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Abstract

In [2, 3], the authors dealt with the problem of determining the
set I'(G) of all (a, d)-antimagic graphs, a,d € N, where the concept
of an (e, d)-antimagic graph is a variation of the concept of an an-
timagic graph given in [4]. A connected graph G = (V,E) € T =
set of all finite undirected graphs without loops and multiple ed-
ges on n = |V| > 3 vertices and m = |E| > 2 edges is said to
be (a,d)-antimagic iff its edges can be assigned mutually distinct
nonnegative integers from {1,2,...,m} so that the values of the
vertices obtained as the sums of the numbers assigned to the ed-
ges incident to them can be arranged in the arithmetic progression
a,a+d,...,a+(n—1)d. In [2], the authors obtained some interesting
general results on (e, d)-antimagic graphs from I'(G) by applying the
theory of linear Diophantine equations and other number theoretical
topics. Applying these general results to wheels Wy = 1 % Cgys,
g >3, b>1, Copp = cycle of order g + b, and parachutes Py,p as
the spanning subgraph of Wy4p arising from Wy by removing b
successive spokes of Wy4s we succeeded in proving that every wheel
Wo+b cannot be (a,d)-antimagic and, for every g > 3 or g > 4,
there are the five integers b = 292 —3g—1, bp = g2 — 29 — 1,
by =g—1, by = g—3 and bs = 1(¢° — 3g — 2) with the property
that the corresponding parachute Pgs;, 1 =1,2,...,5, can be (a, d)-
antimagic. If T'i(P) denotes the set I'i(P) = {Pys, € T(P) | g > 3},
i =1,2,...,5 the main result in [2] says that ['3(P) and T'4(P)
are ﬁnite, Fa(P) = {Ps,z, Pg,a, ceey Pa,7, Plo,g, Pn,lo} and P4 (P) =
{Pi1,Ps2,..., Pro,7}. Concerning I'1(P), ['2(P) and T's(P) the aut-
hors conjecture that they are infinite. Here, we continue [2] and prove
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the conjecture given in [2] for T'1(P) and TI'2(P). Instead of ['s(P)
we prove the infiniteness of I['(P) = {Pg 1(2g2-59-3) ET(P) | g =

0(3) or g = 1(3)}. Furthermore, we succeed in showing the existence
g?—4g—3 g%>—5g—4 232—79—5 }
3 1 5

with respect to ¢ > 26 with the property that the parachute Py is

. . . 2— -—
of minimum integers bmin € {Z gg z

not (a, d)-antimagic for each positive integer b < bmin. The imme-
diate consequence of this fact is that for every g > 26 there are
at most 8 different integers b > bmin such that the corresponding
parachute Py could be (a, d)-antimagic.

1 Introduction

In [2, 3], the authors introduce the concept of an (a, d)-antimagic parachute,
a, d € N, where a parachute Py, ; arises from a wheel W4y = (Vw, Ew) =

{v}*Cy4s, 9 > 3and belementsin N, Viy = {v,z1,22,...,25,v1,v2,..., %},
Ew = {hi={v,z;}|i=1,2,...,9} U {ki={v, %} |i=1,2,...,b} U
E (Cg4b) — Cyqp is the cycle on g + b vertices z1,z3,...,24,v1,v2,...,0

and g+ b edges e; = {v;, viy1}, i=1,2,...,b-1, e; ={zj,zin},i=
,2,...,9-1, e = {z1,n} and ¢ = {z,4, v} — by removing the b
edges {v, v}, i =1,2,...,b. Figures la, 1b and lc show a (33,2)-
antimagic labeling of the parachute Pi5 54, a (74, 1)-antimagic labeling of
Py5,68 and a (84, 1)-antimagic labeling of Pys g9. As exactly done in [2],
a connected graph G = (V, E) € T (= set of all finite undirected graphs
without loops and multiple edges) of order n = |V| > 3 is said to be (a, d)-
antimagic iff there exist positive integers a,d € N and a bijective mapping
f:E—{1,2,...,|E|} such that the mapping gy induced by f and defined
by

V—N

9 v—gs(v)= Y f(e), veV
e€lI(v)
is injective and g;(V) = {a,e+d,...,a + (|V| — 1)d}, where I(v) = {e €
E | e is incident to v} for each v € V. If G = (V, E) is (a, d)-antimagic
and f : E — {1,2,...,|E|} is a corresponding bijective mapping of G,
then f is said to be an (a, d)-antimagic labeling of G. Figures la, 1b, 1c
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Figure la: P54 is (33,2)-antimagic

indicate that the parachutes Pis5 34, Pi1s,68 and P59 belong to the set of
all (a, d)-antimagic parachutes in T' denoted by I'(P).

