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1 Introduction

A Steiner triple system of order v is a pair (V, B) where V is a set of
cardinality v and B is a family of 3-subsets of V having the property that
every pair of elements of V' occurs exactly once among the elements of B.
A Steiner triple system of order v is denoted by ST'S(v). The elements of
V shall be called points and the elements of B shall be called lines.

An n-line configuration or n-configuration, n > 1, is any collection of n
lines of an ST'S(v). Two n-line configurations are considered isomorphic if
there is a bijection between the points of the configurations carrying lines to
lines. Points of an n-line configuration are sometimes referred to as vertices
of the configuration and the degree of a vertex is the number of lines that
vertex is on in the configuration.

An n-line configuration is called constantif for any given admissible value
of v the configuration occurs the same number of times in every STS(v).
Otherwise the configuration is called wvariable.

In [1] the authors showed that for n = 1,2, and 3, every n-line configu-
ration is constant. For n = 4, they showed that five of the sixteen 4-line
configurations were constant and the rest were variable. The number of
occurences of each variable configuration could be written as a constant
plus a multiple of the number of Pasch configurations. (See Figure 1.)
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Figure 1

A generating set M for n-line configurations is a set of m-line configura-
tions, 1 £ m < n, such that for each admissible v the number of occurences
of any n-line configuration can be expressed as a linear combination of the
number of occurences of the configurations in M, where the coefficients are
polynomials in v. A minimal generating set will be called a basis. So, using
this terminology, it has been shown in [1] that any constant configuration
and the Pasch configuration together form a basis for 4-configurations.

An Erdés configuration of order n is an n-line configuration on n + 2
points which contains no subconfiguration of m lines on m + 2 points,
1 < m < n. For example, the Pasch configuration is an Erdos configuration
of order 4. It was conjectured in [1] that any constant configuration, e.g.,
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the “star”, n lines all intersecting in a common point, together with all
Erdés configurations of order m, 1 < m < n, form a basis for the n-line
configurations. From [1], the conjecture is true for n = 1,2,3, and 4.

In this paper we prove that an arbitrary constant configuration together
with all m-line configurations, m < n, having all vertices of degree > 2, form
a generating set for the n-line configurations. When n = 5 this collection is
the same as the collection of the conjecture above. This means that when
n = 5 the generating set is also a basis, so the conjecture is true.

We also show that, for n = 6, our generating set forms a basis. This
basis has 8 elements (see Figure 1) which refutes the conjecture in [1). The
above statement and additional supporting evidence leads us to:
Conjecture 1. A constant n-configuration together with all m-line con-
figurations, m < n, having all vertices of degree at least 2, form a basis for
n~configurations.

In addition, we show that the five n-configurations in Figure 2 (which
are all possible n-configurations that can be obtained from a star on n — 1
lines by adding a line) are constant configurations. We strongly believe the
following conjecture is true.

Conjecture 2. For any n > 3 there are exactly 5 constant configurations.

2 The Generating Set.

For a configuration C we denote by |C| its number of occurences in a Steiner
triple system. If L is a line of C then by C— L we understand a configuration
obtained from C by removing the line L and all isolated vertices, if any.

The next theorem is the main result of this paper.

Theorem 1. Any constant n-configuration together with all m-line config-
urations, m < n, having all vertices of degree at least 2, form a generating
set for the n-line configurations.

Proof: Let ST'S denote a fixed Steiner triple system on v points.

We prove the theorem by double induction on n and s, where s is the
number of vertices in an n-configuration. The statement is trivial for n = 1.
Suppose n > 1 and the statement is true for all » — 1 configurations. Let
C be an n-configuration on s vertices. If all vertices of C are of degree 2
we are done as in this case C belongs to our generating set. So suppose C
contains a vertex of degree 1. Further, assume that the theorem is valid
for all n-configurations on s — 1 vertices. We show that |C| satisfies the
relation

p(v)IC’| = 2|C| + a1|C1| + - -+ + om|Chm| 1)
where C’ is an (n — 1)-configuration, C},--- ,Cy, are n-configurations on
s — 1 vertices, p(v) is a polynomial in », and «, @y, - -, an are absolute
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constants depending only on the structure of C and not on our choice of
STS. When s is the smallest value, i.e., C is an n-configuration with the
smallest number of vertices among all n-configurations, then the right hand
side of (1) is just the term a|C|. C is either a generator or can be expressed
in terms of C’. Obviously, proving (1) finishes the proof of this theorem.
Let L = {u, v, w} be a line of C such that at least one of the vertices, u,v,w
is of degree 1 in C. Let C’ = C — L. We distinguish three cases:

1. All three vertices, u, v and w are of degree 1 in C. Denote by C},--- ,Cp
all non-isomorphic n-line configurations on s — 1 vertices which can be
obtained from C’ by adding a new (pendant) line L* = {z,y, 2}, where z is
a vertex from C’ and y, z are new vertices (and thus will be of degree 1 in
C'UL*). Now consider all C’ configurations of ST'S, i.e. all occurences of C’
in ST'S. To each of them we add a line M = {u,v, w} for all possible choices
of vertices u,v, which are not in C’. In this way we obtain (*~¢~3){C’|
n-line configurations of STS, because C' is on s — 3 vertices. Not all
of them are necessarily distinct but any of them is isomorphic to one of
C,C,,--- ,Cp. Therefore

(v—s+3

3 ¥ 2)ic = alc)+ alCil+ -+ amlCon.

To prove (1) in this case it suffices to show that a, a4, - - , @, are absolute
constants. For a configuration D we set Sp = {D — M, where M is a line
of D}. Let bp be the number of configurations in Sp which are isomorphic
to C'. Then any C; configuration, i = 1,--. , m, and any C configuration of
STS has been obtained by the procedure described above from b¢, differ-
ent C’-configurations and from b¢ different C’ configurations respectively.
Hence, for 1 < i < m,q; = bg,, and a = 3bc as by three different choices
of the pair of vertices u,v we get the same configuration C from a fixed
configuration C’.

II. Precisely two vertices of the line L = {u,v,w}, say u and v, are of
degree one in C. Let k be the number of vertices of C’ = C — L such
that adding a pendant line to C’ at any of them results in a configuration
isomorphic to C. Clearly, the vertex w is one (possibly the only one) of
them. Let K be the set of these vertices. Further, let Cy,---,C,, be
all non-isomorphic n-configurations on s — 1 vertices obtained from C’ by
adding a line of the form {w’,z,y}, where v € K,z is a vertex of C’
and y does not belong to C’. This means that w' and z are not on a line
in C’. Consider all C’-configurations of ST'S. To each of them add a line
{v',z,y}, w' € K,y isnot in C’ for all possible choices of w’ and y. Clearly,
this yields k(v — (s — 2))|C’|, not necessarily distinct, n-configurations, as
C' is on s — 2 vertices. Any of them is isomorphic to one of C,Cy, -+ , Cps.
Therefore, k(v — (s — 2))|C’| = a|C| + a1|C1| + - - - + am|Cm|. Let bp be
defined as in case I. Then o = bg, for 1 < i < m and a = 2b¢ as by two
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different choices of the vertex y we obtain the same C-configuration from
a given C’-configuration.

I11. Exactly one vertex, say u, of the line L = {u,v,w} is of degree 1 in C.
Let K = {{v, w} : v,w are vertices of C'} be the set of all pairs of vertices
such that C’U{v, w, =} is isomorphic to C. Set k = |K|. Let Cy,-- ,Cy, be
all non-isomorphic n-configuration on s—1 vertices of the form C'U{v, w, 2},
where {v,w} € K and z is in C’. To any C’-configuration of ST'S we take
k n-configurations of the type C’' U {v,w,z} where {v,w} € K. Any of
them is isomorphic to one of C,C}, -+ ,C,, and we have

kIC'| = alC| + a1|Ci| + - - - + am|Coml

where o; = be;,i = 1,--- ,m,a = bc. The proof is complete.

Remark 1. Since we showed how to determine all coefficients in (1) one
could use (1) for deriving, for any n-configuration C, a formula expressing
the number of occurences of C in terms of the numbers of occurences of the
elements from the generating set.

