z1, T2, ¥, ¥1 and y, are distinct. We may assume z;,y; € V(Fi)
and z3,y2 € V(F2). Now we define a local operation on G as follows (see
Figure 1.1):

(I) In the interior of F; and F3, add new vertices u and v, respectively.
(II) From G, delete the vertices z, y and all five edges incident to z or y.
(III) Add new edges ziu, y1u, Z2v, y2v and uv.

We note that the faces Fy, F3, R; and R, are distinct because G is
3-connected.
x] 'é(Fl ) %
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Figure 1.1

We call this local operation on G, an H-transformation around e = zy and
we denote the resulting graph by 7.(G). The resulting graph 7,(G) is said
to be an H-transform of G. We denote the face of 7.(G) corresponding to F
by n.(F). “H-transformations” were originally introduced by Tsukui [3] as
a local operation on cubic graphs which are not necessarily 3-connected nor
planar. Because we deal with 3-connected cubic planar graphs in this paper,
we adopt the definition (1.1) which is slightly different from the original one.
By the definition (1.1), an H-transform of a 3-connected cubic planar graph
is cubic and planar, but not necessary 3-connected. But lemma 2.2 in the
next section assures us that 7.(G) remains 3-connected if e is contractible
in G. We note that there is no H-transformation around a triangle edge.

The dual graph G* of a 3-connected cubic planar graph G is a trian-
gulation of the plane. We note that an H-transformation of G around a
contractible edge is just the dual operation of a diagonal flip on the trian-
gulation G*.

It was shown that each triangulation can be transformed to any other
triangulation of the same order by finite number of diagonal flips (Wagner[4]
). In other words, each 3-connected cubic planar graph can be transformed
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to any other 3-connected cubic planar graph of the same order by finite
number of H-transformations.

If G is 3-connected cubic planar and |[V(G)| > 6, then E(G) # ¢. Thus
there are |E(G)| H-transforms of G. In general they are not mutually
isomorphic. G is said to be HU-graph if all H-transforms of it are mutually
isomorphic, i.e., 7e(G) = 7.+(G) for all e, ¢’ € E(G). The complete graph
with 4 vertices , K, is the trivial HU—graph In this paper, we give the
complete list of non-trivial HU-graphs. Our result is the following.

Main Theorem A non-trivial HU-graph is one of the following seven

graphs:

P:prism Q:cube D:dodecahedron

G
1 (| G 1
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2 Preliminaries

In this section we give some notations and preliminary results. Let G be
a 3-connected graph and S be a vertex 3-cut of G. A non-empty set A of
components of G — S is said to be a fragment of G- S if V(G) —S— A # ¢.
On the number of contractible edges in a 3-connected graph, the following
fundamental result is known.

Lemma 2.1. (Ando et al. [1]) Let G be a 3-connected graph with |V(G)| >
5. Then, G has at least |V(G)|/2 contractible edges. u]

Lemma 2.2. Let G be a 3-connected cubic planar graph and let e = zy
be an edge of G. Then, 7.(G) is 3-connected if and only if e is contractible
in G.

Proof: We consider H-transformation around e.

We show that e is non-contractible if and only if .(G) has 2-cut. We
first assume that e is non-contractible, then there is a 3-cut S of G which
includes V(e) = {z,y}. Write S = {z,y, 2}, and in the notation of Fig.2.1,
S’ = {u, z} is a 2-cut of 7.(G). (see Figure 2.1)

H,

>

z z

G rle(G)
Figure 2.1

Next we prove that if 7.(G) has a 2-cut then e is non-contractible. As-
sume that 7(G) has a 2-cut S’. If S’ N {u,v} = ¢, then S’ can be re-
garded as a subset of V(G). Since n.(G) — S’ is disconnected, G — 3’ is
also disconnected, which contradicts the fact that G is 3-connected. Hence
S'N{u,v} # ¢. By the definition (1.1), we get G — {z, y} = 7.(G) — {u,v}.
Since G is 3-connected, G — {z,y} = 7.(G) — {u, v} is connected, and this
implies that S’ — {u,v} # ¢.

Write S’ — {u,v} = {2}. Then, since S' N {u,v} # ¢, 2 is a cut vertex of
G—{z,y} = 1.(G) —{u, v}, which implies that G —{z, y, z} is disconnected.
Thus, we get a 3-cut {z,y,z} of G which includes {z,y}, and this means
that the edge e = zy is non-contractible. Now lemma 2.2 is proved. a
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Corollary 2.3. Let G be a 3-connected cubic planar graph. If G is an
HU-graph, then each non-triangle edge of G is contractible.