The aim explained in [2] is to determine the set I'(P) by means of number
theoretical facts and results concerning linear Diophantine equations and
properties of rectangular numbers. It could be shown that if a parachute
Py is (a,d)-antimagic, i. e. if Py, is an element of I'(P), then (a,d) is a
solution of the linear Diophantine equation

(1) (o+bEg+b+1)=(g+b+Dat Je+0)(g+b+1)

By means of (1) we could even show in [2] that for every ¢ € N — {1,2}
there are at most finitely many integers b = t —g—1 < 292 -39 —1
such that Py, € T(P) where ¢ | 2g9(g — 1). The main result given in [2] is
that I'(P) has the five subsets I'y(P),T2(P), ..., [s(P) defined as 'y (P) =
{Py2g2-34-1 | g 2 3}, T2(P) = {Pyg2-29-1 lg >4}, [3(P) = {Pgg-1|
g > 3}, Ta(P) = {Pyg-3 | g > 4} and T5(P) = {Py 1(p2-34-2) | § 2 4},

L
'2

35



95 68

150 149 94 93
55 54 zs' 25
151 @ 148 95 @92
96 94 P67
152 @ 147 ' @91
56 24
153 @ ! 20
97 esT
154 @ @ 39
57 23
155 @ [ ¥:1
98 65
156 @ @37
5885 82 76 84 78 80 77 79 81 86 104 105 75 22
8 2592 7 260 911 961 214262 215 263 219 264931 o232

83 74

Figure 1b: Py5 6s is (74, 1)-antimagic

with the properties I's = {Ps 2, P43, Ps,4, Ps,5, P76, Ps,7, P10,9, P11,10} and
Ty = {P4,1, P5_2,P5_3, P7’4,P3,5,.P9,6, P10’7}. At the end of [2], the authors
conjecture that I';(P), T'2(P) and I's(P) are infinite.

Here, we are turning towards this conjecture and prove that I';(P) and
I'2(P) are infinite. Furthermore, we succeed in showing that a further
subset I'(P) = { Py 1(242_54-3) | § = 0(3) V g = 1(3), g > 15} is an infinite
subset of I'(P) and that there exists a minimum integer dmin such that
for every positive integer b < bpin the corresponding parachute P, is not
(a, d)-antimagic for every g > 26. Hence for every g > 26 there are at most
8 different values for b, such that the parachutes P, are (a,d)-antimagic.

2 Infiniteness of I';(P) and I'y(P)

In order to show the infiniteness of I';(P) = {P,242-34-1 | g > 3} we at
first prove
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Figure lc: Pi5 g9 is (84, 1)-antimagic

Proposition 1:

/\ [P 292-3¢g-1 € F(P) —_— Pg,2g’—39—l is (92 +9, 1)‘

g€N antimagic]
g23

Proof: Assume P, 3g2_341 is an element of I'(P) for an arbitrary g > 3.
Putting b = 2g®> — 3¢9 — 1 the Diophantine equation (1) becomes

(2) 20+ (22-29-1)d=4¢°>-1.

(2) implies that d is equal to 1 because of a > 3. Putting d =1 we obtain
a=g*+g=g(g+1).
Figure 2a, 2b, 2c depict Pss, Ps34, Pis208 € I'y(P) and corresponding
(12, 1)-antimagic and (30, 1)-antimagic and (182, 1)-antimagic labelings, re-
spectively, and imply
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Figure 2a: P3g is (12, 1)-antimagic

Theorem 1:

/\ Py 242-34-1 is (g + g, 1)-antimagic
g€N\{1,2}

Proof: The proof is by construction a bijective mapping f : Eqp —
{1,2,...,|Eqpl}, b = 2¢% — 3¢9 — 1, and showing that f is a (g2 + g,1)-
antimagic labeling of Py;. It turns out that it is useful to distinguish
the two cases ¢ > 3 odd and g > 4 even. Let Py g3-39-1, § 2 3 odd,
be an arbitrary parachute in I';(P) with E;p = {hy, ks, ..., hg,e, €, ¢,
€y .- €p_ys €1, €2, ..., e-1} and Vo = {v, 71, 29, ..., 24, v1, v3, ...,
v}, b= 2g% — 3¢ — 1. Observing the two properties (a) and (b) with

(a) N elg+1)
g € N\{1}

g odd 39+5 3g+7
(ot

+ 2+(2+1))

~1
(1+2+...+"’T>+(g+1) +

+

(b)  @maz = |Eyu] +g%, where ama; = a -+ [Vg, 8] — 1,
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Figure 2b: P; 34 is (30, 1)-antimagic

we define the bijective mapping f in the following way

¢

Eg,b—"{1,2,...,|E'5|=292_g_1}

hy —g+1

hoi — i, i=1,2,..., 5

hoigs — 254 (i-1), i=1,2,..., %

e — g°

e —y

ehiyy — L4, i=0,1,..., 52

€y _gip1 — 9041, i=1,2,..., %

esig1 — 292 —g—1—14, i:O,l,Z,...,%

esi — g% — 1, i=1,?.,...,io="'g+3 =g*-29-2
ezigr2+2i — 2(g+1)—14, i:O,l,...,gg—l
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Figure 2c: P3 298 is (182, 1)-antimagic

