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ABSTRACT. An element e of a matroid M is called non-binary
when M\e and M/e are both non-binary matroids. Oxley in
[6] gave a characterization of the 3-connected non-binary ma-
troids without non-binary elements. In [4], we constructed all
the 3-connected matroids having exactly 1, 2 or 3 non-binary
elements. In this paper, we will give a characterization of the
3-connected matroids having exactly four non-binary elements.

1 Introduction

We start this paper by giving Tutte’s definition of n-connected matroids.
For more definitions and notation, the reader shall consult Oxley[7] or
Welsh[13]. For a positive integer k, we say that {X, E\ X} is a k-separation
of a matroid M on FE if

EM; X) =r(X)+r(E\ X) —r(E)+1 < k and min{|X|, |E \ X[} > k.
A k-separation {X, E \ X} is said to be ezact if §(M; X) = k. A matroid

is said to be k-connected when it does not have an l-separation for every
1 <1 < k. Oxleyl[5] proved that

(1.1) If M is a 3-connected non-binary matroid and e is an element of
M such that M\e and M/e are binary matroids, then M is isomorphic to
U2'4. O

Using the previous theorem of Oxley, it is not dificult to see that:
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D(M)
c(M)
N(M)

{e € E(M) : M\e is binary},
{e € E(M) : M/e is binary} and
{e € E(M) : M\e and M/e are not binary}

is a partition of the ground set E(M) of a 3-connected matroid M, when
M is non-binary and non-isomorphic to Up 4.

Observe that N(M) = N(M*) and C(M) = D(M*). An element of M
is called binary, when it belongs to C(M) or D(M), and non-binary when
it belongs to N(M).

Oxley in [6] gave a characterization of the 3-connected non-binary ma-
troids without non-binary elements, namely:

(1.2) The following two statements are equivalent for a matroid M.

(i) M is non-binary, 3-connected, and, for every element e, M\e or M/e
is binary.

(i) (a) M is isomorphic to Usn or Uy —_2,, for some n > 4; or

(b) both the rank and corank of M exceed two and M can be ob-
tained from a 3-connected binary matroid by relaxing a circuit-
hyperplane. a

We have constructed in [4] all the 3-connected matroids satisfying 1 <
[N(M)| < 3, namely:

(1.3) If M is a 3-connected non-binary matroid, then N(M) = @ or
IN(M)| 2 3. 0

(1.4) If M is a 3-connected non-binary matroid such that |[N(M)| = 3,
then M is isomorphic to M7 or M;. (]

A geometric representation for the matroid M3 is given below.
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These results are surprising, since there are infinitely many non-binary
3-connected matroids whose elements are all binary, by (1.2). The main
result of this paper is a characterization of the 3-connected matroids having
four non-binary elements. This result is similar to (1.2), since there are
infinitely many of these matroids.

(1.5) Suppose that M is a 3-connected matroid. |N(M)| =4 if and only
if

(i) M is isomorphic to Qg, Mg or Mg; or

(ii) M can be obtained from a 3-connected binary matroid by relaxing a
pair of circuit-hyperplanes of order 2; or

(iii) M is equal to the blowing up of a 3-connected binary matroid along
a special line.

A geometric representation for the matroid Qg is given below. The defi-
nition of Mg can be found in section 4.

In section 5, we define the operation of relaxing a pair of circuit-hyperplanes
of order 2 and prove some properties about this construction. At the last
subsection of this paper, we define a special line of a binary matroid, and
describe how to construct the blowing up along this line.

I guess that is very difficult to get a similar characterization for the class
of matroids having exactly m (m > 5) non-binary elements, because a
matroid in this family may have a large line L such that r(L) < r(M) —1.
We conjecture that this class has infinitely many non-isomorphic matroids.

‘We became interested in this problem, as we were trying to solve a prob-
lem proposed by Oxley: find a minor-excluded characterization for the class
of matroids M, which is the union of the classes of binary and ternary me-
troids. A 3-connected excluded minor M for M, which is not isomorphic
to Up g or Us s, has F; or F; as a minor, by the Bixby-Reid-Seymour minor
excluded characterization for the class of ternary matroids[2,8]. So, there
are A, B C E(M) such that M\B/A is isomorphic to F7 or F7. Observe
that B C D(M) and A C C(M), and hence |[N(M)| < 7. Using Oxley’s
extension of Seymour’s splitter theorem, it is not difficult to prove that
|N(M)| < 4, when |E(M)| > 10. So, every 3-connected excluded minor for
M, having at least 10 elements, belongs to the family of matroids described
in (1.2) or to one of the two families described in (1.5).
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2 Known results

Except for theorems (2.7) and (2.8), which have been proved by Seymour,
all the results presented in this section are proved in [4]. These results will
be useful throughout this paper.

L is said to be a line of a matroid N, if L is a union of circuits of N and
™(N|L)=2.If Cy,...,Cy are the circuits of N contained in a line L of
N, the partition {L\ Ci,...,L\ C,} of L is called canonical. A line L is
called large when n > 4 and connected when n > 3.

(2.1) Suppose that L is a large line of a 3-connected matroid M. Then
(i) D(M) C L and L\ {a} is a circuit of M for every a € C(M) N L.

(ii) L spans C(M) in M.

