Counting frequencies of configurations in Steiner Triple Systems

P. Horak

Katedra matematiky, EF STU 81219 Bratislava, Slovakia

N.K.C. Phillips

Department of Computer Science Southern Illinois University Carbondale, IL 62901-4511

W.D. Wallis and J.L. Yucas Department of Mathematics Southern Illinois University Carbondale, IL 62901-4408

1 Introduction

A Steiner triple system of order v is a pair (V, B) where V is a set of cardinality v and B is a family of 3-subsets of V having the property that every pair of elements of V occurs exactly once among the elements of B. A Steiner triple system of order v is denoted by STS(v). The elements of V shall be called points and the elements of B shall be called lines.

An *n*-line configuration or *n*-configuration, $n \ge 1$, is any collection of n lines of an STS(v). Two n-line configurations are considered isomorphic if there is a bijection between the points of the configurations carrying lines to lines. Points of an n-line configuration are sometimes referred to as vertices of the configuration and the degree of a vertex is the number of lines that vertex is on in the configuration.

An *n*-line configuration is called *constant* if for any given admissible value of v the configuration occurs the same number of times in every STS(v). Otherwise the configuration is called *variable*.

In [1] the authors showed that for n = 1, 2, and 3, every n-line configuration is constant. For n = 4, they showed that five of the sixteen 4-line configurations were constant and the rest were variable. The number of occurences of each variable configuration could be written as a constant plus a multiple of the number of Pasch configurations. (See Figure 1.)

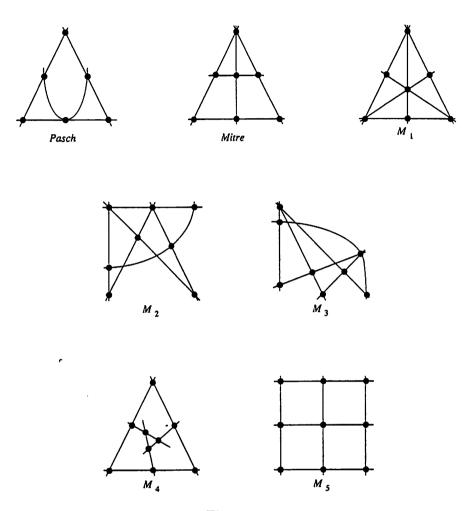


Figure 1

A generating set M for n-line configurations is a set of m-line configurations, $1 \le m \le n$, such that for each admissible v the number of occurences of any n-line configuration can be expressed as a linear combination of the number of occurences of the configurations in M, where the coefficients are polynomials in v. A minimal generating set will be called a basis. So, using this terminology, it has been shown in [1] that any constant configuration and the Pasch configuration together form a basis for 4-configurations.

An Erdös configuration of order n is an n-line configuration on n+2 points which contains no subconfiguration of m lines on m+2 points, 1 < m < n. For example, the Pasch configuration is an Erdös configuration of order 4. It was conjectured in [1] that any constant configuration, e.g.,

the "star", n lines all intersecting in a common point, together with all Erdös configurations of order m, $1 < m \le n$, form a basis for the n-line configurations. From [1], the conjecture is true for n = 1, 2, 3, and 4.

In this paper we prove that an arbitrary constant configuration together with all m-line configurations, $m \le n$, having all vertices of degree ≥ 2 , form a generating set for the n-line configurations. When n = 5 this collection is the same as the collection of the conjecture above. This means that when n = 5 the generating set is also a basis, so the conjecture is true.

We also show that, for n=6, our generating set forms a basis. This basis has 8 elements (see Figure 1) which refutes the conjecture in [1]. The above statement and additional supporting evidence leads us to:

Conjecture 1. A constant *n*-configuration together with all *m*-line configurations, $m \le n$, having all vertices of degree at least 2, form a basis for *n*-configurations.

In addition, we show that the five n-configurations in Figure 2 (which are all possible n-configurations that can be obtained from a star on n-1 lines by adding a line) are constant configurations. We strongly believe the following conjecture is true.

Conjecture 2. For any $n \ge 3$ there are exactly 5 constant configurations.

2 The Generating Set.

For a configuration C we denote by |C| its number of occurrences in a Steiner triple system. If L is a line of C then by C-L we understand a configuration obtained from C by removing the line L and all isolated vertices, if any.

The next theorem is the main result of this paper.

Theorem 1. Any constant n-configuration together with all m-line configurations, $m \leq n$, having all vertices of degree at least 2, form a generating set for the n-line configurations.