In order to show gy(V;3) = {a,a+1,...,amasz} we successively compute
95(v), 9s(2:),i=1,2,...,9,and gy (), i =1,2,...,b = 292 — 39— 1. Bec-
ause of (a) we know g;(v) = g(g+1) = a. It is a matter of routine checking
that {gs(z:) |i=1,2,...,9} = {a+1 = g®+g+1,a+2 = 924+g9+42,...,9%+
éﬂg—l,gz + §-"2L3,g2 +3(59+7),...,9% + 3¢ + 2}. Furthermore, we obtain
{g5(wi) [1=1,2,...,2i0+1 =292 —49~3} = {@mar = 392 —9—1, Qnas —
1,..., 9% + 39 + 3}, and, finally {95(2s) | i = 2604+ 2,2i0+3,...,8} =
{9 +3@+1), 2 +1(59+3),..., 9%+ 8445 g2 + 321} This proves
that f is a (92 + g, 1)-antimagic labeling of Pj 552_3,_;.

Now it remains to prove the corresponding statement for even g > 4. Here,
we use the property that the rectangular number g(g + 1), g = 0(2), can
be represented as a sum of g summands such that

(A) A e+l = (1+2+..‘+%)+((gg+2) +

g9 € N\{1,2}
g >4, even



3
+ (§g+3)+...+2g+1).

Observing the (g(g+1), 1)-antimagic labelings of Py 542_3,_1, 9 = 4,6, 8, 10,
in Figure 3a, 3b, 3c, 3d we are able to construct an (g2 + g, 1)-antimagic
labeling of P, 342_3,-1 in the general case in the following way

VEg'b—){l,z,...,lEg’b|=2g2_g_l}
hoioy —i, i=1,2,...,%
h2i—>%g+l+i, i=1, ,___,.%
e—-»g")
e’——-)g2+%

9
e — g*+i, i=1,2...,%§~1

ey — S+ (E+1-i)=g+1—i, i=1,2,...,%

esi — g2 —1i, i=1,2,..., ig=¢"—-29-2
esiot2(i41) — 39+1—4, i=0,1,...,§
62i+1-—'2g2_g_1_i1 i=011)"')%

In order to show that this bijective mapping f is a (g2 + g, 1)-antimagic
labeling of Py, 242_34-1 we show that g;(V,3) = {a,a+1, ..., Qmaz }-

In order to do this we successively compute gs(v), gs(zi), i =1,2,..., g,
and gs(v:),i=1,2,..., b=2¢%—3g—1. At first, we obtain gy (v) = g(g +
1) = a because of (A). Then it is true that {gs(w) |i=1,2,...,2ip+1=
292 —49—3} = {amaz = 3¢°—9—1, @Gmaz—1 = 3g2—g-2, ..., g>+3(g+1)}
and {g5(vi) | i = 26042, ..., b} = {92+39+2, g2+3g+1, ..., g2+%g+l}
and {g;(z:) |i=1,2,...,9} ={®*+39+2,9°+3g+1,...,0° + 39+
3Yu{e®+2g, 9> +39-1,...,a+1= g% +g+1}, whose proofs is a matter
of routine checking, each. This completes the proof of Theorem 1 and the
infiniteness of 'y (P).

Now we turn towards the infiniteness of I's( P), for which a proof analogous
to that of Theorem 1 can be given. For sake of brevity we merely state
Proposition 2 which corresponds to Proposition 1.
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Figure 3b: Ps 53 is (42, 1)-antimagic
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Figure 3c: P 103 is (72,1)-antimagic
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Figure 3d: Py 169 is (110, 1)-antimagic
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For the set T'y(P) = {Pys € T(P) | b = g2 —2g — 1, g > 4} of parachutes
the following is true.

Proposition 2:

/\ [Py,g2-24-1 €T3(P) — Py g1-24-1is (29 +1,2)-anti-
gEN

g4 magic and @47 = 2¢% — 1]

Now the following theorem holds. We omit details of its proof and confine
ourselves on sketching its main ideas.

Theorem 2:

/\ [Pg,42-24-1 is (2g + 1, 2)-antimagic|

g€EN
g4

Proof: Again it is appropriate to distinguish the two cases a) g is odd and
b) g is even. Let Py ga_s,_, g > 5, g = 1(2), be a parachute in I'y(P). The
proof is by construction a bijective mapping f : E;p — {1,2,..., |Eg 5},
b= g? — 29 — 1, and showing that f is a (2¢ + 1,2)-antimagic labeling of
Py 5 € T2(P). Since this proof is very similar to the proof given in Theorem
1, details are omitted. But it is remarkable that we use the identity (B) by

(B) A [g2 = i(2i—1)+4=5+7+---+(2g—l)+4]

QEN 1=3
g25,

instead of identity (a) mentioned above. The bijective mapping f : £, —»



{1,2,...,|Eqs|}is defined as

4

Egp — {1,2,..., lEg.bl =g%- 1}

hl-—>92—1
hy —2g—3
hs — 4

hi —7+2(:i-4), 1=45,...,9-2
he-y — 29— 1

hg — 5

f:{ ef—1

eh — 3

e;_l—->2
ehyi — (20 —4) =2, i=0,1,..,g-5
e— g2 -3

e — 2g—2

Nje

321'—1__’92—21'1 i=1121"';

L €2 ——)gz—3—2i, i=1,2,_,,,£;_2.