(iii) If L contains more than four circuits of M, then LNC(M)=0. DO

(2.2) If C; and Cj; are circuits of a 3-connected matroid M such that
|C1 A C3| =2, then Cy U C: is a large line of M. (n}

Suppose that M is a 3-connected non-binary matroid non-isomorphic to
Us4. For a # b, we denote by Lgp the following set

{LNN(M) : L is a spanning large line of M and L N C(M) = {a, b}}.

(2.8) Suppose that M is a 3-connected non-binary matroid non-isomorphic
to Uy 4.

(i) Ifb# cand A € Ly N Ly, then A € Ly,.

(ii) If A€ Loy, B € Loc and AA B = {e, f}, then {e}UAUBUD(M) is
a large line of M, which contains the circuit {a, ¢, f} of M. (]

(2.4) Suppose that L is a large line of a 3-connected non-binary matroid
M non-isomorphic to Uz 4. If |[LNC(M)| > 2 and |C(M)| > 3, then
DM)=0and M |C(M) ~ Uz, i1cMm))- a

(2.5) Suppose that M is a 3-connected non-binary matroid non-isomorphic
to Uz 4, and that every large line L of M spans E(M).

(i)If A,B€ Ly, then [AAB|#20r M =~ Uz, e(M))-

(ii) If L is a large line of M, then |[LNC(M)| <20r M ~ Uz, ey - o

Let N be a matroid having a circuit-hyperplane C. We denote by N¢
the matroid obtained from N by relaxing the circuit-hyperplane C.
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(2.6) Suppose that M is a 3-connected matroid non-isomorphic to Us 4
such that every large line spans M.

(i) If (M) = |D(M)| + |[N(M)|, then N(M) =

(ii) If (M) = | D(M)), then C(M) = @ or N(M) = { and there is a binary
matroid N such that M = Np(as).

(iii) If r(M) = |D(M)| + 1, then |C(M)| < 1.

(iv) If | D(M)| < (M) = |D(M)| + |[N(M)| — 1, then |C(M)| < 1. o

We will use the main theorem of Seymourf4]:

(2.7) Suppose that M is a 3-connected non-binary matroid. If a,b €
E(M), then there is a large line L of M such that a and b belong to different
sets of the canonical partition of L. (]

Now we will give the definition of 2-sum of matroids. Let M; and M»
be matroids such that E(M;) N E(M2) = {e}, e is not a loop or coloop
of M; or Ma and |E(M)|, |E(M>3)| = 3. The 2-sum of M; and M; is the
matroid M1AM; on (E(M;)U E(M>)) \ {e}, whose circuits are all subsets
S of (E(My) U E(M3)) \ {e} such that S is a circuit of M; for some i, or
(SN E(M;))U{e} is a circuit of M; for i = 1,2. Seymour in [9] proved that:

(2.8) If {X1, X2} is an exact 2-separation of a matroid M then there are
matroids M; and M on X; U {e} and X2 U {e}, respectively (where e is a
new element), such that M is the 2-sum of M; and M,. Conversely, if M
is the 2-sum of M; and M, then {E(M);)\ E(M2), E(M2) \ E(M,)} is an
exact 2-separation of M, and M;, M, are isomorphic to minors of M. O

(2.9) Suppose that M = N¢ is a 3-connected matroid. If N is not a
3-connected matroid, then N = N; A N,, where E(N;) = C U {e} a.nd

Nz = Us,|5(N,))-

8 Preliminary results

Throughout this section, we shall suppose that M is a 3-connected non-
binary matroid such that |[N(M)| = 4.

(8.1) If L is a non-spanning large line of M, then r(L) = r(M) — 1.
Moreover, L = C(M)U D(M) or L = C(M) U D(M) U {a}, for some
a e N(M).

Proof: If r(L) < r(M) — 1, then r(M* | N(M)) < 2. Since M is 3-
connected, it follows that M* | N(M) = Uz 4, a contradiction since N(M)
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spans D(M) U C(M) by (2.1). m}
We say that a matroid M is a circuit, when E(M) is its only circuit.

(3.2)  Suppose that M’ = M; A M; is a connected matroid without
parallel elements, e € E(M;) N E(M2) and the series class of e¢ in M5 is
trivial. If |[N(M’)| < 3, M, is not a circuit and M is non-binary, then
|E(M1)N N(M')| 2 2 and

(i) thereis an f € E(M;) such that {e, f} is a circuit of My, and E(M;)\{e}
is a circuit of M’ with 3 or 4 elements; or

(ii) E(M1)\ S is a circuit of M with 3 elements, where S is the non-trivial
series class of e in M.

Proof: Observe that M, is a binary matroid, otherwise |N(M')| > 3.
(i) Suppose that a € E(M1)\{e, f}. By hypothesis, a and f are not parallel
elements in M; and hence M3 is a minor of both M'\a and M'/a. Hence,
a € N(M') and E(M;) \ {e, f} C N(M'). So, |E(M;)| < 5 and the result
follows since M is binary and M’ does not have parallel elements.
(ii) Suppose that a € E(M;)\ S. Observe that M is a minor of both M’"\a
and M’/a. So, E(M;)\ S C N(M'). Since E(M;)\ S C N(M') is a union
of connected components of M\e, it follows that E(M;) \ S is a circuit
with 3 elements of M’. If S = {e}, then there is an f € E(M;) such that
{e, f} is a circuit of M; and the result follows as well. o
Let M/ be a matroid obtained from M/e after the deletion of all but
one element from every non-trivial parallel class of M/e, and let M” be
a matroid obtained from M\e after the contraction of all but one element
from every non-trivial series class of M\e.