Proof: If |V(G)| = 4, then G is isomorphic to K; which has no non-
triangle edge. Hence we may assume that |V(G)| > 6. Then, by lemma
2.1, there is a contractible edge e of G. By way of contradiction, suppose
that there is a non-triangle edge ¢’ which is not contractible. Then #/(G)
is not 3-connected, however, 7.(G) is 3-connected which means that #./(G)
and 7.(G) are not isomorphic, a contradiction. 0

We note that if G is an HU-graph, then R; and R; in Fig 1.1 are not
adjacent. Because if R; and Ry are adjacent, then zy is non-contractible
in G, which contradicts corollary 2.3.

Let G be a plane graph. Let Ng[z] = Ng(G)U {z} and we call it the
closed neighbourhood of z € V(G). For disjoint subsets S and S’ of V(G),
let Eg(S,S’) denote the set of edges between S and S/, namely, Eg(S, S') =
{zy € E(G) |z € S and y € S’}. Furthermore, let eg(S, S’) = |Ec(S, )|
A face F of G is said to be an i-face if [V(F)| = i. We denote the set
of i-faces of G by Fi(G). Let fi(G) = |Fi(G)|, ie., fi(G) denotes the
number of i-faces of G. If there is no ambiguity, we write F; and f; for
Fi(G) and f;(G), respectively. We denote the maximum value of |V(F)|
by M(G), i.e., M(G) = max{ ¢ |F(G) # ¢}. For a face F of G, let
gc(F; ) denote the number of i-faces of G which are adjacent to F, i.e.,
gc(F;i)=|{ F' € Fi(G) | E(F)NE(F’) # ¢ }|. A vertex z € V(G) is said
to be a triangle vertex if there is a triangle T € F3(G) whose boundary
contains z, otherwise we call it a non-triangle vertex. We denote the set of
triangle vertices of G and the set of non-triangle vertices of G by W(G) and
W(G), respectively. Furthermore, let w(G) = |W(G)| and &(G) = [W(G)|.

Let G be a 3-connected cubic planar graph. Then, for adjacent distinct
edges e, ¢’ € G, there exists just one face of G whose boundary contains
both e and e’. For adjacent distinct edges e, ¢’ € G, we denote F(e,e’) the
face of G uniquely determined by e and ¢’. For a non-triangle edge ¢ of G
and a given integer i, we define

wi(e) = fi(ne(G)) — £i(G), 21)

i.e., pi(e) denotes the difference between the number of i-faces of G and the
number of i-faces of 7.(G) . Let G be an HU-graph, then, by definition for
any e, e’ € E(G), pi(e) = pi(¢'), i.e., wi(e) is independent from the choice
of e. We denote this constant by ;(G). Let F be a face of G and let i be
an integer. We define o;(F) and p;(F) as follows:

1 if FeFi 1 if FeFiu
oi(F)=¢{ -1 if FeXF pi(F)=¢ -1 if FelXF (2.2)
0 otherwise 0 otherwise
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By definition, if ¢ > M + 2, then oi(F) = p;(F) = 0 for each F € F(G).
Furthermore, we observe that pas1(F) =0, op41(F) # —1 and py(F) #
1 for each F' € F(G). If we do not specify the integer i, we write p.(e),
0.(F) and p,(F) for p;(e), 0;(F) and p;(F), respectively.

Let e = zy be a non-triangle edge of a 3-connected cubic planar graph
and F; and F; be the faces which share e in common. Furthermore let R;
and R; be the faces such that V(R;)NV(e) = {z} and V(Rz)NV(e) = {y}
(see Fig 1.1). In this situation, from (1.1), (2.1) and (2.2), we get

wi(e) = oi(R1) + 0i(R2) + pi(F1) + ps(F2) (2.3)

Lemma 2.4. Let G be an HU-graph. Then,
(i) No two triangles in G have an edge in common.

(ii) If a triangle is adjacent to a quadrangle in G, then G = P.

Proof: (i) Immediately follows from the fact that G is 3-connected.