Figure 4 shows a (23, 2)-antimagic labeling of Pj 8.
In case b), g = 0(2), the auxiliary equation (C) by

(C) N F#-2=3+5+... +(29-3)+29-2

gEN
g>4
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Figure 5: Pjo 79 is (21, 2)-antimagic
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is used to show that the bijective mapping f : E;p — {1,2,...,|E s}
defined as

Eg’(, — {1,2, e |Eg_b| = y2 - 1}

hy — g% -1
hg—l —)29-—2
hy — 293

hi —2¢g—-5-2(:1—-2), i=2,3,...,9-2

fiq €1 —1

e — 2, i=1,2,...,9-2

e— g2 —2
e — 291

esi1 — g2 — (2i+1), i=1:2,---’b_Tl

ey — g>—2(i+1), i= 1,2,...,%

\

is in fact an (2g + 1, 2)-antimagic labeling of Py g2_s,_,. Figure 5 shows an
(21, 2)-antimagic labeling of P1o,79-

3 Infiniteness of I'(P)

Now we consider the set I(P) = {Pys € T(P) | b = 4 (2¢> - 5g-3),
g > 9}. In order to show that each parachute Py, € I'(P), with g = 0(3)
or g = 1(3), g > 15, is (@, d)-antimagic, we firstly prove

Proposition 3:

/\ [Py.%(2g’—59—3) er'(p) — Py,%(2y’-5y—3) is

geN
927 2
g #2(3) (g_%—_i, 1) -antimagic and @maz = g(g9 + 1)]
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Proof:

Let Py, 4 (252-54-3) be a parachute in T'(P). Since [V (A
29(9—1)and IE (Pg’%(zgz_sg..;;))l =1 (2¢° + g — 3) we obtain with b =
5 (29° — 59 — 3) from (1) § (29+1)(29+3) = 2a+$ (242 — 29 — 3), which
is equivalent to

(3) 4¢°+8g+3=6a+d(29°—29-3).

Since for each g € N, the numbers 4g2 + 8¢ + 3 and 2¢2 — 29 — 3 are odd,
(3) shows that d must be odd. Furthermore, we assert that d = 1. Simple
computation shows that even for g > 7 and d > 3 equation (3) yields a < 0,
which is a contradiction.

Putting d = 1, we obtain from (3)
3a = g% + 59 + 3.

From our assumption g = 0(3) or g = 1(3) follows, that a = -"ig“—a €N.
Finally we obtain amaz = @+ [V(Py, 1 (2g7s5g-3)| — 1 = L322 4 2005 _
1)—1=g(g+1).

Now we prove the existence of an (92—'*:5,”—3, 1)-antimagic labeling for each
parachute Py 1 (502_50_3), § > 9, 9 # 2(3).

Theorem 3:

/\ Py,é (20°-59-3) is (92—*-55-‘71§, 1)-antimagic

geEN

9#2(3)
929

Proof: To prove this theorem we distinguish the two cases a) g = 3(6) or
g = 1(6) and b) g = 0(6) or g = 4(6).
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a) Let g = 3(6), ¢ > 9, andb=§(2g2—5g—3),then an appropriate edge
labeling of P, is given by the bijective mapping

E(Pyp) — {1,2,...,|E(Py)]}

hy —1

hi —g+(i-2), i=23,...,4¢-1)-1
hygonypi — E244, i=0,1,...,, 58
hgeg — 2g-1

hg_y —2g—-3

hy — 29 -2

f:J e — |E(Py)l = § (29 +9-3)

¢ —y=|E(Pu)l -3 =5 (20" +79-3)
ehip1 — TH+i=39(9+2)+i, i=0,1,...,53
eh; — 141, i:l,2,...,9;—l

2
. . . -4
ezl —zx—14, i=12,...,ip=4LZ2

3
€2ip+1 — 29 — 4
eZio+l+2j_’(2g_4)_j) j=1’2,_”’9;‘_3

ez — |Bgpl—i=4 (20 +9-3)—i, i=12..,52

Now we have to check whether the induced mapping g, is injective and
91(V(Pgp)) = {a =3 (9°+59+3),a+1,a4+2,...,0ms = g(g + 1)}.
As the proof of the injectivity of g; is a matter of routine checking we
only need to show that g;(V(P;3)) = {a,a+1,...,amez}. In order to
do this we successively compute the values g;(v), g;(z1), gs(v1), g;(v:),
1=2,3,...,b,95(xi),i=9g—-2,9- 1,9, _q/(a:g),i=2,3,...,2(g 3), and
91(T1g-1y4i)s 1 =0,1,. ., 833, At first, we obtain g;(v) = Z f(hi) =