(8.3) Suppose that a € N(M). If M/ is not a 3-connected matroid, then
there are 8,y € N(M) such that {c, 8,7} is a cocircuit of M and M has a
non-spanning large line L such that E(M)\ L = {a, 8,v}. Moreover, there
is 6 € E(M) such that {8, +, 6} is a circuit of M, and

(i) MZ\$ is a 3-connected non-binary matroid; or

(ii) 6 € N(M) and the series class of # in M\§ is non-trivial and M”\56/8
is 3-connected non-binary matroid.

Proof: Suppose that M/ is not a 3-connected matroid. Hence, there exist
matroids M; and M, such that M\a = M; A M,, M; and M, are not
circuits. Since M\« is a non-binary matroid, we may suppose that M, is
a non-binary matroid and the series class of e € E(M;) N E(M3) in M, is
trivial. By (8.2), this decomposition is unique, since |E(M;)NN(M)| > 2,
and we have two cases:

Case 1: there is a § € E(M,) such that {e,6} is a circuit of M; and
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E(M;) \ {e} is a circuit of M with 3 or 4 elements.

If 8,7 € E(M)) \ {e, 6}, then B, are in the same series class of M\a.
Hence {a, 8,7} is a cocircuit of M, {8, ~, 6} is a circuit of M and |E(M;)| =
4. If L is a large line of M, which contains e, then L A {e, 6} is a non-
spanning large line of M.

Case 2: E(M;)\ S is a circuit of M with 3 elements, where S is the
non-trivial series class of e in M;.

Observe that there are elements 3,y € E(M;) \ S belonging to the same
series class of M;. Hence {c, 8,7} is a cocircuit of M. If § € E(M,;)\ SU
{B,~}, then 6 and {B, v} N E(M%), say B, are parallel elements of M, and
E(MZ)N S and B are in the same series class of MZ\§. If L is a large line
of M, which contains e, then (LU S U {6}) \ {e} is a non-spanning large
line of M. o

As an imediate consequence of this lemma, we have the following result:

(8.4) (i) If every large line of M is spanning, then M/, is a 3-connected
matroid for every a € N(M).

(ii) If M/ is not 3-connected for some @ € N(M), then M has a non-
spanning large line L such that E(M)\ L C N(M) is a triad of M, and
that M/ is a 3-connected matroid for § € N(M)NL. u}

4 A non-spanning large line

During this section, we shall suppose that M is a 3-connected non-binary
matroid such that |[N(M)| = 4. Except in (4.4) and (4.5), we also suppose
that M has a non-spanning large line.

(4.1) Suppose that C(M) U D(M) is a large line of M and |C(M)| =3.
If @ € N(M), then M | (C(M)UN(M)\ {a}) ~ M(K,).

Proof: If 8 € N(M)n C(M)u D(M), then M | C(M) U D(M) U {B}
contains a large line L of M such that 8 € L. Hence L = D(M) U {a, b, 5}
for some a,b € C(M). So, {a,b,} is a circuit of M and {e,b, B} U C(M)
is a large line, by (2.2), which does not contain D(M), a contradiction.
Hence C(M)U D(M) = C(M)U D(M) and N(M) is a cocircuit of M. By
(8.4), M is a 3-connected matroid.

Choose 8 € N(M)\ {a}. Let S be the series class of 8 in M\a. Observe
that SN N(M) = {8}, since N(M) is a cocircuit of M. As M/ is a 3-
connected matroid, it follows that M\{a} U S is connected. So, there is a
large line L of M\{a} U S such that N(M)\ {a,B} = {7,6} C L. Hence
L = D(M)U{a,b,+, 6} for some a,b € C(M). The canonical partition of L
is {{a}, {b}, {7, 6}, D(M)} because D(M)U{a, b} is a ciruit of M, by (2.1).
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Observe that M | C(M) U D(M)U A is a conected matroid, since M |
C(M) U A is connected and d is not a coloop in M | C(M)U D(M) U A,
otherwise (N(M) \ A) U {d} is a cocircuit of M having just one element
in common with the line C(M) U D(M). So, there is a circuit in M |
C(M)UD(M)U A which contains AU {d}. Hence AU {a,d} is a circuit of
M for some a € C(M). Observe that (AU {a,d})U ({d}UC(M)\ {ca}) is
a large line of M. Its canonical partition is {{a}, C(M) \ {a,ca},{d}, A}.
Claim 3: If a € N(M), then (N(M)\ {a}) U {d} is a circuit of M.

Suppose that A and B are subsets of N(M) having 2 elements such that
AUB = N(M)\ {a}. So, there is a € C(M)\ {ca,cp} and (AU {a,d})U
(BU {a,d}) is a large line of M. Hence AU BU {d} is a circuit of M.

So, we have just found all circuits of M, and we say that a matroid having
those circuits is isomorphic to Ms.

A non-spanning large line of M* must be equal to C(M) U D(M), since
N(M) is a circuit of M. This cannot happen because a large line in M*
has at least 7(M*) + 1 = 6 elements, by (3.1). (n}

(4.4) If |D(M)| =1 and |C(M)| = 2, then every large of M is spanning.

