Pseudosimilarity in Graphs—
A Survey

Josef Lauri
University of Malta, Msida, Malta

This survey reviews the results on pseudosimilarity which have been ob-
tained in the years since it was discovered by Harary and Palmer. A
number of open questions and a full bibliography are given.

1. INTRODUCTION

Graph theorists seem to have stumbled on the concept of pseudosimilarity
quite by accident. If two vertices u and v in a graph G are similar, that is,
there is an automorphism of G which maps one into the other, then it is
clear that G — u and G — v are isomorphic graphs. However the converse
is not true, because G — u and G — v can be isomorphic without u and
v being similar in G. The smallest graph for which this can happen is
shown in Figure 1. Nobody seems to have given this phenomenon any
thought until (as reported by Harary and Palmer [17]) someone apparently
found a proof of the celebrated Reconstruction Conjecture which depended
on the assumption that if G — u and G — v are isomorphic then u and v
must be similar. To Harary and Palmer goes the credit of taking what
could simply have remained a curious counter-example, and turning it into
a graph theoretic concept worthy of investigation. Their 1965 and 1966
papers proved the first results and set the scene for further studies. In
more than twenty-five years which have passed since the Harary and Palmer
papers, a number of authors have found new results and unearthed more
problems. So it seems useful to attempt to present a unified look at the
progress made and the open questions that emerge in the hope that this
may indicate the most fruitful directions to follow in further investigations
and the most appropriate tools to employ.
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Figure 1

We shall mostly follow the graph theoretic terminology of [14] the most
notable exception being that here we use the terms vertex and edge instead
of point and line respectively. Unless explicitly stated otherwise, all graphs
considered are finite and simple. For any graph G, the sets of vertices and
of edges will be denoted by V(G) and E(G) respectively. The order of G
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is [V(G)|. Two adjacent vertices are said to be neighbours and the set of
neighbours of a vertex v in G is denoted by Ng(v) or simply N(v). As in
[14], two vertices u and v of G are similar if there exists some automorphism
o of G such that a(u) = v; they are removal-similar if G —u and G — v
are isomorphic, and they are pseudosimilar if they are removal-similar but
not similar. Further notation and terminology will be defined as and when
it is required.

2. BASIC RESULTS

Although at first it might seem unexpected that pseudosimilar vertices do
exist, upon further consideration one comes to realise that, in fact, such
vertices should be a natural occurrence. The simplest way to create such
vertices in a graph is possibly the following. Let G be a graph and let u
and v be a pair of similar vertices in G. If u and v are adjacent in G, then
let H = G — uv, whereas if they are not let H = G + uv. The vertices u
and v are still removal-similar in H but the addition or deletion of the edge
uv could have destroyed their similarity, making them pseudosimilar. One
necessary condition for this to happen is that there is no automorphism o« of
G such that a(u) = v and a(v) = u. This sets the scene for the investigation
of why pseudosimilar vertices arise. We call two sets of vertices A and B
in a graph G interchange similar if there is an automorphism « of G such
that a(A) = B and o(B) = A.

Theorem 1. Let u, v be pseudosimilar vertices in a graph G, and let
A=N@@)NV(G~u—-v), B=N@®)NV(G—-u—1v). Then either A and
B are similar but not interchange similar in G —u —v or else G — v
contains a vertex pseudosimilar to u.

Proof. Let a:G —v — G — u be an isomorphism. If a(u) = v then
restricting o to V(G) — u — v gives an automorphism mapping A into B.
Of course, A and B cannot be interchange similar in G —u— v as otherwise
u and v would be similar in G.

We therefore assume that a(u) # v. Let w = a~!(v); therefore w # u.
It now follows that u and w are removal similar in G — v, for (G —v) —w ~
A((G-v)—w)=(G-u)—v=(G—v)—u.

Now suppose that u and w are similar in G — v. Let 3 be an auto-
morphism of G —v with 8(u) = w. Then S is an isomorphism from G —v
to G — u with Ba(u) = v. We therefore again obtain, as above, that there
is an automorphism of G — u — v mapping A into B.

The only alternative left is that u and w are not similar in G—v, giving
that G — v contains a vertex pseudosimilar to u. (m}

This theorem easily gives, as a corollary, two results about vertices
which cannot be pseudosimilar in a tree; the first of these was one of the
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earliest results on pseudosimilarity. We first need to recall the following
fact about similar vertices in a tree.

Theorem 2. [47] Any two similar vertices in a tree are interchange
similar.