14696+ (H2+ 22 4 +g-1)+(g+ g+ 1) +-- +(g+9‘—7))
92+9—1 = amaz—1. In the same way we get g;(z;) = f fe)+f(e))+f(h) =

(22 +9-3)+ 3g(g+2)+1 =9(9+1) = amaz. gs(01) = fle)+ f(er) =
Amaz — 2; for 1 = 2,3,...,ip = -"—9-, we obtain the values gy(v;) =
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Figure 6: Ps 3g is (43, 1)-antimagic

2 -
Gmaz —3, 97 (V3) = Gmaz —4, .., 95(v2io) = fleai) + flezio—1) = L2,
For i = i+ 1,70+ 2,...,b — 1 the corresponding values are gs(v2io41) =
2 2 _
Flezig1)+f(e2i,) = 2441 ~50md = =18 g (i) = LIS,

o gp(ve—1) = fles—1) + fles- 2) 2"’_—5+ g"’i7"’—+ 1= 9:5'—89_—6 The
last value gy(vs) = -"is-"'—g Now it remains to compute the values gs(x:),
1=2,3,...,g. In case ofz =g, 9—1and g — 2 we obtain gy(z,) = f(e') +
Flhe) + f(ey-1) = } (207 +Tg = 3) +20 — 2+9ﬁ—92f‘—;&-—6,g,(xg-.)=

F(ey_g) + F(€y_y) + Flhgor) = 2EELI=0 4 221 4 9g _ 5= C4119=12 o
9s(zg-2) = fley_3) + f(eg—2) + f(hg—2) = ’;—‘ + B0 99— 1 =

g*+11g-9
3 .

It is a matter of routine checking to see that the still missing g — 4 integers
a= %(g2+5g+3),a+1,...,a+g—5= g7(vs) — 1 appear as values of the
induced mapping g; at the g — 4 vertices z2,z3,...,Z4-3.

Figure 6 shows a (43, 1)-antimagic labeling of P 3s.
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Figure 8: Py3 75 is (69, 1)-antimagic
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Hence it is shown that g;(V(Pyp)) = {a,a +1,...,amasz} and f is a
(-13- (g2 +59+3), 1)-antimagic labeling of the parachute P L(292-5¢-3)"
Figure 7 shows an (79, 1)-antimagic labeling of P390 which corresponds
to g = 1(6). In this case, too, the edge labeling f defined above yields an
(-"i"'—gﬂé, 1)-antimagic labeling for Py 1 (252-54-3), 9 = 1(6), g > 7. Hence
part a) is completely proved.

Now we deal with case b), g = 0(6) or g = 4(6). Firstly let g = 0(6).
Figure 8 shows an (69, 1)-antimagic labeling of Pi275. This gives us the
motivation to define the edge labeling f for Py 1(352_54-3) in the following
way.

Eq 1 (2g7-59-3) — {1,211 | Eg 3 2g2-54-9)}

hy —> 1

hi —g+i for i=23,...,£+1

hi —i+1 for i=4$+2,443,....§+f=y
e — |E(Pyp)l = 5(20° + 9 - 3)

fiqe—

ehiys — Sg(g+2)+i, i=0,1,...,§-1=%2
ey — 1+, i=1,2,...,§-1=42

e — |Egpl—i=L(20°+9-3)—i, i=12,...,5¢

esioi — Jolg+2) =i, =121

ez — £

\

In order to show that g;(Vy3) = {a,a+1,...,amaz} We successively com-
pute the values g;(v), gs(z1), gs(v1), gs(i), i = 2,3,...,b, gg(zi), i =
2,3,..., 4+ 1, gs(z:), i = §+2,...,9. At first, we obtain gy(v)

9
igf(hi) =1+ (9g+2+g+3+--- +g+%+1) + ((%+3)+(%+4)+... +

(¢+1) = 593'89-9;8- = @maz — 1. Similarly g;(z1) = f(e) + f(e}) + f(h1) =

(2% +g- 3)+Lg(g+2)+1=g(g+1) = ama and gr(v) = f(e) +

f(el) = Gmee — 2. fi=2,3,...,b—3 then y!(v.') = f(e:) + f(ei-1) gives
2 9

the set {g;(v2),97(v3),...,97(vs-3)} = {@maz —3,amaz —4, . .., +g =

It
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48

102?—--- 67 ———@ 66
66 P18

103 @ : ® 65
37 47

104I * 64
67 17

105 @63
38 46

106 @ 53
68 7

107 52
39 45

108 ® 51

Figure 9: Pjg 49 is (51, 1)-antimagic

a+g+2}. Furthermore, it is easy to see that g;(vy—2) =a+2, gy(vs-1) =
a+ 1 and gs(vs) = a. It is a matter of routine checking to show that
{97(2:) |1 =2,3,...,9} ={a+3,a+4,...,a+g,a+ g + 1}. This proves
gj(V:q,b) = {ava"' L. ';amax}-

Now let g = 4(6). Figure 9 shows an (51, 1)-antimagic labeling of Py 49.
It turns out that in the case g = 4(6) the appropriate edge labeling f for
Py 1 (242-54—3) 15 exactly the same as described in the former case g = 0(6).

g3
Hence b) and consequently Theorem 3 is completely proved.