Proof: Suppose that M has a non-spanning large line L. L = D(M)U
C(M) U {a} for some a € N(M), since |L N N(M)| < 1. Observe that
M | L =~ Uyy and C(M) U {a} is a circuit of M. For each subset of A of
N(M) \ {a} with 2 elements, there is a circuit C of M\D(M) such that
A C C since M\D(M) is connected. As N(M)\ {a} is a cocircuit of
M, it follows that C # N(M)\ {a} since M is 3-connected, and hence
C N (C(M) U {a}) # 0. Observe that N(M) \ {a} € C, otherwise M* |
(D(M) U N(M)\ {a}) ~ U4, since N(M)\ {a} is a cocircuit of M. So,
we may suppose that |C N (C(M)U {a})| = 1, otherwise we can replace C
by C A (C(M) U {a}), which is a circuit of M\D(M) since M\D(M) is
binary. This circuit is denoted by Ca.

Observe that Cj is unique and |C4 N Cpg| = 1, when A # B, otherwise
M\D(M) has a circuit with cardinality 2. So, M\D(M) ~ M(K,). We
arrive at a contradiction, since D(M) U C(M) and A are parallel class of
M/a, where a € Ca, and M., is binary. Hence, every large line of M is
spanning. m}

(4.5) If |C(M)| =3 and a € N(M), then D(M) U C(M) U {c} cannot
be a non-spanning large line of M

Proof: Suppose that D(M) U C(M) U {a} is a non-spanning large line of

M. Then N(M)\ {a} = {B,7,6} is a cocircuit of M. By (3.4), M is
3-connected. So, there is a large line L of M\« such that 8,y € L.
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If § € L, then L = D(M) U {B,+,6,c1,ca} for ¢1,c2 € C(M). Observe
that {c;} and {c;} belong to the canonical partition of L. As {8,+, 6}
is a cocircuit of M, it follows that {8,v,6} C A, where A belongs to the
canonical partition of L, since L contains only four circuits by (2.1). Hence
L\A = (D(M)\A)U{c1, c2} is a circuit of M and D(M)U(C(M)\{cs})U{a}
is also a circuit of M for c3 € C(M) \ {ci1, 2}, a contradiction. So, § ¢ L
and L = D(M)UC(M)U {B,~}.

Similarly D(M)UC(M)U{B,6} and D(M)UC(M)U{y, 6} are large lines
of M. We arrive at a contradiction, since (D(M)U {8, 6 ¢;, c2}) U (D(M) U
{B,v¢c1,c2}) is also a large line of M, by (2.2). (u]

5 All large lines span M

During this section, we shall suppose that M is a 3-connected non-binary
matroid such that every large line of M is a spanning set of M and [N (M)|= 4.

5.1 Casel: C(M)#0
By (2.6),

|D(M)| < m(M) < |D(M)| + N(M)| = |D(M)| +4.
By (2.6), [C(M)| =1, when r(M) # |D(M)| + 2.
(5.1) r(M)+#|D(M)|+3.
Proof: If r(M) = |D(M)| + 3, then |C(M)| = 1. So,
(M*) = |E(M)| —r(M) = |[N(M)|+|D(M)|+|C(M)| — (| D(M)|+3) = 2,
a contradiction. o
(5.2) r(M)#|DM)|+1.
Proof: If (M) = |D(M)|+1, then [C(M)| = 1, say C(M) = {c}. Observe
that M* has a non-spanning large line L* by (5.1). Since |L*| = r(M*) +
1=5,C(M) C L* and [L* N N(M)| < 1, it follows that |[L* N D(M)| = 3
and hence | D(M)| = 3 by (2.4). So, L* = C(M)U D(M) U {a}, for some

a € N(M), and we arrive at a contradiction by (4.5). o
So, we have proved that:

(5.83) r(M)=|D(M)|+2. 0
(5.4) L ={A,N(M)\ A}, for some A C N(M) such that |4| =2.

106



Proof: By (3.4), M is a 3-connected matroid for every a € N(M). By
(2.7), there is a large line L, of M such that a,b € Lo and o ¢ La.
|La N C(M)| = 2, otherwise M =~ U g(m) by (2.5). Hence, there is
an Ay € Lgp such that a ¢ As. Aa = Ag or Aa N Ag = B, otherwise
M =~ Uy () by (2.5). So, Lap = {A, N(M)\ A} for some A C N(M).O

(5.5) Suppose that T C N(M) and |C(M)| > 2. If |T| = 3, then T is not
a circuit of M. Moreover, if L* is a non-spanning large line of M*, then
L* = C(M)U D(M) and |D(M)| = 3.

Proof: Suppose that T = {a, 8,7} isa circuit of M and L, = {{a, 8}, {7, 6}}
for some a,b € C(M). Observe that L = (D(M) U {«, 8,a}) U {, 8,7} is
a large line of M, otherwise D(M) U {«,a} is a circuit of M. Since T is
a circuit of L, the canonical partition of L is {{a}, {8}, {7}, D(M) U {a}}.
By (2.1), D(M) = 0 and (M) = r(L) = 2, a contradiction. a}

(5.6) Suppose that |C(M)| > 2. If a,b1,b2,b3 € C(M), then there are i
and j (1 < i< j < 3) such that Lap; = Las;-

Proof: Suppose that |4; N A;| = 1, for every 1 < i < 7 < 3, where
a € Ag € Lqy,, for some fixed a € N(M). If Ax = {@, ax}, then by (2.3),
{a, 1,02} and {a,a;,as} are circuits of M. So L = {a,01, 2,03} is a
large line of M, and hence r(M) = r(L) = 2, a contradiction. o

(5.7) If|C(M)| >4, then Lgy = Log for every a,b,c,d € C(M).