We also recall that an endvertex is a vertex of degree equal to 1 and an
end-cutvertez in a tree is a vertex having only one neighbour with degree
greater than one.

Corollary 1. Let T be a tree. Then:
(i) [17) Any two removal-similar endvertices in T are similar.
(i) [26] Any two removal-similar end-cutvertices in T are similar.

Proof. We shall prove (i) by induction on the number of vertices of the tree
T; the proof of (ii) is analogous. Suppose u, v are pseudosimilar endvertices
of T'. Let x, y be the neighbours of u, v respectively. Since, by the induction
hypothesis, u cannot be pseudosimilar to any endvertex in T — v, it follows,
from Theorem 1, that £ and y are similar but not interchange similar in
T — u —v. But this contradicts Prins’ Theorem. Therefore u and v cannot
be pseudosimilar. 0

So it seems that one way to try and obtain pseudosimilar vertices is
to take a graph with two sets of similar but not interchange similar sets of
vertices, and join two new vertices to them. Harary and Palmer [17], by
exploiting this idea, gave the first systematic way of constructing pairs of
pseudosimilar vertices. Take any graph H, and let X and Y be two sets of
vertices of H such that there is no automorphism a of H with a(X) =Y
(for example, choose X and Y with |X| # |Y]). Then take three copies
H,, Hy, H; of H and form G by adding two new vertices u and v joining
uto X in Hy and to Y in Hj, and v to X in Hy and to Y in H3. Then
u and v are pseudosimilar in G. The graph in Figure 1 could have been
constructed this way, with H = K3, the complete graph on two vertices,
X =V(H) and Y containing only one vertex.

But the most general construction from which all pairs of pseudosimilar
vertices can be obtained was found by Godsil and Kocay [12] who showed
that such pairs can in fact always obtained by destroying some cyclic sym-
metry in a graph. The basic idea came from Herndon and Ellzey [20] who
were studying methods of constructing “removal-cospectral” vertices and
developed a method which actually produced removal-similar, and hence
pseudosimilar, vertices. Take a graph H with vertices u and v and an auto-
morphism a such that of(u) = v forsomet > 1and o (u) #vfor1 <r <t.
Then u and v are removal-similar in G = H — {a(u), ..., o' 1 (u)}; if more-
over they also happen to be not similar, then we have a pair of pseudosimilar
vertices. Godsil and Kocay showed that, in fact, every pair of pseudosimilar
vertices can be obtained this way.
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Theorem 3. [12] Let u and v be a pair of pseudosimilar vertices in a
graph G. Then G is an induced subgraph of some graph H such that H
has an automorphism « with a(G —v) = G—u and o*(u) = v, and such
that V(H) — V(G) = {=z,...,2,}, where z; = a'*(u) and o(z,) = u.

The reason why pairs of pseudosimilar vertices occur is therefore quite
well understood in terms of a sort of truncation of cyclic symmetry. The
area where most of the unanswered questions lie is the situation where
a graph has several pseudosimilar vertices. We can ask for two ways in
which this can happen. One way requires the graph to have several pairs of
pseudosimilar vertices. This case is taken up in Section 4. Alternatively one
can ask for the graph to have a large set of mutually pseudosimilar vertices
(the vertices in a subset S of V(G) are said to be mutually pseudosimilar
if any two vertices of S are removal-similar but no two are similar). This
situation is discussed in Section 5. We shall first give, in the next section,
those definitions and results involving graphs and groups upon which most
of the material in Sections 4 and 5 depends.

3. GRAPHS AND GROUPS

Let T be a finite group and let  be a set of generators of ' not containing
the identity element. The Cayley colour-graph D(T, Q) is a directed graph
with vertex set T and arcs (z, y) for all pairs of elements of " with 271y € Q;
moreover, each arc (z,y) is coloured with colour z='y. When the set
also has the property that if z €  then ™! € Q we can define the Cayley
graph G(T', Q) to be the graph with vertex set I and edges {z,y} for all
pairs of elements of ' with z~1y € Q.