Remark 2. It is possible to define the notion of generating set for n-
configurations in Steiner systems with block size k > 3. In this case The-
orem 1 would read that the set consisting of a constant n-configuration
and all m-configurations, m < n, with the property that each line of them
contains at least 3 vertices of degree at least 2, is a generating set for
the n-configuration. The proof of the theorem would require only trivial
modifications.

Theorem 2. Any constant configuration, together with Pasch and Mitre
configurations (see Figure 1), form a basis for the 5-configurations.

Proof: It is easy to check that for m < 5 there are only two configurations,
Pasch and Mitre, with all vertices of degree at least two. Thus, the three
configurations in the statement of the theorem form a generating set for
the 5-configurations. The minimality of the set is proven in [1], so it is'a
basis.

Theorem 3. The seven configurations listed in Figure 1 together with any
one constant 6-configuration form a basis for the 6-configurations.

Proof: First of all we need to show that the set given above is the set
of all m configurations, m < 6, with all vertices of degree at least 2. As
mentioned in the proof of Theorem 2, for m < 5, there are exactly two such
configurations, the Pasch and Mitre configurations. For 6-configurations
with the property we get that none of them could have a vertex of degree
4, so all vertices are of degree either 2 or 3. A trivial calculation shows
that for the number s of vertices we have 7 < s < 9, If s = 7 then the
configuration is M;, a Fano plane without one line. For s = 8, we have
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that the configuration has exactly two vertices of degree 3. If these are on
the same line we get configuration M, from Figure 1, if they are not, the
configuration Mj. Finally, for s =9, all the vertices are of degree 2. If there
is a triangle it has to be My, if there is no triangle in it we get M5. To show
that this generating set is also a basis, it is sufficient to take the eight ST'S
on 19 vertices given in the Appendix and find out the number of occurences
of all 8 configurations in all of them. The numbers are listed in matrix A
where each row corresponds to one ST'S and each column corresponds to
a particular configuration. As the rank of A is 8 the set forms a basis.
[star Pasch Mitre M; My Mz My Ms)
1596 18 38 161 44 346 73
1596 19 38 181 27 325 91
1596 9 38 211 28 324 70
A= |1596 17 23 210 45 305 60
1596 12 42 187 30 339 80
1596 12 29 220 45 325 69
1596 14 31 209 29 305 69
1596 24 52 129 44 428 75

O NO-O O

Remark 3. The numbers in A were obtained by computer. Although the
calculation is not a complicated one, we used two different programs. The
first one took all 4-,5-, and 6-configurations and checked which of them were
from our list. The second program, a fast one, made use of the structure
of the configurations.

Let us point out that for orders » = 3,7,9 and 13, as there are less
than 3 isomorphism classes of Steiner triple systems, the sets given above
do not form bases. More interestingly, although there are 80 ST'S(15)s, a
computation shows that a linear basis for 6-configurations among ST'S(15)s
contains only 6 members.

3 Constant configurations

It is not difficult to see the n-star is a constant configuration. Here we show
that configurations obtained from a star by adding an additional line are
also constant. As we stated in the introduction we believe that there is no
other constant configuration. We denote the n-line star by A,,; there are
four other possible n-configurations derived by adding one line to An_1,
and we shall denote them by By, Cy,, Dy, E,, and define them as in Figure
2.
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Figure 2

Theorem 4. Configurations Ay, By, Cn, Dy and E,, are constant configu-
rations for any admissible value of n.

Proof: Let ST'S be a fixed Steiner triple system on v points. We shall prove
the statement by induction on n. It is shown in [1] that An, Ba, Cn, D, and
E,, are constant configurations for any admissible value n < 4. We could
have used (1) to obtain the desired result. However, the following argument
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gives a recurrent formula in terms of the given configuration alone. Let F,
be an n-configuration isomorphic to one of A,,, By, C,, D, or E,, and let
Fy—1 be an (n —1)-configuration of the same type as F,,, n > 5. Denote by
z the center of the star of F;,_,. For each F,,_; configuration of ST'S there
are ”—"Q"—k lines L of ST'S such that F,_1 U L forms an F,, configuration
(i.e. each of these lines contains z and is a pendant line), where s is the
total number of vertices of F,,_; and k is the number of vertices of F,,_,
which are not collinear with 2. On the other hand, any F;, configuration is
obtained by this procedure from a different configurations F,,_;, where o«
is the number of pendant lines of F;, containing z. Thus

v—8—k
e Pl = alFa @)