Proof: Suppose that Lap # Lbe. By (2.3), Lac # Lsc and Lgp # Lgc.
Without loss of generality, we can suppose that L,c = Lag, by (5.6). Ob-
serve that Ly = Lag = Lg., by (2.3). We arrive at a contradiction, since
Lpq cannot be equal to Lgp or Lye. m]

(5.8)  Suppose that C(M) = {a,b,c}, N(M) = {a,B,7,6} and that
{, B} € Las, {@, 7} € Lac, {@, 6} € Lee. M | C(M)UN(M) is is isomorphic
to Fy and its cycle space is generated by N(M), {a,,8}, {b,a,v} and
{c,a,B}.

Proof: Observe that D(M) # @, otherwise M has a large line with 4
elements. So, M | C(M) U N(M) is binary. By (2.8), it follows that
{a,a, 6}, {b,a,v} and {c,a, B} are circuits of M. Since {a, 3,7} is also a
circuit of M | C(M) U N(M), N(M) = {a,a,6} A {a,B,7} is a circuit of
M. a

(5.9) Suppose that Lgy = Lcg for every a,b,c,d € C(M). For each
a € N(M), there is an a € C(M) such that {a} U (N(M)\ {a}) U D(M) is
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a large line of M.

Proof: Choose 8,y € N(M) \ {a} belonging to different elements of L,s.
Since M is a 3-connected matroid by (8.4), there is a large line L of
M\a which contains 8 and v by (2.7). Observe that |[L N C(M)| = 1,
otherwise L N C(M) = {a,b} for some a,b € C(M) and {B,v} € Lqp. So,
L = {a} U(N(M) \ {a}) U D(M) for some a € C(M). o

(5.10)  Suppose that Lay = Lcq for every a,b,c,d € C(M). If H =
D(M)U A or H= D(M)U(N(M)\ A), where A € Loy, then HU {a} is a
circuit of M for every a € H.

Proof: The result follows by the definition of L,s, (5.9), (2.7) and (2.1).0

Suppose that N is a 3-connected binary matroid having a pair of circuit-
hyperplanes C; and C; such that |C; A C2| > 2. Let Ng, ¢, be the ma-
troid obtained from N by relaxing both C; and C,. When we relax both
circuit-hyperplanes, we get a matroid because C; is a circuit-hyperplane
of Nc,. We say that Ng, c, is obtained from N by relaring a pair of
circuit-hyperplanes of order |C; \ Cz|. This construction works for several
circuit-hyperplanes and a result similar to the next lemma holds in this
case,

(5.11) Ng, ¢, is a 3-connected matroid such that

(1) N(N¢,,c;,) =C1 A Cy;
(ii) D(N¢,,c;) =C1NCy;
(i) C(Ney,c,) = E(N)\ (C1UCy).

Proof: Observe that N¢, ¢, \ {e} is binary when e € C; N C,, since
every large line of Ng,,c, contains Cy or C;. Moreover, Ng, ¢, \ {e}
is not binary when e € C; N Ca. The result follows since (Ney,ca)* =
Naaanor eunca- o

When |C; A C;| = 4, D(Ng,,c,) # 9, otherwise |Cy| = |C2| = 2 and N
is not a 3-connected matroid.

(5.12) |C(M)| =1, or |C(M)| = 3 and Lgsp # Lac when b 3 c, or
M = Kg,,c, for some 3-connected binary matroid K having a pair of
circuit-hyperplanes C; and C; such that |C; A Ca| = 4.

Proof: Suppose that |C(M)| > 2. If Loy # Lg for some a,b,c € C(M),
then |C(M)| = 3 by (5.8), and the result follows. We may suppose that
Lgp = Leg for every a,b, c,d € C(M).
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By (5.10), M is obtained from a matroid N by relaxing the circuit-hy-
perplane D(M)UA, where A € Lgp. If N is not 3-connected, then by (2.9),
M = N1 A N,, where N; is a matroid on D(M)U AU{e}, Nz is on (E(M)\
(D(M) U A)) U {e} and Nz =~ Uy |g(n,)- Hence |E(Nz)| < 4, otherwise M
contains a large line with four elements. So, [IN(M)| +|C(M)|—-2 <3 or
|C(M)] <1, a contradiction.

If N is 3-connected, then by (5.10) N is obtained from a matroid K by
relaxing the circuit-hyperplane D(M) U (N(M) \ A). If K is 3-connected
and non-binary, there is a large line L of M such that a,b € L and L #
{a,b}UD(M)U A and L # {a,b} U D(M)U (N(M) \ A), a contradiction.
So, K is not 3-connected or K is binary. If K is not 3-connected, then
|C(M)| < 1 as before, and we arrive at a contradiction. Hence K is 3-
connected and binary, and M = Kp(m)ua,D(M)U(N(MN\A)- (m}

Now we will prove the main result of this subsection:

(5.18) If M is a 3-connected matroid such that every large line of M is
spanning and |N(M)| = 4, then:

(i) M is isomorphic to Q¢ or Mg; or

(ii) M = Ng, ¢, for some 3-connected binary matroid having a pair of
circuit-hyperplanes C; and Cz such that |C; A Ca| = 4.

Proof: By (5.12), we can suppose that |C(M)| = 1 or |C(M)| = 3 other-
wise the result follows.

When every large line of M* is spanning, then |D(M)| =1 or |D(M)| =
3, otherwise the result follows: we remind the reader that

(Ney,c:)" = Npoynoy (MG

So, we have three cases:
Case 1: |[C(M)| = |D(M)| = 3.