It is well known that T is the group of colour-preserving automor-
phisms of D(T',2) and that the arcs of D(T', Q) can be replaced by appro-
priate “gadgets” to give a graph whose automorphism group is abstractly
isomorphic to T. It is equally standard knowledge that G (T, ) is a vertex-
transitive graph and that T is a subgroup (sometimes proper) of its auto-
morphism group. The action of T on G(I', Q) is the left regular action
which associates to every g € T' an automorphism ay of G(T', ) defined
by oag(z) = gz. If T is in fact the full automorphism group of G, N)
then G(T', Q) is called a graphical regular representation ( GRR) of T.
Except for a finite number of known groups, all finite, nonabelian groups
which are not generalised dicyclic groups have GRR’s. A number of authors
contributed towards obtaining this result, the final steps being provided in
[21] and [10]. We shall only be requiring GRRs for groups of odd order; (it
follows (see (3], for example) that such groups must be nonabelian).

Theorem 4. [22] Ezcept for one group of order 27, all nonabelian
groups of odd order have GRR’s.



Although given any group I' there is a graph whose automorphism
group is abstractly isomorphic to T, it is not true that every permutation
group is equivalent to the group of a graph. However it is possible to obtain
a graph with an automorphism group whose action on a subset of its vertices
is equivalent to a given permutation group. Suppose I' is a permutation
group acting transitively on a set X. For some = € X, let I'; be its stabiliser.
Then the action of T on X is equivalent to the action of premultiplication
by T on the set of left cosets of I';. Construct a Cayley colour-graph
D(T,Q2) and, by replacing its arcs with “gadgets” in the standard way,
obtain a graph G whose automorphism group is abstractly isomorphic to
I'. Then add a new vertex to G joining it to the vertices corresponding
to I'z; repeat this by adding a new vertex for every left coset of I';. The
resulting graph has an automorphism group whose action restricted to the
set of new vertices is equivalent to I'. If T is not transitive on X then the
construction can be repeated separately for all the orbits of X. This way
one basically obtains the following theorem, a short proof of which can also
be found in Problem 12.21 of the book by Lovész [44].

Theorem 5. [5] Let T be a permutation group acting on a set X. Then
there exists a graph G such that X C V(G), X is invariant under the
action of AutG and the restriction of AutG to X gives a permutation
group equivalent to T.

The usefulness of this result in tackling certain problems on pseudo-
similar vertices can be illustrated by the following solution of Kocay [33] to
a problem raised by E. Farrell and B.D. McKay. Let u and v be pseudo-
similar vertices in a graph G, and let H be a graph with a distinguished
vertex a. Denote by G,(H) and G,(H) the graphs obtained from G and
H by identifying vertex a of H with the vertices u and v, respectively. Is
it possible for G,(H) and G,(H) to be isomorphic? Kocay answered this
question in the affirmative in the following fashion, which is also a good
illustration of how pseudosimilar vertices can be constructed by destroying
some cyclic symmetry between vertices in a graph. Let a graph H with
a distinguished vertex a be given and let A4 denote the alternating group
acting on X = {u,v,w,z}. Use Theorem 5 to construct a graph K such
that X C V(K) and the restriction of AutK to X is equivalent to Aj.
Form K. (H) and let G = K ;(H) — w. (To ensure that the only auto-
morphisms of G are still those arising from A, one might have to adjust
slightly the construction of Theorem 5, for example by adding “tails” to
some of the vertices to distinguish them by their degree.) Then u and v
are pseudosimilar in G and G,(H) ~ G,(H).
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4. GRAPHS WITH SEVERAL PAIRS OF PSEUDO-
SIMILAR VERTICES

Kimble, Schwenk and Stockmeyer [25] were the first to consider the problem
of graphs with several pseudosimilar vertices. The following result was
essentially proved in their paper.

Theorem 6. [25] There exist graphs in which every vertex has a
pseudosimilar mate.

Proof. Let T be a group of odd order and let H be a GRR of I’ (as we
have noted above, I' must be nonabelian and, by Theorem 4, such I" and
H do exist). We note that H is a regular graph and that the stabiliser of
any vertex is just the identity element of I'. Therefore, if r is any vertex of
H, then G = H — r has the identity automorphism group.

Now, let v be any vertex in G. There is an automorphism a of H
mapping 7 to v. The vertices @~ '(r) and v = a(r) are distinct, because
otherwise a would contain a cycle of length 2, which is impossible since
T has odd order. Since o™! maps {v,r} onto {r,a(r)}, it follows that
G-v=H-r—-v~H-o(r)—r =G —a’l(r), that is, v = a(r)
and o~ (r) are removal-similar in G. But G has the identity automorphism
group, therefore v and o~!(r) are pseudosimilar. O

Kimble, Schwenk and Stockmeyer also give neat constructions as con-
crete examples of the above theorem. For the sake of illustration we give
one simple example from their constructions. We describe this in terms
of Cayley graphs, which is easily seen to be equivalent to the formulation
given by Kimble, Schwenk and Stockmeyer.