4 The Existence of a Minimum Integer b,,;,

Because of the infiniteness of I'y(P), I'2(P), I'(P) C I'(P) we know that
[(P) is an infinite set. This fact arises the question whether it is possible
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to determine the set I'(P) explicitely. Since the complete answer to this
question is very extensive we have to restrict ourselves to dealing with a
partial solution by showing the existence of a minimum ¢, or bmin for
every g > 26 such that for each divisor ¢’ smaller than ¢m;, the correspon-
ding parachute P, s is not (a, d)-antimagic. In order to do this it is useful
to introduce some auxiliary concepts. At first we consider the two quadratic
auxiliary functions r(b) and s(b) defined in the following way

R—IR
T
b—s 362 +b (3499 — g°) + Tg> + 49 — ¢

and

R—R
S .
b— 4b% + b (4 + 11g — ¢%) + 8¢% + 59 — ¢°

where g > 4 is an arbitrary integer. While r has the two zeros b;(r) =
L (g2 -9g—3-vDr) <0and by(r) = § (¢° - 99 -3++D;) >0, dis-
criminant D, = g* — 6¢% — 9g% + 69 +9 > 0 for every g > 8, the other qua-
dratic function s has got the two zeros b;(s) = £ (¢2-119g-4-+D,) <0
and by(s) = L (g2 — 11g — 4+ v/D;) > 0, discriminant D, = gt — 6g3 —
159%+48g+16 > 0 for every g > 15. Forevery g > 16 there exists a nonnega-
tive real number by(r) = & (2¢° — 13g) such that by(r) < by(r) and r(b) < 0
for every b in the open interval (b1(r), b2(r)). In the same way one can show
the existence of a real number by(s) with 0 < by(s) = 29%9- < bo(r) for
every g > 19 with the property s(b) < 0 for every b in the open interval
(b1(s), b2(s)). Comparing the two positive zeros by(r) and by(s) of r and s
it turns out that the inequality b2(s) < b2(r) holds for g > 15. Similarly,
the inequality b,(s) < bi(r) is true.

The graphs of r and s are parabolas whose extremal points have the b-
coordinate by (r) = 92—'3"—3 and by(s) = § (9% — 11g — 4), respectively (Fi-
gure 10).

In order to show the relationship between the two quadratic functions r,s
on the one side and the parachutes Py, ¢ > 3, b > 1, on the other side,
we assume Py, is either (ay,1)- or (a2, 2)-antimagic (compare Proposition
3 below). Putting d = 1 or d = 2 in (1) we obtain the two equations
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‘
,/5(40,5)=5(b)
,/ for g=40

r(40,b)=r(d)

, for ¢=40

Ba(s)=325 +* Ba(r)=446.6
i

1 Vs
L 7, L}
3007 3279 400

S~ -

Figure 10

(49) 2a1(g+b+1)+(g+b+1)(g+b) 2(20+b)(29+b6+1)

(5) az(g+b+1)+(g+b+1)(g+0b)

(20+b)(29+b+1).

These two equations imply the desired relationship given as

glg+1) _ r(b)

(6) Amar,1 — 2 = m and
glg+1) s(b)
(7) Umaz,2 — —2— = WI—)

such that we have as an immediate consequence
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Proposition 4:

(a) A A [P is(a1,1)-antimagic — r(b) > 0]
g>4 b2>1

(b) /\ /\ [Py is (az,2)-antimagic — s(b) > 0]
g>4 b2>1

The proof is an immediate consequence of the inequality

Qmaz,i 2 g—('g—;:l_), 1=1,2.

Looking at Proposition 4 one immediately notices that it only deals with
the cases d = 1 and d = 2. The following proposition shows that we are
allowed to restrict ourselves to considering the values d = 1 and d = 2 for
we begin by establishing Proposition 5, which asserts that a parachute P,
can only be (aj, 1)- or (az,2)-antimagic — a;, a; are suitable integers > 3
— for sufficiently large g € N.

Proposition 5:

/\ /\ [P,s is (a,d)-antimagic — d =1V d=2]

g,beN a,deN
g>24 a>3

Proof: The proof is divided into several steps. Assume g > 45 and let

Py 5 denote an (a, d)-antimagic parachute. From the Diophantine equation
(1) follows

8 a = 2_(.Hlb—+l)(g2(s_d)+gb(s—2d)+g(4-d)+

+52(2—d)+ b(2 - d)).

From (8) we see that d is necessarily < 7 (for d > 8 the integer a is
negative). In the next step we give an estimate of the quotient #. By using
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@maz = a+ (g +b)d and amaz > 1 (g + 1) such that

g+b 1
9 d> 3
© = g +o+ D) (°+9

%b - 697 — Tgb — 3¢ — 26 — 2b?)
we find
b1
1 ->
(10) =2 15(29-27).