We show (ii). Assume that a triangle T is adjacent to a quadrangle F;.
Write V(T) = {:1:1,2:2,:!:3} and write V(Fl) = {zl,zg,yz,yl}. Moreover
write Ng(z3) = {z1,z2,y3}. From (i), these six vertices are distinct. If
V(G) = {z1,z2,%3,¥1,¥2,¥3}, then since G is cubic, both y; and y; are
adjacent to y3, and hence, we get G = P. By way of contradiction, suppose
that |V(G)| > 7. If y1ys € E(G), then {y3,¥3} is a two-cut of G since
|[V(G)| > 7, and this contradicts the fact that G is 3-connected, and hence,
we get y1y3 € E(G). By symmetry, we get yoy3 ¢ E(G). Write Ng(y1) =
{z1, 2, w} and write Ng(y3) = {z3, z1,22}. Let Fo = F(zx3,z3y3), F3 =
F(z2z3,z3y3), Fa = F(wy,11y2) and Fs = F(21y3,y322) (see Figure 2.2).

Figure 2.2

Since neither y; nor y, is adjacent to ys, |V (F2)|, |V (F3)| = 5, and hence
we get p3(F2) = p3(F3) = 0. Hence, from (2.3), we get

wa(z1y1) = 03(T) + o3(Fy) + pa(F1) + p3(F2)

= —1+03(Fy)+ 140 = a3(Fy) (2.4)
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Also, from (2.3), we get

pa(z3ys) = 03(T) + 03(F5) + pa(F2) + p3(F3)

=-1+ 0’3(F5) +040= 0‘3(F5) -1 (2.5)

From (2.4) and (2.5), we obtain g3(Fy) = 03(Fs)—1. This together with the
fact that o3(F) = 0 or —1 for each face F € F(G) implies that o3(Fy) = —1,
which means that Fj is a triangle. Thus yow € E(G) and we see that
{z3,w} is a two-cut of G which contradicts the fact that G is 3-connected.
This contradiction completes the proof of lemma 2.4. a

Recall that W(G) denotes the set of triangle vertices of G. An HU-
graph G is called triangle-type if V(G) = W(G) and called triangle-free if
W(G) = ¢. If G is neither triangle-type nor triangle-free, then it is called
mized-type.

Lemma 2.5. Let G be a mixed-type HU-graph. Then
E(G) = Ec(W(G), W(G)).

Proof: Let e = zy € E(G). If either z or y is a non-triangle vertex, then
zy is non-tnangle, and hence E(G) D E¢(W(G), W(G)).

We show that £(G) C Eg(W(G), W(G)). Note that G is not isomorphic
to the prism P which is not mixed-type. Firstly we show that ©3(G) = —1.
Take an edge e = z,3; € Eqg(W(Q), W(G)) such that z; € W(G) and
y1 € W(G). By lemma 24 (i), there is just one triangle containing z;,
say T. Write V(T) = {z1,z2,z3} and write Ng(y1) = {z1, 21, 22}. From
lemma 24 (i), these six vertices are distinct. Let Fy = F(yiz1,z1z2),
Fy = F(y1x1,%173) and F3 = F(z191,%122) (see Figure 2.3).

Figure 2.3

From the choice of y1, F3 is not triangle. By lemma 2.4(i), (ii) together
with the fact that G is not isomorphic to P, neither a triangle nor a quad-
rangle is adjacent to T and this implies that p3(F) = p3(F2) = 0. Thus,
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from (2.3), we get

03(G) = pa(z1y1)
= 03(T) + 03(F3) + pa(F1) + p3(F2)
=-140+0+0=-1.

Now we show that each non-triangle edge belongs to Eg(W(G), W(G)).
By way of contradiction, suppose that there is a non-triangle edge uv ¢
Eg(W(G),W(G)). Then, either u,v € W(G) or u,v € W(G). We first
assume that u,v € W(G). By the definition of W(G), there are triangles
T, and T, such that » € V(T,,) and v € V(T,). Because the edge uv is
non-triangle, T,, and T, are distinct. Let F; and F> be the faces which
share the edge uv in common. By lemma 2.4 (ii) together with the fact
that G is not isomorphic to P, neither Fj nor F; is a quadrangle and this
implies that pg(F) = p3(F2) = 0. Thus, from (2.3), we get

p3(uv) = 03(Tu) + 03(Ty) + p3(F1) + p3(F2)
=(-1)+(-1)+0+0=-2,

and this contradicts the fact that ©3(G) = —1. If both u and v belong to
W(G), then we clearly get y3(uv) > 0 which again contradicts the fact that
3(G) = —~1. These contradictions complete the proof of lemma 2.5. a