Hence F,, is a constant configuration.
Remark 4. Using (2) we get

IA"I=v(v—l)(v—3)---(v—2n+1)’

2! n22
Cu] = W=D = 3)(;"-_;1()7(:,_-;);!) @=-)
1Dy = 2= D= 3)(«;'.—_5?()1(: -3s);|) @otl) o
By = 2= D=3 2-“2‘((1 - i)); @=2m+3 oo
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Appendix

0116
0915
1510
256
358
4515
5716
61218
81113
11 16 18

0115
0810
1513
247
3567
458
5610
615 16
81118
111315

019
0718
1513
2411

348
4510
5814
7810

101317
1214 17

Eight Steiner triple systems of order 19

0218
01112
1615
2717
369
4617
5911
6 13 16
81216
121315

029
01117
1617
2517
368
4611
5911
7815
81213
121718

0214
0813
1617
2518
3515
4613
5917
7911
101516
121518

037 048
01317 1213
1714 1818
2815 2912
31013 31214
4713 4916
51217 51318

789 71012
91018 91314

1416 17

034 0516
01314 1210
179 1816
2613 2814

3915 31017
4912 41015
51215 51418
71012 71116
91013 91416
14 15 17

0317 0415
01011 1215
1714 1818
2616 2717
3618 3716
4712 4914
51112 6811
71315 8916
111318 111415
14 16 18

73

0514
1311
1917
21016
31516
41011
6711
71518
1014 15

0612
1318
11112
21216
31214
41318
6714
71317
101114

0516
1311
11012
2812
3912
41718
6915
81517
1116 17

0610
1412
234
21114
31718
41418
6814
81017
111517

0718
1414
2311
21518
31316
416 17
6918
8917
1016 18

0612
1416
2310
2913
31314
567
610 14
91018
121316



0118
0814
1616
2414
358
4518
5614
61218
81017
111318

018
0916
1515
2411
345
4613
5717
61116
81016
111517

016
0815
159
245
348
467
5717
61117
81018
1213 16

013
01011
1613
249
345
31417
5618
6814
81016
121315

0210
0913
1812
2515
3717
467
5916
61517
81518
131516

0210
01213
1617
2514
3612
4812
5910
7813
81118
121518

0212
0910
1716
2613
3512
4918
51013
61418
81317
121518

027
01317
189
2512
369
4617
579
61115
81118
1217 18

636
01216
11015
2613
3912
4811
51012
7813
91114
14 16 17

0318
01417
1918
2618
3715
4915
51216
71012
91112
14 15 16

0313
01417
1811
2710
3616
41112
51115
7812
91113
16 17 18

048
01618
11018
2616
3718
41014
5817
7812
91012
141516

0417
129
11117
2718
31013
4915
513 17
7910
91718

047
127
11113
2815
3814
414 18
51318
71114
91314

0416
1218
11217
2814
379
41314
514 16
71318
91214

0514
1215
11117
2813
3815
41112
51015
71116
91114
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0511
134
11314
2816
31415
41016
689
71116
1014 18

0511
1316
11214
21217
31011
416 17
679
71618
1013 15

0518
1314
11315
2917
31017
41517
6915
71415
1011 14

0612
147
11214
21017
31013
41316
51113
713 14
91318

0715
157
2311
21217
31618
41213
61011
712 14
1112 15

0615
1410
239
21316
31317
568
610 14
8917
1017 18

o711
1410
2315
21116
31118
568
610 12
8916
1015 16

0915
1516
2311
21418
31216
41518
6710
71517
916 17



0116 0217 035 0414 068 079
01015 01112 01318 1213 134 1518
1614 1717 1812 1910 11115 238
246 2515 2711 2912 21014 21618
3611 3718 3915 31012 31316 31417
457 4811 4917 41016 41213 41518
5616 589 51013 51114 51217 6713
6918 61017 61215 7810 71216 71415
81315 81416 81718 91116 91314 101118
111317 121418 151617
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