Proof: Let STS denote a fixed Steiner triple system on v points.

We prove the theorem by double induction on n and s, where s is the number of vertices in an n-configuration. The statement is trivial for n=1. Suppose n>1 and the statement is true for all n-1 configurations. Let C be an n-configuration on s vertices. If all vertices of C are of degree 2 we are done as in this case C belongs to our generating set. So suppose C contains a vertex of degree 1. Further, assume that the theorem is valid for all n-configurations on s-1 vertices. We show that |C| satisfies the relation

$$p(v)|C'| = \alpha|C| + \alpha_1|C_1| + \cdots + \alpha_m|C_m| \tag{1}$$

where C' is an (n-1)-configuration, C_1, \dots, C_m are *n*-configurations on s-1 vertices, p(v) is a polynomial in v, and $\alpha, \alpha_1, \dots, \alpha_m$ are absolute

constants depending only on the structure of C and not on our choice of STS. When s is the smallest value, i.e., C is an n-configuration with the smallest number of vertices among all n-configurations, then the right hand side of (1) is just the term $\alpha|C|$. C is either a generator or can be expressed in terms of C'. Obviously, proving (1) finishes the proof of this theorem. Let $L = \{u, v, w\}$ be a line of C such that at least one of the vertices, u, v, w is of degree 1 in C. Let C' = C - L. We distinguish three cases:

I. All three vertices, u, v and w are of degree 1 in C. Denote by C_1, \dots, C_m all non-isomorphic n-line configurations on s-1 vertices which can be obtained from C' by adding a new (pendant) line $L^* = \{x, y, z\}$, where x is a vertex from C' and y, z are new vertices (and thus will be of degree 1 in $C' \cup L^*$). Now consider all C' configurations of STS, i.e. all occurences of C' in STS. To each of them we add a line $M = \{u, v, w\}$ for all possible choices of vertices u, v, which are not in C'. In this way we obtain $\binom{v-(s-3)}{2}|C'|$ n-line configurations of STS, because C' is on s-3 vertices. Not all of them are necessarily distinct but any of them is isomorphic to one of C, C_1, \dots, C_m . Therefore

$$\binom{v-s+3}{2}|C'|=\alpha|C|+\alpha_1|C_1|+\cdots+\alpha_m|C_m|.$$

To prove (1) in this case it suffices to show that $\alpha, \alpha_1, \dots, \alpha_m$ are absolute constants. For a configuration D we set $S_D = \{D-M, \text{ where } M \text{ is a line of } D\}$. Let b_D be the number of configurations in S_D which are isomorphic to C'. Then any C_i configuration, $i=1,\cdots,m$, and any C configuration of STS has been obtained by the procedure described above from b_{C_i} different C'-configurations and from b_C different C' configurations respectively. Hence, for $1 \leq i \leq m, \alpha_i = b_{C_i}$, and $\alpha = 3b_C$ as by three different choices of the pair of vertices u, v we get the same configuration C from a fixed configuration C'.

II. Precisely two vertices of the line $L=\{u,v,w\}$, say u and v, are of degree one in C. Let k be the number of vertices of C'=C-L such that adding a pendant line to C' at any of them results in a configuration isomorphic to C. Clearly, the vertex w is one (possibly the only one) of them. Let K be the set of these vertices. Further, let C_1, \dots, C_m be all non-isomorphic n-configurations on s-1 vertices obtained from C' by adding a line of the form $\{w',x,y\}$, where $w'\in K$, x is a vertex of C' and y does not belong to C'. This means that w' and x are not on a line in C'. Consider all C'-configurations of STS. To each of them add a line $\{w',x,y\}$, $w'\in K$, y is not in C' for all possible choices of w' and y. Clearly, this yields k(v-(s-2))|C'|, not necessarily distinct, n-configurations, as C' is on s-2 vertices. Any of them is isomorphic to one of C, C_1, \dots, C_m . Therefore, $k(v-(s-2))|C'|=\alpha|C|+\alpha_1|C_1|+\dots+\alpha_m|C_m|$. Let b_D be defined as in case I. Then $\alpha_i=b_{C_i}$ for $1\leq i\leq m$ and $\alpha=2b_C$ as by two

different choices of the vertex y we obtain the same C-configuration from a given C'-configuration.