Lemma 2.6. Let G be a triangle-type HU-graph. Then
F(G) = F3(G) U Fay()(G)-

Proof: We write M for M(G). By way of contradiction, suppose F(G) #
F3(G)U Fp(G). Then, since F(P) = F3(P)U F4(P), G is not isomorphic
to P. If G has a quadrangle, then, since G is triangle-type, G has a triangle
which is adjacent to the quadrangle, and hence, by lemma 2.4 (ii), G is
isomorphic to P, a contradiction. Consequently, G has no quadrangle, and
which implies that M > 6. Take a face F; € F(G) — (F3(G) U Fu(G))
so that F; is adjacent to a face F» € Fu(G) along an edge z,. Since
G is triangle-type, there is the triangle T containing the vertex ;. Write
V(T) = {z1,z2,z3}. Moreover write Ng(z;] = {z1,22,z3,%} (1 <i < 3).
Then, by lemma 24 (i), both z2y2 and z3ys are non-triangle. We may
assume F(y1$1,$1$3) = F; and F(ylzl,zwg) = F5. We denote the face
F(yaz3, z3z2) by F3. Let T; be the triangle containing the vertex y; (1 <
i < 3) (see Figure 2.4).
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Figure 2.4

By lemma 2.4 (i), the six vertices z1, z2, z3, ¥1, ¥2 and y3 are distinct,
and hence, the faces T, Fy, F> and F3 are distinct. Furthermore, since
each F; is not quadrangle, T}, T> and T3 are also distinct. Since M > 6,
om(T) = om(T2) = om(Ts) =0, and since |[V(F;)| < M and |V(F)| = M,
pm(F1) =0 and pp(F2) = —1. Consequently, we get

eMm(G) = pm(zay2)
=om(T) +om(T2) + pm(F2) + pu(F3), (2.6)
=0+0+(-1) + pm(F3) = pm(F3) — 1

vM(G) = pm(z3ys)
=om(T) + om(T3) + pm(F1) + pm(F3) - (2.7)
=0+ 0+ 0+ pum(F3) = pm(F3)

Then (2.6) and (2.7) contradict each other and this contradiction completes
the proof of lemma 2.6. a

Lemma 2.7. Let G be a mixed-type HU-graph. Then

Proof: We write M for M(G). By way of contradiction, suppose F(G) #
F3(G) U Fm(G). If G has a quadrangle, then, by lemma 2.5, there is a
triangle which is adjacent to the quadrangle, and hence, by lemma 2.4 (ii),
G is isomorphic to P which is not mixed-type. Hence, G has no quadrangle,
and which implies that M > 6. Take a face F1 € F(G)—(F3(G)UFum(G)) so
that F} is adjacent to a face Fy € Fp(G) along an edge zz;. The edge zzx;
is non-triangle, and hence, by lemma 2.5, we see zz, € Eg(W(G), W(G)).
Without loss of generality, we assume that z € W(G). Write Ng(z) =
{z1,z2,z3}. Then zz,,zz; and zz3 are non-triangle and, again by lemma
2.5, T3, T2,z3 € W(G). Let T, be the triangle which contains z; and write
V(T;) = {zi, 4:, z} (1 < i < 3). We may assume that y,z1, 21z, zz3, T323 €
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E(F) and z121, 712, 732, Z2y2 € E(F3). Let F3 = F(z2z,z73) (see Figure
2.5).

Figure 2.5

By the definition, ppr+1(F) = 0 for each F € F(G) and, since M > 6,
oum+1(T) = 0. Furthermore, since |V(F1)| < M, we get op41(F1) = 0.
Consequently, we get

em+1(G) = pm+1(z37)
=om41(T3) + om41(F2) + pm+1(F1) + pm+1(F3) . (2.8)
=04+14+040=1

and

em+1(G) = oM 41(z27)
= omM+1(T2) + om+1(F1) + pm41(F2) + pm+1(F3) . (2.9)
=0+0+0+0=0

(2.8) and (2.9) contradict each other and this contradiction completes the
proof of lemma 2.7. O

A 3-connected planar graph G is said to be regular polyhedron graph if
all faces of G have the same size. There are two cubic triangle-free regular
polyhedron graphs, the cube Q and the dodecahedron D{2].

Lemma 2.8. A triangle-free HU-graph G is a regular polyhedron graph.