Observing (1) and a > 3 we finally obtain

1
(g+b)(g+b+1)

(11) d

IA

(84” + 8gb — 29 + 2b% — 4b — 6)

8+82 +2b

< W<3 for every g > 45.

In the case of 24 < g < 44 we have to check the 21 values g = 24,25, ..., 44
It turns out that every (a,d)-antimagic parachute Py;, 24 < g < 44, is

either (@1,1)- or (a2,2)-antimagic. Since this proof is a matter of routine

checking we omit details. This completes the proof of Proposition 5.

The great advantage of Proposition 5 is the fact that d = 1 and d = 2 which

simplifies the following investigations decisively.

Now we turn towards the most essential auxiliary concept of a g-minimum

integer by, for every g > 3.

Definition 1:

Let g > 3 be an arbitrary integer. An integer bmin, > 1 is said to be g-
minimum iff there exist two positive integers a > 3, d > 1 such that the

following two conditions are satisfied

(12)  g,bmin,a,d fulfill the Diophantine equation (1) and

1
Gmaz = a+ (g +b)d > §g(g+1) and
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(13) /\ [b < bmin — Pg,b ¢ F(P)] :
beN

In order to show that for every g > 3, with exception of finitely many

integers there is an integer bmin we have to consider the set N modulo 4.
Then it holds

Theorem 4:

2_5g-4

(2) A bmin =T
g =0(4)
g2>16

(b) /\ boos _g_z_ﬂ.

mn — 4

=1(4)
g2117

Proof: Ad (a). Let g > 16 be an element of N divisible by 4. Putting
bmin = 91‘—39‘—4 the Diophantine equation (1) is satisfied iff @ = 2¢ + 4
and d = 2. Then condition (12) is fulfilled such that because of amasz =
9i29+—4 > 92—;‘-"- Putting bnin = 92—'}9;2 we obtain s(bmin) > 0. Now we
will show that condition (13) is also satisfied. The corresponding divisor
tmin Of bmin satisfies the equation —M = 8. Assume b is an integer
< bmin- Then we know that the correspondmg divisor ¢ | 2¢(g — 1) satisfies
the inequality M > 9. If ¢y denotes the biggest divisor of 2g(g -1
with g < tmin wWe know that the corresponding bg = tg—g—1= —-"'—;19_—9.
Comparing bo and by(s) = Zﬁgm we recognize that by < by(s) for every
g > 24. This implies s(b) < 0 for every b < bp. Due to Proposition 4
P;,b ¢ T(P). For g = 16 and g = 20 we consider b’ = M g—1=
£=84=5 instead of by and compute the values s(b') = —480 for g =16 and
s(b') = —2280 for g = 20. These two facts complete the proof of (a).

Ad (b). Because of the similarity of the proof we can omit details. It is
worth to be mentioned that s(b') ¢ N for g = 17 and s(b’) = —302 for
g=21.
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Theorem 5:

2_49-3 >—49-3
/\ bmin=g+y /\ bmin=g+
9 = 10(12) 9=7(12)
9234 g>31
2_49-3 2-49-3
/\ bmin=g+, /\ bmin:ng
g =6(12) 9 = 3(12)
g>30 9227
292 -7g-5 292 -7g-5
A b= A 2oTeoS
g = 26(60) 9 = 35(60)
g2>26 g2>35
292 —7g-5 292 -79g-5
/\ bmin=g+’ /\ bmin=gT
g = 50(60) g = 11(60)
g>50 g>T1
2 2
9°—39-2 _9°—3g-2
/\ bmin=Tx /\ bmin—T
g = 38(60) g = 14(60)
g2>38 g274
2_39g-2 92 —~3g-2
/\ bmin=g+; /\ bmin=T
g = 2(60) g = 47(60)
g 262 g > 47
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2_3g-2 2_3g-2
/\ bmin = g__zi__’ /\ bmin = 2_2_9_
g = 59(60) g = 23(60)
9259 g2>83

Proof: Theorem 5 settles the cases g = 2 modulo 4 and g = 3 modulo
4 for we have 34 = 312U T12U Tigo U 2360 U 3560 U 4760 U 5960 and 24 =
-6-12 U-mlg Uiso Uﬁeo U-2_650 U3_8.50 Umso where Tp,, £ € No, m € N, denotes
the residue class modulo m of the integer z. Now we come to the proof of
the first statement. Assume g is an element in 10,5 such that g = 12k + 10,
k > 2. In order to show that bmin = 3 L(g2—49-3)is g-mmlmum we have
to verify that bmin satisfies Definition 1. Putting bmin = 3 (g2 -49-3)
the Diophantine equation (1) becomes