III. Exactly one vertex, say u, of the line $L = \{u, v, w\}$ is of degree 1 in C. Let $K = \{\{v, w\} : v, w \text{ are vertices of } C'\}$ be the set of all pairs of vertices such that $C' \cup \{v, w, x\}$ is isomorphic to C. Set k = |K|. Let C_1, \dots, C_m be all non-isomorphic n-configuration on s-1 vertices of the form $C' \cup \{v, w, z\}$, where $\{v, w\} \in K$ and z is in C'. To any C'-configuration of STS we take k n-configurations of the type $C' \cup \{v, w, x\}$ where $\{v, w\} \in K$. Any of them is isomorphic to one of C, C_1, \dots, C_m and we have

$$k|C'| = \alpha|C| + \alpha_1|C_1| + \dots + \alpha_m|C_m|$$

where $\alpha_i = b_{C_i}$, $i = 1, \dots, m$, $\alpha = b_C$. The proof is complete.

Remark 1. Since we showed how to determine all coefficients in (1) one could use (1) for deriving, for any n-configuration C, a formula expressing the number of occurences of C in terms of the numbers of occurences of the elements from the generating set.

Remark 2. It is possible to define the notion of generating set for n-configurations in Steiner systems with block size k > 3. In this case Theorem 1 would read that the set consisting of a constant n-configuration and all m-configurations, $m \le n$, with the property that each line of them contains at least 3 vertices of degree at least 2, is a generating set for the n-configuration. The proof of the theorem would require only trivial modifications.

Theorem 2. Any constant configuration, together with Pasch and Mitre configurations (see Figure 1), form a basis for the 5-configurations.

Proof: It is easy to check that for $m \leq 5$ there are only two configurations, Pasch and Mitre, with all vertices of degree at least two. Thus, the three configurations in the statement of the theorem form a generating set for the 5-configurations. The minimality of the set is proven in [1], so it is a basis.

Theorem 3. The seven configurations listed in Figure 1 together with any one constant 6-configuration form a basis for the 6-configurations.

Proof: First of all we need to show that the set given above is the set of all m configurations, $m \le 6$, with all vertices of degree at least 2. As mentioned in the proof of Theorem 2, for $m \le 5$, there are exactly two such configurations, the Pasch and Mitre configurations. For 6-configurations with the property we get that none of them could have a vertex of degree 4, so all vertices are of degree either 2 or 3. A trivial calculation shows that for the number s of vertices we have $7 \le s \le 9$. If s = 7 then the configuration is M_1 , a Fano plane without one line. For s = 8, we have

that the configuration has exactly two vertices of degree 3. If these are on the same line we get configuration M_2 from Figure 1, if they are not, the configuration M_3 . Finally, for s=9, all the vertices are of degree 2. If there is a triangle it has to be M_4 , if there is no triangle in it we get M_5 . To show that this generating set is also a basis, it is sufficient to take the eight STS on 19 vertices given in the Appendix and find out the number of occurences of all 8 configurations in all of them. The numbers are listed in matrix A where each row corresponds to one STS and each column corresponds to a particular configuration. As the rank of A is 8 the set forms a basis.

	star	Pasch	Mitre	M_1	M_2	M_3	M_4	M_5
	1596	18	38	0	161	44	346	73
	1596	19	38	1	181	27	325	91
	1596	9	38	0	211	28	324	70
A =	1596	17	23	1	210	45	305	60
	1596	12	42	0	187	30	339	80
	1596	12	29	2	220	45	325	69
	1596	14	31	0	209	29	305	69
	1596	24	52	4	129	44	428	75

Remark 3. The numbers in A were obtained by computer. Although the calculation is not a complicated one, we used two different programs. The first one took all 4-,5-, and 6-configurations and checked which of them were from our list. The second program, a fast one, made use of the structure of the configurations.

Let us point out that for orders v=3,7,9 and 13, as there are less than 3 isomorphism classes of Steiner triple systems, the sets given above do not form bases. More interestingly, although there are 80 STS(15)s, a computation shows that a linear basis for 6-configurations among STS(15)s contains only 6 members.

3 Constant configurations

It is not difficult to see the n-star is a constant configuration. Here we show that configurations obtained from a star by adding an additional line are also constant. As we stated in the introduction we believe that there is no other constant configuration. We denote the n-line star by A_n ; there are four other possible n-configurations derived by adding one line to A_{n-1} , and we shall denote them by B_n , C_n , D_n , E_n and define them as in Figure 2.