Proof: We write M for M(G). We show that ¥(G) = Fu(G). By way of
contradiction, suppose F(G) — Fm(G) # ¢. Then M > 5. Let F be the set
of faces which are not M-faces and adjacent to an M-face, i.e., F = {F €
F(G)-=Fum(G) | E(F)NE(F')# ¢ for some F'€ Fpu(G)}. Take a face
F) € F with minimum size and let F; be adjacent to a face F; € Fp(G)
along an edge zz;. Let |V(F})| = M'. Write Ng(z) = {z1,%2,x3} and
write Neo(z:) = {z, %, %} (1 <1 < 3). Without loss of generality, we may
assume that y,21, 212, z23,z323 € E(F) and 2121, z1%, Zx2, T2y2 € E(F3).
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Let F3 = F(zoz,zz3) and let R; = F(y;zi, zi2:) (1 < i < 3) (see Figure
2.6).

A

Figure 2.6

Clearly F1, F> and F3 are distinct. From ¢, (z1z) = 0.(R1) + 0. (F3) +
Pr(F1)+pu(F2), pu(z2z) = 04 (R2)+04(F1)+p. (F2)+p. (F3) and @, (z3z) =
0.(R3) + 0. (F2) + pu(F1) + p.(Fs) we get

ov(R1) +04(F3) + pe(F1) = 04(R2) + 04 (F1) + pu(F3). (2.10)
and
o¢(R2) + 04(F1) + pu(F2) = 04(R3) + 0. (F2) + pu(Fy). (2.11)
Firstly we show that R € Fp(G) and
04(F1) + po(F2) = 0u(R3) + p.(Fy). (2.12)

If Ry € Fm(G), then (2.12) follows from (2.11). Therefore it is enough to
show that Ry € Fp(G). From (2.11), since opr41(F)) =0, opr1(F2) =1
and ppr41(F) = 0 for each F € F(G), we get opr41(R3) + 1 = opr1(R2),
and this equality together with the fact that oasy1(F) = 0 or 1 for each
F € F(G) implies that op41(R3) = 0 and opr41(R2) = 1, and the latter
equality means that Ry € F(G).

Next we show that R3 € Fpv—1(G). Since M’ < M, we get py—1(F2) =
0. Hence, from (2.12), we have op:—1(F1) = omr—1(R3) + pmr—1(F1).
Since F1 € fMt(G), aM’—l(FI) = 0 and PM’—I(FI) =1. Hence, we get
O'Ml..l(R:;) = —1 which means that R3 € .FM:_I(G).

If F3 is M-face, then the fact that F3 is adjacent to R3 which is (M’ —1)-
face contradicts the coice of F,. Therefore F3 is not M-face and we get
om+1(F3) = 0, and since par41(F1) = pm+1(F3) = op+1(F1) = 0, from
(2.10), we get opm4+1(Ry) = opm+1(R2) = 1. This implies that R; is M-face.
Since both F; and R, are M-faces, the (2.10) implies

0«(F3) + pue(F1) = 04(F1) + pu(F3). (2.13)
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The equality (2.13) implies that two faces F; and F3 have the same size, M.
Now we get all sizes of the six faces; Fp, Rz, Ry € Fm(G), Fy, F3 € Fi+(G)
and R3 € fM'_l(G).

Let ¢ = z,z and €’ = z3z and we consider H-transformations around e
and ¢’. Let H = 1.(G) and H' = no(G). In view of the assumption that
G is an HU-graph, H is isomorphic to H’. Recall that gc(F;1) denotes the
number of i-faces of G which are adjacent to F, and observe that ne(R;)
is the only (M+1)-face of H and n/(F2) is the only (M+1)-face of H'.
Hence, the equality

91 (ne(R1);4) = 9o (ne(F2); 9) (2.14)

holds for each integer i. Now we count the numbers of (M’ — 1)-faces
around 7ne(R;) and ne (F2). By the choice of F, there is no (M’ — 1)-face
around R, in G, ie., go(Ri; M’ — 1) = 0. By the same reason, we get
ga(Fz; M - l) = 0. Since %(FS) € .FM!(H), 7]¢(F1) € fMl_l(H) and
ne(F2) € Frm—1(H), there is one (M’ — 1)-face among ne(F3), n.(F1) and
1e(F2). This implies that

ga(ne(R1); M’ —1) = gg(R;;M' 1) +1=1. (2.15)
However, since both 7./(F;) and 5./ (F3) are (M’-1)-faces of H’, we get
g (e (F2); M' = 1) = ge(Fo; M' — 1) +2=2. (2.16)

(see Figure 2.7). (2.15) and (2.16) contradict each other.
This is the final contradiction and the proof of lemma 2.8 is completed. O