Let T be the metacyclic group of order 21 given by the presentation
I'= (e, B|8" = a® = 1, Ba = af?).
Let H be the Cayley graph G(T', ) where
Q= {a,a™, 8,67, a8,0718% af® 18}

All we have to show in order to prove that H is a GRR of " is that the only
automorphism of H which fixes 1 is the identity. We do this by employing
the method used in [19]. Let o be an automorphism of H that fixes 1.
Therefore o, when restricted to the subgraph H' of H induced by the
neighbours of 1, is an automorphism. (The graph H’ is shown in Figure 2.)
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Figure 2
Hence B and 87! are also fixed by 0. But H is vertex-transitive,
therefore it follows that if o fixes some vertex v, then it also fixes yg;
therefore o fixes 8°,81,...,%. From H' one can also deduce that o either
fixes & and ! or it reverses them. But « is adjacent to 83 and o~ is not,
so o must fix & and a~!. Hence o fixes H, as required.

5. LARGE SETS OF MUTUALLY PSEUDO-
SIMILAR VERTICES

It is perhaps under this heading that most of the interesting open questions
on pseudosimilarity arise. This problem has been investigated by a number
of authors [13, 24, 25, 31, 34, 40, 42, 43]. It is clear that a graph G cannot
have all its vertices mutually pseudosimilar. Otherwise G would be regular
and a regular graph cannot have pseudosimilar vertices because if « is an
isomorphism from G —u to G —v, then a must map the neighbours of u into
the neighbours of v, and therefore it can be extended to an automorphism
of G mapping u into v. Therefore the first question which arises is to
determine the largest size which a set of mutually pseudosimilar vertices
in a graph of order n can have. This seems to be a very difficult problem,
and below we shall consider a more restricted version of this question.
(This problem has been solved for trees: in [26] it is shown that it is not
possible to have three or more mutually pseudosimilar vertices in a tree.)
Another problem is to obtain necessary conditions for the existence of sets
of mutually pseudosimilar vertices analogous to Theorem 3 for pairs of such
vertices. The progress registered on this question is also discussed below.
The first to construct graphs with large sets of mutually pseudosimilar
vertices were, independently, Krishnamoorthy and Parthasarathy [40] and
Kimble, Schwenk and Stockmeyer [25]. The latter construction is partic-
ularly simple to describe. The transitive tournament on k vertices, Tk, is
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the tournament with vertex set {1,...,k} and in which vertex ¢ dominates
vertex j iff i < j. Clearly, the vertices of T} are all mutually pseudosimilar.
The problem is therefore to transform Tk into an undirected graph while
preserving the pseudosimilarity of its vertices. The usual replacement of
arcs by “gadgets” will give a graph whose automorphism group is still the
identity. However, in order to make the vertices of T} removal-similar in
the resulting graph, we have to take into consideration the fact that now
removing such a vertex will leave behind it “tails” and “heads”, and these
must be compensated for. We must therefore first add to the tournament
T} appropriate “semi-arcs” and then replace these by the corresponding
“semi-gadgets”. This process is illustrated for Ty in Figure 3.

T4: 1 —_— 1 — %
2 3 2 3

Figure 3

This method therefore constructs a sequence of graphs G; having k
mutually pseudosimilar vertices and order O(k?). Krishnamoorthy and
Parthasarathy [40] constructed a sequence of graphs G having 2¥ mutually
pseudosimilar endvertices and order O(3%). A slightly more general con-
struction of Lauri and Marino [42] and Lauri [43], which we now describe,
produces a denser “packing” of mutually pseudosimilar vertices in a graph.

Let G’ be a graph containing r endvertices, all of which are mutually
pseudosimilar. Let G be the graph obtained from G’ by removing all its
endvertices, and let R be the set of neighbours of the endvertices of G’
(note that since no two endvertices are similar, no two can share a common
neighbour, therefore |R| = r). Let X be the set of all those vertices of
G which are similar to some vertex in R under the action of AutG. We
now construct a sequence of graphs Gy, t = 1,2, ..., containing 7! mutually
pseudosimilar endvertices. Let G; = G' and let H; be G, less one of its end-
vertices. Having constructed Gy, let H; be G less one of its pseudosimilar
endvertices. Then, G, is obtained by attaching a copy of G, to each vertex
in R and a copy of H; to each of the other vertices in X — R. (By attaching
a copy of Gy (or H;) to a vertex v of G we mean joining v to every vertex
of Gy (or H;) which is not an endvertex.)