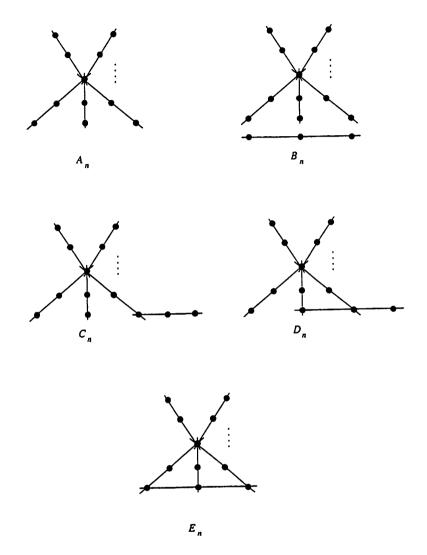


Figure 2

Theorem 4. Configurations A_n , B_n , C_n , D_n and E_n are constant configurations for any admissible value of n.

Proof: Let STS be a fixed Steiner triple system on v points. We shall prove the statement by induction on n. It is shown in [1] that A_n , B_n , C_n , D_n and E_n are constant configurations for any admissible value $n \leq 4$. We could have used (1) to obtain the desired result. However, the following argument

gives a recurrent formula in terms of the given configuration alone. Let F_n be an n-configuration isomorphic to one of A_n , B_n , C_n , D_n or E_n , and let F_{n-1} be an (n-1)-configuration of the same type as F_n , $n \geq 5$. Denote by z the center of the star of F_{n-1} . For each F_{n-1} configuration of STS there are $\frac{v-s-k}{2}$ lines L of STS such that $F_{n-1} \cup L$ forms an F_n configuration (i.e. each of these lines contains z and is a pendant line), where s is the total number of vertices of F_{n-1} and k is the number of vertices of F_{n-1} which are not collinear with z. On the other hand, any F_n configuration is obtained by this procedure from α different configurations F_{n-1} , where α is the number of pendant lines of F_n containing z. Thus

$$\frac{v-s-k}{2}|F_{n-1}|=\alpha|F_n| \tag{2}$$

Hence F_n is a constant configuration.

Remark 4. Using (2) we get

$$|A_n| = \frac{v(v-1)(v-3)\cdots(v-2n+1)}{2^n n!}, \quad n \ge 2,$$

$$|B_n| = \frac{v(v-1)(v-3)(v-7)(v-9)\cdots(v-2n-3)}{3 \cdot 2^n (n-1)!}, n \ge 3,$$

$$|C_n| = \frac{v(v-1)(v-3)(v-7)(v-9)\cdots(v-2n-1)}{2^{n-1}(n-2)!}, n \ge 4,$$

$$|D_n| = \frac{v(v-1)(v-3)(v-7)(v-9)\cdots(v-2n+1)}{2^{n-3}(n-3)!}, n \ge 4,$$

$$|E_n| = \frac{v(v-1)(v-3)(v-7)(v-9)\cdots(v-2n+3)}{3 \cdot 2^{n-3}(n-4)!}, n \ge 5.$$

Acknowledgement

The authors wish to thank Jeff Dinitz and Peter Gibbons for supplying some randomly generated Steiner triple systems of order 19.

References

[1] M.J. Grannell, T.S. Griggs, E. Mendelsohn, A small basis for four-line configurations in Steiner Triple Systems, to appear in *J. of Combinato-rial Designs*.

Appendix

Eight Steiner triple systems of order 19

0 1 16	0 2 18	037	048	0 5 14	0 6 10
0 9 15	0 11 12	0 13 17	1 2 13	1 3 11	1 4 12
1 5 10	1 6 15	1714	1 8 18	1 9 17	234
256	2 7 17	2815	2 9 12	2 10 16	2 11 14
358	369	3 10 13	3 12 14	3 15 16	3 17 18
4 5 15	4 6 17	4 7 13	4 9 16	4 10 11	4 14 18
5 7 16	5 9 11	5 12 17	5 13 18	6 7 11	6 8 14
6 12 18	6 13 16	789	7 10 12	7 15 18	8 10 17
8 11 13	8 12 16	9 10 18	9 13 14	10 14 15	11 15 17
11 16 18	12 13 15	14 16 17			
0 1 15	029	034	0 5 16	0 6 12	0 7 18
0 8 10	0 11 17		1 2 10	1 3 18	1 4 14
1 5 13	1 6 17	179	1 8 16	1 11 12	2 3 11
247	2 5 17	2 6 13	2814	2 12 16	2 15 18
357	368	3 9 15	3 10 17	3 12 14	3 13 16
458	4 6 11	4 9 12	4 10 15	4 13 18	4 16 17
5 6 10	5 9 11	5 12 15	5 14 18		6 9 18
6 15 16	7 8 15	7 10 12	7 11 16	7 13 17	8 9 17
8 11 18	8 12 13	9 10 13	9 14 16	10 11 14	10 16 18
11 13 15	12 17 18	14 15 17			
019	0 2 14	0 3 17	0 4 15	0 5 16	
0 7 18	0 8 13		1 2 15	1 3 11	1 4 16
1 5 13	1 6 17	1714	1 8 18	1 10 12	2 3 10
2 4 11	2 5 18	2 6 16	2717	2 8 12	
3 4 8	3 5 15	3 6 18	3 7 16		
4 5 10	4 6 13	4 7 12	4 9 14	4 17 18	
5 8 14	5 9 17	5 11 12		6 9 15	
7 8 10	7 9 11	7 13 15			
10 13 17	10 15 16	11 13 18	11 14 15	11 16 17	12 13 16
12 14 17	12 15 18	14 16 18			