By (5.8), if A C N(M) and |A| = 2, then there is an a € C(M) such that
AU{a} is a circuit of M. Using this result for M*, then for each B C N(M)
and |B| = 2, there is a b € D(M) such that B U {b} is a cocircuit of M.
We arrive at a contradicition, since we can choose B such that [ANB| =1
and M has a circuit and a cocircuit having one element in common.

Case 2: |C(M)| =3 and |D(M)|=1.

If A € Lgp, then D(M) U AU {a, b} is a large line of M. So, {a,b,d} or
{a,b,a} is a circuit of M, where D(M) = {d} and a € A. Since {a,b,c}
is a circuit of M by (5.8), it follows that M has a large line L such that
|L| = 4 and hence r(M) = r(L) = 2, a contradiction.

Case 3: |C(M)| = |D(M)| =1.
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Since r(M) # 2, it follows that E(M)\ {7} is a large line of M for every
v € N(M) and (N(M)\ {y})u{d} is a circuit of M for d € D(M), by (2.1).
Hence {d}UN (M) is a large line of M and N(M) is a circuit of M. For a €
C(M), {a}UN(M) is a non-large line and {a, 7, §} and {a, o, B} are circuits
of M, where N(M) = {a, 3,7, 6}. Observe that the canonical partition of
the large line E(M) \ {a} is {{a}, {d, 8}, {7}, {6}}. Hence {a,d,$,v} and
{a,d, B, 6} are circuits of M. Similarly, {a, d, @,7}, {a,d, @, 6}, {a,d,7,a},
{a,d,6,a} and {a,d, §, B} are circuits of M. Observe that this matroid is
isomorphic to Qs.

When M* has a non-spanning large line, we have two cases:

Case 4: |C(M)| =3.

By (5.8), it follows that C(M) U D(M) is a large line of M*, and by
(4.3) M* ~ Mg, a contradiction since |E(M)| = 10.

Case 5: [C(M)| = 1.

If C(M) U D(M) is a large line of M*, then M* ~ Mg as before. So,
we may suppose that C(M) U AU {a} is a large line of M*, where o €
N(M) and A C D(M), |A| = 2, otherwise |[D(M)| = 3 and we arrive at a
contradiction by (4.5). As AUC(M)U {a} spans D(M), it follows that
M* | D(M)UC(M)U {a} has rank 2. If [D(M)| > 3, then D(M) U {a} is
a large line of M*, a contradiction. So [D(M)| = 2. By (4.4), every large
line of M* is spanning, a contradiction. u]

5.2 Case 2: C(M) =0

Suppose that L* is a large line of M*. If L* is a non-spanning set of M*,
then D(M) C I* by (2.1) and T = E(M)\ ¥ C N(M) is a circuit of M.
As M is 3-connected, it follows that |T| > 3. Hence |[L* N N(M)| < 1 and
|L* N D(M)| > 3. By (2.4), |[D(M)| = 3 and (M) = 3. Since M* is 3-
connected, E(M)\ {a} is a line of M* for every a € E(M), a contradiction.

So, we may suppose that every large line of M* is spanning. Observe
that C(M*) = D(M) = 0, since C(M) = D(M*) # @ for every matroid
M* listed in (5.18). Hence |E(M)| = 4, a contradiction. We have proved
that:

(5.14) If M is a 3-connected matroid such that every large line of M is
spanning and |[N(M)| = 4, then C(M) # 0. o

6 M and M* have non-spanning large lines

Throughout this section, we shall suppose that M is a 3-connected matroid
such that [N(M)| = 4, M and M* have non-spanning large lines L =
D(M)U A and L* = C(M) U A* respectively, where D(M) N A = @ and
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C(M)n A*=0. So,
|L| =r(M)+1and |L*| =r(M*)+1
and hence
|A]+14°%| =2+ IN(M)| =6.
Observe that |A|,|A*] < 4 since |[ANN(M)| <1and [A*NN(M)| <1.

(6.1) |A]=|A*| =3.

Proof: Without loss of generality, we may suppose that |A| = 4. Observe
that |[AN C(M)| > 3 and by (2.4), C(M) C L and |C(M)| = 3. So,
L = D(M)uC(M)U{a} for some o € N(M). We arrive at a contradiction
by (4.5). m}

(6.2) ANN(M)#0and A* N N(M) 0.

Proof: Without loss of generality, we may suppose that ANN(M) = 0. So,
C(M)U D(M) is a large line of M. By (4.3) M ~ Mg, which is impossible
since every large line of Mg is spanning. a

So, there is a circuit T" and a cocircut T* of M with |T| = |T*| = 3 and
T,T* C N(M). We may suppose that

TNT* = {78, T\T" = {a} snd T*\T = {B}.