Each graph G; so obtained has r* mutually pseudosimilar endvertices
and O(|X|') vertices. Therefore if & = r! is the number of pseudosimilar




endvertices, then the total number of vertices in G; is O(k%ﬁl).

Such a sequence of graphs is constructed in [43] with |X| = 2|R| = 8,
therefore giving a sequence G; with k = 4* pseudosimilar endvertices and
order O(k%?). These constructions suggest the problem of obtaining a
sequence of graphs having k& mutually pseudosimilar (end)vertices and order
O(k'™*¢), with € as small as possible.

The crucial step in this construction is finding the starting graph G,
that is, one with endvertices all of which are mutually pseudosimilar. One
way to do this is the following. Suppose I' is a group of permutations acting
on some set X such that, for some R C X, the following two conditions
hold: (i) the setwise stabiliser I'(zy of R is the identity and, (ii) for any
two (|R| — 1)-subsets A, B of R, there is a permutation « in T such that
a(A) = B. Then, by employing Theorem 5, one can construct a graph G
with minimum degree at least 2 and X C V(G) and whose automorphism
group has the same action as " on X. Therefore if we attach one endvertex
to each vertex of R C V(G) we obtain the starting graph G’ all of whose
endvertices are mutually pseudosimilar. Hence such starting graphs can
be constructed if permutation groups satisfying conditions (i) and (ii) are
found.

In [43] is described a simplified version of a construction of such per-
mutation groups due to Cameron [6]. This construction produces groups
with the required properties if |X| = O(|R|%™), therefore the question
still remains of finding groups of substantially smaller degree having these
properties.

However, by the previous discussion, these groups do make possible the
construction, for any r, of a graph G containing r endvertices all of which
are mutually pseudosimilar. Such a graph can be transformed, as follows,
into one containing a set of mutually pseudosimilar vertices which are not
endvertices. Let A be the maximum degree of G and let p = max{r,A}.
Identify the endvertices of G with distinct vertices of the complete graph
K. In the resulting graph, the vertices which were endvertices in G are still
mutually pseudosimilar. This brute-force construction does not, of course,
solve the problem of obtaining as dense a packing of mutually pseudosimilar
vertices as possible.

Godsil and Kocay [13] used Cayley graphs and the action of a group on
the cosets of a subgroup to construct graphs with three mutually pseudo-
similar vertices. Let I' again be the metacyclic group of order 21 with
the presentation given above. Let the set of generators § this time be
{a,a™1,8,871}. Let G be the Cayley graph G(I', ), and let S be the sub-
group {1, Ba, B3a?} = (Ba). Let v = B3c2. Then the cosets S, 35,525 and
B3S are distinct and vS = $~1yB2S = S. Therefore, remembering that
B and < are automorphisms (by premultiplication) of G, one can see that,
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if H is obtained from G by joining new vertices u,v,w to the vertices of
S, S and (328, respectively, then H — u, H — v, and H —w are isomorphic.
Further calculation shows that u,v and w are actually pseudosimilar, not
similar. Godsil and Kocay give further examples using this method and
Kocay [31] modified this construction to give the smallest known graph (of
order 17) containing three mutually pseudosimilar vertices.

Kocay, Niesink and Zarnke [36] exploit further the equivalence of the
action of a permutation group I" on a set X with the action of T on the set
of left cosets of a stabiliser. They systematically search for groups I" with
a subgroup K such that the action of I on the cosets of K can be used to
construct graphs with & > 2 mutually pseudosimilar vertices.

Obtaining results analogous to Theorem 3 for sets containing k > 2
mutually pseudosimilar vertices is much more difficult than for ¥ = 2. In the
previous example of Godsil and Kocay with three mutually pseudosimilar
vertices, if the vertices of the Cayley graph G are partitioned into a complete
family of cosets of S and if, for every coset, a new vertex is added, joining
it to all the elements in the coset, then the three vertices u,v and w do
become similar. Thus, for such graphs a result similar to Theorem 3 exists,
that is, the graph H can be extended so as to make u,v and w similar.
Kocay has obtained the following result.