Figure 2.7
8 Proof of main theorem
In this section we give a proof of the theorem. Let G be an HU-graph. If G
is triangle-free, then, by lemma 2.8, either G 2 Q or G & D. Therefore we
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may assume that G is either mixed-type or triangle-type. Let n = [V(G)|,
m = |E(G)| and f = |F(G)|. We write M for M(G).
Claim 1. If G is either mixed-type or triangle-type, then

3f3+(6 - M)fm =12 B8-1)

Proof: Recall —m + 3f = 6. Since G is either mixed-type or triangle-
type, lemmas 2.6 and 2.7 assure us that f = f3 4+ fa, and hence, we
have —m + 3f3 + 3fa; = 6. Since each edge belongs to two faces, 2m =
3fa+ Mfm. From these two equalities, we obtain the desired equality
3fa+(6—M)fm =12 a
Claim 2. A mixed-type HU-graph is isomorphic to Gy;.

Proof: Let G be a mixed-type HU-graph.

Firstly we show that M = 0 (mod 3). Let F be an M-face of G. Then dF,
the boundary of F), is isomorphic to M-cycle. Let V(F) and Vy(F) be the
set of triangle vertices of V' (F) and the set of non-triangle vertices of V(F),
respectively. Then lemma 2.5 assures us that G[V(F)] is a one-factor of 0 F
and V (F) is an independent set of F. Consequently, |Vr(F)| = 2|Vn(F)|,
and hence, M = |Vp(F)| + |Vn(F)| = 3|Vn(F)| =0 (mod 3).

Next we prove that M = 6. Recall that w(G) and w(G) are the number of
triangle vertices and the number of non-triangle vertices of G. We write w
and @ for w(G) and @(G), respectively. By lemma 2.4(i), we get w = 3fs.
By lemma 2.5, W(G) is an independent set of G, and this implies that
ec(W(G),W(G)) = 3|W(G)| = 3w. On the other hand, since G[W(G))
is a union of triangles, we observe that ec(W(G), W(G)) = |W(G)| = w,
and hence w = 3w. Since each triangle vertex belongs to two M-faces and
each non-triangle vertex belongs to three M-faces, M fpr = 2w+ 3w. From
w= 3w, w=3f3 and Mfpy = 2w+ 30, we get M fp = 9f3. From this
equality together with (3-1), we obtain (9— M) f)s = 18, which implies that
5 < M < 8. This inequality together with the fact that M = 0 (mod 3)
implies that M = 6.

From the above argument, we get far =18/(9—M) =6, fa=Mfu/9=
4,%=fz=4,w=30=12and n =w+% = 16. Let G be the graph
obtained from G by contracting all four triangles of it. Then G is cubic
planar and |V(G)| =n —2f3 =8. Furthermore, since each 6-face of G has
two triangle edges, the size of each face of G is M — 2 = 4, and hence,
G = Q. The four vertices of G corresponding to the four triangles of G
are independent in G__ Hence the set of these four vertices is a maximum
independent set of G & Q. Since a maximum independent set of Q is
unique, we can conclude that G 22 Gry. Now Claim 2 is proved. o

Claim 3. A triangle-type HU-graph is isomorphic to one of Gy, Gy and
Grv.
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Proof: Let G be a triangle-type HU-graph.

We show that M = 6,8 or 10. Let F be an M-face of G. Then, lemma
2.4(i) assures us that the number of triangle edges and the number of non-
triangle edges in the boundary of F are the same, and this means that M
is an even integer. Since each vertex belongs to one triangle and to two M-
faces, we get 3f3 = n and M fy = 2n, and which imply that M far = 6f;.
From this equality together with (3-1), we obtain (12 — M) fx = 24, which
implies that 5 < M < 11. From this inequality together with the fact that
M is even, we obtain that M = 6,8 or 10.

Let GM) be a triangle-type HU-graph with M(G) = M. Then, by the
above argument, we get the following table.

M| fu=24/(12-M) | a=Mfu/6 | n=3f3
G® |6 4 4 12
G® | 8 6 8 24
G119 | 10 12 20 60

Let G(M) be the graph obtained from G(M) by contracting all their trian-
gles. Then G(M) is cubic planar and |V(G‘™))| = n/3. Furthermore, since
each M-face of G(M) has M/2 triangle edges, the size of each face of G(M) is
M/2, ie., GM) is the regular polyhedoron graph with the face size= M/2.
Hence, we have G©® = K, G® = Q and G(19 =~ D. Concequently, we
can conclude that G® = Gy, G® = Gyyr and G119 2 Gy, Now Claim 3
is proved and the proof of the Thorem is completed.
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