(6.3) The large lines of M are the following:

(i) D(M) U {a,a,b} for every a,b € C(M) (its canonical partition is
{{e}, {b}, A, (D(M) \ A) U {a}}, where AU {a,b} is the circuit of
M | D(M) U {a/b});

(ii) D(M) U {v,$,a,b} for every a,b € C(M) (its canonical partition is
{{a}, {b}, A, (D(M)\ A) U {#,6}}, where AU {a,b} is the circuit of
M| D(M) U {a,b});

(iif) D(M)UN (M) (its canonical partition is {{a}, {7}, {6}, D(M)U{8}});

(iv) D(M) U {B,7,8,a} for every a € C(M) (its canonical partition is
{{a}, {8}, A, (D(M)\ A)U {v,6}}, where AU {B,~, a} is the circuit
of M | D(M)U{B,6,a});

(v) D(M)U {e, B, 5,a} for every a € C(M), when {8, §,a} is not a circuit
of M (its canonical partition is {{a},{8,6}, A, (D(M) \ A) VU {a}},
where AU {8, 6, a} is the circuit of M | D(M) U {8, 6, a});
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(vi) D(M)U{a,B,~,a} for every a € C(M), when {B,,a} is not a circuit
of M (its canonical partition is {{a}, {8,7}, A, (D(M)\ A) U {a}},
where AU {B,+, a} is the circuit of M | D(M) U {B, v, a}).

Proof: Let N be the matroid (M\B)\{~,6}. Observe that v and § are
in series in M\B, and if we contracted v in M\pB, then § became parallel
with a. Since M\S is non-binary and connected, it follows that N is also
non-binary and connected.

If c € C(M), then there is a large line L’ of N such thatce L'. Ifa & L',
then |[C(M)| = 3 and L = C(M)U D(M). Let C(M) = {a,b,c}. So, the
canonical partition of L' is {{a}, {b}, {c}, D(M)}. As L = D(M)U A and
a € A, it follows that |[ANC(M)| = 2, say a,b € A. Hence the canonical
partition of L is {{a}, {8}, {a}, D(M)}, since L’ \ {c} = D(M) U {a,b} is
a circuit of M contained in L. So, C(M) and {a,b, a} are circuits of M
and C(M) U {a} is a large line of M by (2.2), a contradiction because
D(M) # @ and D(M) is contained in every large line of M.

Hence a € L’ and D(M) U {a,c} is a circuit of M for every c € C(M).
Hence D(M) U {a, a,b} is a large line of M for every a,b € C(M). As
{a, 6,7} is a circuit and {7, 6} a cocircuit of M\, it follows that D(M) U
{76, a,b} is a large line of M for every a,b € C(M).

If D(M) U {B,6,a,b} is a large line of M, for a,b € C(M), then, by
(2.2), (D(M)U{B,6,a})U(D(M)U{v,6,a}) is a large line of M with par-
tition {{8}, {7}, {a}, D(M)U{6}} and {B, v, a} is a circuit of M. Similarly
{B,7,b} is a circuit of M. By (2.2), {8,7,a} U {8,7,b} is a large line of
M and D(M) = @, a contradiction. So, D(M) U {8, §, a,b} is not a large
line of M. Similarly D(M) U {8, v, a, b} is not a large line of M.

By (8.4), M} is a 3-connected matroid. So, there are large lines L, ; and
L, , of Mg such that {a,8} C L], ; and {a,v} C L, for a € C(M). Hence
there are large lines L, s and L, of M such that {a,$, B} C Loy and
{a,7, 8} C Lq,y (B belongs to these lines because they have to be spanning
lines of M).

Case 1: L, s = L, for some a € C(M).

Hence L, s = D(M)U {a, 8,7, 6} and D(M)U{B, 4, 6} is a circuit of M.
As D(M) U {b, 7,6} is a circuit of M for every b € C(M), it follows that
(D(M) U {b,7,8}) U(D(M) U {B,,6}) is a large line for every b € C(M).

If (D(M)U {B,7,6})U ({a,7,6}) is not a large line, then D(M) U {8, a}
is a circuit of M, a contradiction since D(M) U {8,a} N T* = {B}. So,
D(M) U {a, B,7, 6} is a large line of M. D(M) U {e,B,v,a} = (D(M) U
{a,8,7}) U (D(M) U {a,a}) is a large line of M, for a € C(M), unless
{B,7,a} is a circuit of M. Similarly, D(M) U {a, 8, 6, a} is a large line of
M, for a € C(M), unless {B,6,a} is a circuit of M.

Case 2: L, s # La, for every a € C(M).
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So, Ls,s = D(M)U {a,a, 8,6} and Lsy = D(M) U {a,a, 3,7v}. Observe
that (D(M) U {e, B,6}) U (D(M) U {a, B,7}) is also a large line of M by
(2.2). Note that (D(M) U {B,7,6}) U (D(M) U {v,8,a}) is a large line of
M for every a € C(M).

Those are all the large lines of M, since a large line L of M contains
D(M). a

6.1 Reduction to a binary matroid

Observe that every large line of M contains D(M)U {a} or D(M) U {v, 6}.
We shall prove that the family F whose sets are

(i) D(M)U {a}, D(M)U {v,6}; and

(ii) all the circuits of M which do not contain D(M)U{a} or D(M)U{~, 6};

is the family of circuits of a binary matroid N.

Suppose that G is a family of subsets of a finite set. We say that L is a
line of G, when L is a minimal set which does not belong to G and is the
union of sets belonging to G. The set

S(L)={L\C:CC Land C € G}

is called the associated set of L. When G is the family of circuits of a
matroid M, the lines of G are precisely the lines of M and its associated
set is its canonical partition in M.

(6.4) S(L) is a partition of L having cardinality 2 or 3, for every line L
of F.

Proof: The result is true when L does not contain D(M)U{a} and D(M)U
{7,6}. We remind the reader that every large line of M contains D(M)U{a}
or D(M)U {~, 6}.