Theorem 7. [34] Let G be a graph with a set U = {ug,u1,...,uk-1}
of k mutually pseudosimilar vertices. Let p; : X —u; — X — ug be
isomorphisms, for i = 1,2,...,k— 1. Then G can be extended to a
graph H, and each p; can be extended to a permutation p} of V(H)
such that:

(1) G is an induced subgraph of H;

(iz) each p} i3 an automorphism of H;
(iii) the vertices of U are all similar in H;
(iv) the vertices of V(H) — V(G) are all in the same orbit as U under

the action of AutH.

Theorem 7 is an analogue of Theorem 3, with an important difference
— the graph H in Theorem 3 is finite whereas the graph H in Theorem 7
is infinite. There is therefore still the problem of obtaining a full analogue
of Theorem 3 with H finite. The main stumbling block towards finding
conditions like those of Theorem 3 for sets of three or more pseudosimilar
vertices is that with only one pair of pseudosimilar vertices there is only one
permutation pj. Therefore, forcing p} to have finite order in the course of
the proof of Theorem 3, it is easy to determine the group which is generated,
namely the cyclic group. But, with more than one generator, unless one
is willing to settle for the free group generated by {p},p3,...,pi_1}, it is
no longer possible to say in general what the structure of the group one is
working with will be.
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Godsil and Kocay [13] managed to some extent in going round this
problem for k£ = 3 by considering as a special case the situation where there
are no edges between a certain set of vertices containing the three mutually
pseudosimilar vertices. The algorithm they give for extending the graph
with three mutually pseudosimilar vertices into one in which the vertices
are similar is essentially the Todd-Coxeter algorithm for the enumeration
of cosets of a subgroup of a group.

It is interesting to note, in this connection, that in all known exam-
ples, the subgraph induced by mutually pseudosimilar vertices is either the
complete graph or the null graph, and this raises the question of whether
this must necessarily always be the case.

6. OTHER RESULTS

Pseudosimilar edges

Pseudosimilar edges can be defined in an analogous way to pseudo-
similar vertices. Of course, the constructions of the previous section giving
sets of mutually pseudosimilar endvertices also construct mutually pseudo-
similar edges. Kimble [24] looked for a result like Theorem 6 for pseudo-
similar edges, and he managed to construct a sequence of graphs in which
the proportion of edges which have a pseudosimilar mate tends to 1. The
following is a much simpler construction. Let C; and C; be two directed
cycles, each on n vertices, n odd. Let G, be constructed as follows: Join
every vertex of C, to every vertex of C; and replace each arc of C; by Gad-
get 1 and each arc of C; by Gadget 2, as shown in Figure 4; delete one of
the edges joining a vertex of C; to a vertex of C,.

u e > oV U /\v ue v

Arc uv Gadget 1 Gadget 2

Figure 4

The resulting graph G, has the identity automorphism group, and
each edge joining a pair of vertices from C; and C; has a corresponding
edge to which it is removal-similar. Therefore G has n? — 1 edges which
have pseudosimilar mates, and a total of n? + 9n — 1 edges. Therefore the
proportion of edges which have a pseudosimilar mate tends to 1 as n tends
to oo.

The question of whether there exist graphs in which every edge has a
pseudosimilar mate remains, however, open. Such a graph K would be a
line graph L(G) of a graph G such as those constructed in Section 4.
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Infinite graphs

Most work done on pseudosimilarity is concerned only with finite
graphs. Godsil and Kocay [12] do mention constructions of pseudosimilar
pairs of vertices in infinite graphs and they actually give Theorem 3 in a
way which is applicable to the infinite case (the main amendment to The-
orem 3 in order to allow for the possibility that G be infinite is basically
that, if x is any vertex in V(H) — V(G), then x can be equal to o*(u) or
o *(u) for some integer k > 1). They also mention the following problem
(see also [11]) which brings out the sharp differences between pseudosimi-
larity in finite and infinite graphs: Is there a connected locally finite graph
G such that the subgraphs G —u,u € V(G), are all isomorphic but G is not
regular (and hence G contains pseudosimilar vertices)? As they observed,
while the answer to the question is, of course, no in the finite case, on the
other hand, for infinite graphs, if the condition of connectedness or local
finiteness is dropped, then the answer is yes. Thomassen [54] solved the
problem proving the following stronger statement.

Theorem 8 [54] Let G be a locally finite infinite graph without isolated
vertices. Then G is vertex-transitive iff all its vertez-deleted subgraphs
are isomorphic.