(14) 6a+ (¢> —g—3) d=2¢°+10g +12

implyingd = 2and a = 2g+3 Since Gmaz = a+(g+b)d = § (20 +49+3) >
1 (g% + g) the integer 3 1 (g% — 4g — 3) fulfills condition (12) The proof of
condlt.lon (13) is much more complicated and much trickier. If we denote
the corresponding divisor of 2g(g — 1) of bmin by tmin = 3 1 g(g—1) we have
that the quotient —’L’—l)- 6. Assume that b is a positive integer such that
the corresponding d1v1sor t = g +b+1 of 2g(g — 1) has the property that
the quotient —1-9—2 is a positive integer > 7. If to denotes the divisor with
2—9(”7_—2 =T the correspondmg bo has the value by = % (2¢% — 9¢ — 7) such
that (1) becomes

(15) 1da+ (2¢>—29—7) d=4¢"+249+35

implying d = 1 and a = 1 (g2 + 13¢ + 21). If we compare bo and ba(r) =

L (2g — 13g) we immediately recognize the inequality bg < ba(r) for every
g > 34. Because of Proposition 4 the inequality 7(b) < 0 is true for every
b < bo such that every parachute P, is not (a,1)-antimagic for every
b<bp=1 (2g —9g — 7). Therefore, due to Proposition 4, it remains to
show that every parachute P, cannot be (a,2)-antimagic for every b < by.
Since the number b = 9—:751-"'—4 ¢ N for every g = 10(12), g > 34, it suffices
to consider the divisor t = 3“’—(%12. The corresponding b = % (292-11g-9).
Since b < ba(s) = & (2¢? — 159) we obtain s(b') < 0 for every b < by <
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52(3) such that each parachute P,;, ¢ > 34, is not (a, 2)-antimagic. This
completes the proof of first statement.

Similarly, we can carry out the proofs of the next three statements such
that further details are omitted.

In the case of the 5. statement, assume g is an arbitrary integer > 26
from 2660 such that g = 60k + 26, £ > 0. In order to prove that by, =
% (242 —T7g—>5) satisfies Definition 1 we first show that b,,;,, fulfills condition
(12) in the following way. Putting bmin = £ (2¢2 — 7g — 5) (1) becomes

(16) 10a+ (2¢° — 29 —5) d = 49> + 169 + 15

implying d = 1 and a = } (g% + 99 + 10) € N. Since anaz =a+b+g =
$(3g2 + 79 +5) > "”—;’1, (12) is satisfied by bpn. A short sketch of the
proof of condition (13) is given, because the whole proof is very extensive.
Since the corresponding divisor {min = m‘;‘—ll of bnin gives the quotient
2’t z;l = 5 assume b is a positive integer such that the corresponding
divisor ¢y satisfies the equation 2—”(30—_9 = 7 (the quotient cannot be equal
to 6). Then by = % (292 — 99 — 7) < b2(r) and we can quote the result of
the preceding part of the proof of first statement where it is shown that the
parachute P, ; is not (a, 1)-antimagic for every &' < by. Therefore, due to
Proposition 5, it remains to show that every parachute P, ; cannot be (a, 2)-
antimagic for every b < bo. Assume b= § (292 - 119 - 9) (2—g(gt;12 =8is
not possible). Then according to the proof of the first statement we know
that b < by(s) for every g > 26 such that P, ;, cannot be (a,2)-antimagic
for every b’ < b < by(s). This completes the proof of our statement.

For the sake of shortness we omit the remaining cases. Their proofs are
similar to the two proofs given above.

If T'(g), ¢ > 3, denotes the set T'(g) = {Pyp € I'(P) | bmin < b < bmaz}
then we can ask for the cardinality of I'(¢g) for any g > 3. The answer is

Corollary 1:

(a) N\ le=0(4)Vvg=1(4) — T(g)| < §]

geEN
9226
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(b) A A lg = m(12) — [T(g)] < 6]
geN me{3,6,7,10}

g=>27

(c) A A [g = m(60) — |T(g)| < 5]
geN me{l11,26,35,50}
g=>26

@ A A v = m(60) — [T(g)| < 4)
geN me{2,14,38,47}
g>38

Proof: Due to Theorem 5 we know that b,,;, has four different values,
namely bmin = + (92 —59—4), blnin = 5 (97 —49—-3), bin = 5 (29° 79 -5)
and bmin = % (9% —39—2), g > 26. The corresponding divisors of 29(g—1)
are tmin = §(9—1), tnin = $(9-1), tmin = 259' (9—-1) and Zmin = § (9-1),
respectively. Assume P, € T'(g), g > 26. Then it is necessary that the
corresponding divisor ¢ of b satisfies one of the four inequalities imin <t <
tmaz = 29(9—1), £ i <1 < tmaz, thin <1 < tmaz OF Imin <t < Lmaz and
has the property that the quotient ;s = 2g9(g — 1)/t is an integer. This
fact proves the four statements (a)-(d) such that Corollary 1 is completely
proved.

Theorem 5 and Corollary 1 give the possibility to determine the set T'(P)
of all (a, d)-antimagic parachutes. The first could be done in Theorems 1,
2, 3 by determining 'y (P), I'2(P) and I'(P).
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