For the other lines, we have the following:

(i) D(M)U {e,,8}: its canonical partition is {{a}, {7, 6}, D(M)};

(ii) D(M) U {a,a,b} (a,b € C(M)): its canonical partition is {{a,b}, 4,
(D(M)\ A)u{a}}, where AU{a, b} is the circuit of M | D(M)U{a, b};

(iii) D(M)U{,8é,a,b} (a,b € C(M)): its canonical partition is {{a, b}, A,
(D(M)\ A)U {7,6}}, where AU {a,b} is the circuit of M | D(M) U

{a,b};
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and X = D(M) U {a} or X = D(M)U {v,6}. By (2.8), we can split M
as the 2-sum of matroids N, and N, such that E(N;) = D(M) U {a, e} or
E(N1) = D(M) U {v, 6, e}, where e is a new element.

Case 1: E(N;) = D(M) U {v,6,¢}

Observe that {e, a} is a circuit of N, and that AU{e} is is a circuit of Ny
for every A C E(M) such that |[A] =2 and AN (D(M)U {a,7,6,¢}) = 0.
Hence N2\{e} ~ U, |g(n,) -1, since N2\{e} does not have parallel elements.
So, M | C(M) U {a, B} = Uz c(m)j+2- Since every large line of M contains
D(M), it follows that |C(M)| + 2 < 3, a contradiction.

Case 2: E(N1) = D(M) U {a, e}

As {a,7,6} is a circuit of N, it follows that {e, a} is a circuit of Nj.
So, |D(M)| = 1, say D(M) = {d}, otherwise {D(M), E(M) \ D(M)} is
also a 2-separation of N. Since {d,,a,b} is a large line of M for every
a,b € C(M), it follows that {a,a,b} is a circuit of M and hence M |
C(M)u{a} =~ Uy gm)+1- Hence |C(M)| =2 and |E(M)| = 7. We arrive
at a contradiction by (4.4), since M has a non-spanning large line. o

6.2 A characterization

In this section, we will define the inverse operation of the implosion. Let
H be a 3-connected binary matroid having a line L = DU {«,v, 6§},
D # 0. L is said to be a special line of H, when its canonical partition is
{D,{a’},{7,¢'}} and

(i) H has a triad {#',v’,§'} for §' & D;
(ii) C=EH)\Du{d',f,7,6'} has at least 2 elements;

(iii) C, {v,6'} and {8’} are the parallel class of H/DU{a'}, and {a,4’,~'}
is a circuit of H/D U {o’} for a € C;

(iv) Cu{B'} is a parallel class and {a'} is a loop of H/D U {v/,§'}.
Let G be the family whose elements are:

(i) all circuits of H except DU {a’} and DU {v',§'};

(ii) Du{c/,a} and DU {7, ¢, a} for every a € C;

(iii) Du {#,v',8'}, Du{c/,p',7'} and DU {/, A, 6'}.

(6.7) S(L) is a partition of L, for every line L of G.

Proof: The result is true when L does not contain DU{a’} and DU{v",§'}.
When L contains one of these sets, the result follows similarly to (6.4). O
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Similarly to (8.5), G is the set of circuits of a matroid, which is de-
noted by Hp o5 and is called the blowing up of H along the special
line DU {o/,7,6’}. Observe that N(M) is a 3-connected binary ma-
troid by (6.6). Moreover, D(M) U {a, v, 6} is a special line of (M) and
N (M) p(aryams = M-

(6.8) If H is a binary matroid having a special line as described at the
beginning of this section and |E(H)| > 7, then

(i) D(Hp,«',v&) = D;
(ii) C(Hp,o,yv&') = C;
(iii) N(HD,a',’r’5‘) = {a” ﬂ’a 7’: 6'}

Proof: Observe that every large line of Hp o5 contains D. So, D C
D(Hp ' ys). As H/a = Hp o ye/a for every a € C, it follows that
CC C(HD,QI‘-,Isl). Since D U {o/,8',v',6'} is a large line of HD,QI"-,I&l,
it follows that D U {a,v,6’} is a large line of Hp o s/B’. Observe
that D U {a,b,a'} is a large line of Hp o' ys\B' when a,b € C. Hence
B' € N(Hp,o ys). By (1.3) and (1.4), |N(HD,°,I,.,:5:)| =4 and the result
follows. ]
Now we can prove the main result of this section:

(6.9) Suppose that M is a 3-connected matroid such that |N(M)| = 4.
If both M and M* have a non-spanning large line, then M is equal to the
blowing up of a 3-connected binary matroid along a special line.

Proof: Observe that |[E(M)| > 7 by (4.4). The result follows from (6.5),
(6.8), (6.7), (6.8) and

(N(M))p(my,avs = MO

7 Proof of the main result

Now we prove the main result of this paper:

Proof of (1.5): We have two cases to consider:

Case 1: Every large line of M or M* is spanning.
The result follows from (5.14) and (5.13).

Case 2: Both M and M* have non-spanning large lines.
The result follows from (6.9). o
As a consequence of (1.5), we have:
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(7.1) There are infinitely many 3-connected matroids having exactly four
non-binary elements. (m]

We define nb(m) as the number of non-isomorphic 3-connected non-
binary matroids such that |[N(M)| = m. Oxley in [6] proved that nb(0)
is infinite. We proved in [4] that nb(1) = nb(2) = 0 and nb(3) = 2. In this
paper we showed that nb(4) is again infinite. We conjecture that nb(m) is
infinite, when m > 4. For m even, the conjecture follows from (5.11).
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