Vertex (edge) orbits and vertex-deleted (edge-deleted) subgraphs

Some authors [1, 2, 8, 55] take the following point of view of pseu-
dosimilarity : If a graph G has & vertex (edge) orbits, that is, similarity
classes under the action of AutG, then the number of isomorphism classes
of vertex-deleted (edge-deleted) subgraphs of G is at most k; if this num-
ber is less than k, then G has pseudosimilar vertices (edges). One natural
question to ask in this context is: For a given value of k, do there exist
graphs having k vertex (edge) orbits and fewer than k isomorphism classes
of vertex-deleted (edge-deleted) subgraphs? For example, our earlier re-
mark that if all vertex-deleted subgraphs of G are isomorphic then all its
vertices are similar is equivalent to saying that the answer to the above
question for k = 2 is no for vertex-deleted subgraphs.

The above-mentioned authors have studied this question for edge-
deleted subgraphs, and the main result here is that the answer is no for
k = 3, that is, if a graph has pseudosimilar edges, then it has at least four
edge orbits, or equivalently, if a graph has exactly two isomorphism classes
of edge-deleted subgraphs then it does not have pseudosimilar edges [1].
The answer to the question (for edge-deleted subgraphs) is yes for &£ > 6 but
it is still unresolved for k = 4,5. It is also awaiting investigation generally
for vertex-deleted subgraphs.
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Directed graphs

Pseudosimilar vertices and edges can analogously be defined for di-
graphs. Some of the questions posed and the results obtained for graphs,
like Theorem 3, for example, also carry over to digraphs. In general, it
would seem that it is easier to create pseudosimilar vertices or edges in di-
graphs, and in fact, most of the above constructions do start from digraphs.
Jean [23] has shown that the only tournaments with all vertices mutually
pseudosimilar are the transitive tournaments. Stockmeyer’s tournaments
(50, 51] in which every vertex has a pseudosimilar mate are important in
the construction of counterexamples to the Digraph Reconstruction Con-
jecture.

Vertex switching

A vertez-switching G5 of a graph G is obtained by deleting from G
all edges with exactly one end in the set of vertices S, and then adding to
G all edges of the complement of G with exactly one end in S. If S = {u}
then G¥ is denoted by G*. Two vertices u and v are said to be vertez-
switching pseudosimilar (or VS-pseudosimilar) if G* ~ G® but u and
v are not similar in G. Ellingham [9] has obtained a result analogous to
Godsil and Kocay’s Theorem 3 above for graphs (finite or infinite) with
pairs of VS-pseudosimilar vertices .

Pseudosimilarity and reconstruction

The discovery of the concept of pseudosimilarity as a flaw in a pur-
ported proof of the Reconstruction Conjecture has of course drawn upon
it suspicion as a possible reason for the eventual falsity of the conjecture.
There is however little concrete evidence for this, the most notable being
Stockmeyer’s counterexamples to the digraph reconstruction conjecture [50,
51]. The basis for these counterexamples is a family of tournaments with
some remarkable properties, amongst which the fact that, in each tourna-
ment, every vertex has a pseudosimilar mate (see also [35]). The counterex-
amples are constructed by combining together pairs of such tournaments.
Although, as we have seen in Section 4, graphs in which every vertex has a
pseudosimilar mate do exist, there does not seem to be any analogous way
of using them as building blocks for nonreconstructible graphs [52].

The complementary point of view would be to exploit the absence
of pseudosimilarity in order to prove reconstructibility. For example,
Thomassen’s Theorem 8 implies that infinite graphs whose vertex-deleted
subgraphs are all isomorphic is reconstructible, and Anderson, Ding and
Vestergaard (2] have shown that a graph which has exactly two isomorphism
classes of edge-deleted subgraphs is reconstructible from its two nonisomor-
phic subgraphs. Also, the fact that endvertices and end-cutvertices in a
tree cannot be pseudosimilar was an important component in the proof of
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restricted versions of the reconstruction conjecture for trees [15, 46].
However, the most suggestive results in this context are the facts that
trees are reconstructible from their endvertex-deleted subgraphs [18] and
from their end-cutvertex-deleted subgraphs [37], and that endvertices and
end-cutvertices in trees cannot be pseudosimilar. These results have lead
Krasikov [37] to ask whether it is possible to show that a graph G with
a “sufficiently large” set S of non-pseudosimilar vertices is reconstructible
from its subgraphs G—v,v € S. A good place to start investigating this sort
of question could be trees — it might be revealing if one could prove, say,
that trees are reconstructible from endvertex-deleted subtrees using mainly
the similarity properties of endvertices in trees. In this respect, Krasikov’s
[38] generalisation of Corollary 1 is worth mentioning: Let T be a tree
a,b € V(T), and A, B two non-isomorphic rooted trees and let T,;(A, B)
denote the tree obtained by identifying the roots of A and B with a and b
respectively. If T,,(A, B) ~ T, (B, A), then a and b are similar in T.