0 1 18	0 2 10	036	0 4 17	0 5 11	0 7 15
0 8 14	0 9 13	0 12 16	129	134	157
1 6 16	1812	1 10 15	1 11 17	1 13 14	1 5 7 2 3 11 2 12 17
2 4 14	2 5 15	2 6 13	2 7 18	2816	2 12 17
358	3 7 17	3 9 12	3 10 13	3 14 15	3 16 18
4 5 18	467	4 8 11	4 9 15	4 10 16	4 12 13
5 6 14	5 9 16	5 10 12	5 13 17	689	6 10 11
6 12 18	6 15 17	7 8 13	7 9 10	7 11 16	7 12 14
8 10 17	8 15 18	9 11 14	9 17 18	10 14 18	11 12 15
11 13 18		14 16 17			
018	0 2 10	0 3 18	047	0 5 11	0 6 15
0 9 16	0 12 13	0 14 17	127	1 3 16	1 4 10
1 5 15	1 6 17	1 9 18	1 11 13	1 12 14	239
2 4 11	2 5 14	2 6 18	2 8 15	2 12 17	2 13 16
345	3 6 12	3 7 15	3 8 14	3 10 11	3 13 17
4 6 13	4812	4 9 15			
5 7 17	5 9 10	4 9 15 5 12 16	5 13 18	4 16 17 6 7 9	6 10 14
6 11 16	7 8 13	7 10 12	7 11 14	7 16 18	8 9 17
	8 11 18	9 11 12	9 13 14	10 13 15	10 17 18
11 15 17	12 15 18	14 15 16			
016	0 2 12	0 3 13	0 4 16	0 5 18	0 7 11
0 8 15	0 9 10			1 3 14	
159	1716	1 8 11	1 12 17		2 3 15
245	2 6 13	2710	2 8 14	2 9 17	2 11 16
348	3 5 12	3 6 16	379	3 10 17	3 11 18
467	4 9 18				
5 7 17	5 10 13	5 11 15	5 14 16	4 15 17 6 9 15 7 14 15 10 11 14	6 10 12
6 11 17	6 14 18	7 8 12	7 13 18	7 14 15	8 9 16
	8 13 17	9 11 13	9 12 14	10 11 14	10 15 16
12 13 16	12 15 18				
013	027	048	0 5 14	0 6 12	0 9 15
0 10 11	0 13 17	0 16 18		147	1 5 16
1 6 13	189	1 10 18	1 11 17		2 3 11
249	2 5 12		2 8 13	2 10 17	2 14 18
3 4 5	369		3 8 15	3 10 13	3 12 16
3 14 17	4 6 17	4 10 14		4 13 16	4 15 18
5 6 18	579	5 8 17	5 10 15	5 11 13	6 7 10
6 8 14	6 11 15	7 8 12	7 11 16	7 13 14	7 15 17
	8 11 18		9 11 14		9 16 17
12 13 15	12 17 18	14 15 16			

0 1 16	0 2 17	035	0 4 14	068	079
0 10 15	0 11 12	0 13 18	1 2 13	134	1 5 18
1 6 14	1 7 17	1 8 12	1 9 10	1 11 15	238
246	2 5 15	2711	2 9 12	2 10 14	2 16 18
3 6 11	3 7 18	3 9 15	3 10 12	3 13 16	3 14 17
457	4811	4917	4 10 16	4 12 13	4 15 18
5 6 16	589	5 10 13	5 11 14	5 12 17	6 7 13
6 9 18	6 10 17	6 12 15	7 8 10	7 12 16	7 14 15
8 13 15	8 14 16	8 17 18	9 11 16	9 13 14	10 11 18
11 13 17	12 14 18	15 16 17			