7. UNSOLVED PROBLEMS

To recapitulate this survey we gather here the main open problems which,
in our opinion, the work discussed above seems to point to. Perhaps the
most basic question, and certainly one of the most difficult, is the following.

Problem 1. In a graph G of order n, what is the largest possible size of a
set S of mutually pseudosimilar vertices?

This question can perhaps be made more tractable by asking about
the order of magnitude of | S| with respect to |[V'(G)|, and also by restricting
attention to endvertices.

Problem 2. Find an increasing sequence of integers k; and a corresponding
sequence of graphs Gy, such that each Gi, has k; mutually pseudosimilar
endvertices and order O(k}*¢), with ¢ as small as possible. Is it possible for
the sequence of graphs to have order O(k,;)?

As we have seen, constructing a graph with r endvertices, all of which
are mutually pseudosimilar, is equivalent to finding a group of permutations
I acting on a set X such that, for some R C X, |R| = r, the setwise
stabiliser of R is equal to its pointwise stabiliser and any two (r—1)-subsets
of R are similar under the action of I'. Such a group can be constructed
with |X| = O(r?r), and the following question naturally arises.

Problem 3. Find a permutation group of substantially smaller degree
having the above properties.

While graphs in which any vertex has a pseudosimilar mate do exist,
the question is still open for edges.



Problem 4. Do there exist graphs in which every edge has a pseudosimilar
mate? Equivalently, do there exist line graphs in which every vertex has a
pseudosimilar mate?

Most of these questions for graphs have natural analogues for digraphs.
It seems reasonable to expect that, in this case, better bounds can be ob-
tained. For example, we have already noted that all vertices in a transitive
tournament are mutually pseudosimilar.

Problem 5. Repeat Problems 1, 2, 4 for digraphs.

Godsil and Kocay have shown that a finite graph G with k = 2 pseudo-
similar vertices u;,us is an induced subgraph of a finite graph H in which
the two vertices are similar and such that H has an automorphism &, such
that o (G — u;) = G — uy. Kocay has extended this result for & > 2 mu-
tually pseudosimilar vertices, but in this case he was not able to show that
H is finite. This therefore leaves open the next question whose answer we
believe to be no.

Problem 6. Does there exist a graph G with k£ > 2 mutually pseudosimilar
vertices u, . .., u; which is not the induced subgraph of a finite graph H in
which u,, ..., uy are similar and which has k—1 automorphisms ay, . .., ax_;
such that o;(G — w;) = G — u;44?

The question of whether or not the subgraph induced by a set of mu-
tually pseudosimilar vertices in necessarily the complete graph or the null
graph is related to the previous problem but is also interesting in its own
right.

Problem 7. Does there exist a graph G with a set S of k& > 2 mutually
pseudosimilar vertices such that the subgraph of G induced by S is not the
complete graph or the null graph?

By taking line graphs and using the corresponding result for vertices,
it follows that a graph cannot have all of its edges mutually pseudosimilar.
It is also known that if a graph has exactly two isomorphism classes of
edge-deleted subgraphs then it cannot have pseudosimilar edges. Resolving
the following question would be the next step in this line of results.

Problem 8. For k = 3 and 4, can there be pseudosimilar edges in a graph
having exactly & isomorphism classes of edge-deleted subgraphs? Investi-
gate the analogous question for vertices, that is, for what values of k > 2
can there be pseudosimilar vertices in a graph having exactly k isomorphism
classes of vertex-deleted subgraphs?

Finally, although pseudosimilarity owes its origin to the Reconstruction
Problem, there does not seem to be much evidence of a direct relationship
between the two problems. It is therefore not easy to suggest a concrete
question relating the two concepts. We single out the following problem
because it is suggested by existing results, its resolution seems relatively
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attainable and it seems to be one obvious place to start looking for rela-
tionships between pseudosimilarity and reconstruction.

Problem 9. Obtain a short proof that a tree is reconstructible from its
endvertex-deleted subtrees by exploiting the similarity properties of end-
vertices in trees.
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Note added in proof: Lauri and Scapellato have found that a class of Cayley
graphs constructed by Alspach and Xu gives graphs in which every edge has a
pseudosimilar mate. This solves Problem 4.
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