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ABSTRACT. The edge-integrity of a graph G is given by the min-
imum of | S|+m(G—S) taken over all S C E(G), where m(G-S)
denotes the maximum order of a component of G— S. An hon-
est graph is one with maximum edge-integrity (viz. its order).
In this paper lower and upper bounds on the edge-integrity of
a graph with given order and diameter are investigated. For
example, it is shown that the diameter of an honest graph on
n vertices is at most v/8n — 3, and this is sharp. Also, a lower
bound for the edge-integrity of a graph in terms of its eigenval-
ues is established. This is used to show that for d sufficiently
large almost all d-regular graphs are honest.

1 Introduction

In this paper we consider finite undirected graphs without loops or multiple
edges. The edge-integrity of a graph attempts to measure the disruption
caused by the removal of edges from the graph. The order of a component or
graph is the number of its vertices, and we let m(H) denote the maximum
order of a component of graph H. Barefoot, Entringer and Swart [6] defined
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the edge-integrity of a graph G with edge set E(G) by

(] — : -
I'(G)= sérg?c)(lﬂ +m(G - 3)).
Any set S of edges which realizes this value is called an I’-set; one of
minimum cardinality is called a minimum I’-set. We say that a graph is
honest if its edge-integrity is equal to its order. Of course, the empty set
shows that I’(G) < m(G) in general.

Barefoot, Entringer and Swart [6] proposed this parameter as a measure
of how hard it is to disrupt thoroughly a network by edge failures. Proper-
ties of edge-integrity were also investigated by Bagga et al., and by others.
See for example [2, 4, 8, 10]. There is also a survey [3].

In this paper we investigate the range of values that the edge-integrity
may take given the order and diameter of a graph. One of the first results
in this direction was given by Bagga et al. who showed that graphs with
diameter 2 are honest:

Proposition 1. [2]. If G has n vertices and diameter 2 then I'(G) = n.

For graphs with diameter 3 we prove a sharp lower bound of 3n2/3/2 —
O(n'/3) on the edge-integrity of such graphs. But, for graphs with higher
diameter there is no better lower bound than that was observed by Barefoot
et al.:

Proposition 2. [6]. If G has n vertices and is connected then I'(G) >
[2y/n] — 1.

They showed that the path P, on n vertices has I'(P,) = [2/n] — 1.
We show that there are graphs with diameter 4 (and indeed with radius 2)
with the same edge-integrity. At the other extreme, we show the diameter
of an honest graph on n vertices is at most v/8n — 3, and this is sharp.

In the final section we establish a link between the edge-integrity of a
graph and its eigenvalues. As a consequence we show that, for d sufficiently
large, almost all d-regular graphs are honest.

2 Minimum Edge-Integrity and Diameter

We know already by Proposition 1 that a graph with diameter 2 is honest.
Our first result gives a tight lower bound on the edge-integrity of a graph
of diameter 3:

Theorem 1. Let graph G have n vertices and diameter 3. Then

I'(G) 2 30?372 —n'/3/2 - 0(1).

Proof: Let S be an I’-set of G. If every vertex of G is incident with an
edge of S then |S| > n/2 and we are done. Otherwise, let Hy, Hs,..., H;
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be the components of G — S which contain a vertex that is not incident to
an edge of S. Then, as the diameter of G is at most 3, S contains an edge
between H; and H; for 1 <i < j <t. Let Hy, Ho,..., H, have a total of r
vertices. Then |S| > (3) + (n —7)/2. Also m(G - 8) > r/t.

Thus I'(G) is at least the minimum of

2+ (5) +-n2

taken over 1 < ¢ < r < n. For ¢ = 1 the minimum of the expression is
(n+1)/2. For t > 2 the minimum can be determined by using calculus
(and a computer): it is attained at 7* = n and t* ~ n!/3, and has the above
value. o

There are graphs of diameter 3 which have edge-integrity that matches
the lower bound. For example, for ¢ even let G; be the graph formed by
taking ¢ disjoint cliques, each with t2 — ¢/2 vertices, and adding one edge
between every pair of cliques. The graph G; has n, = t3 —t2/2 vertices and
edge-integrity i, = 3t2/2 —t. The limit of i, — (3nf/ 3/2 —n:/ 3/2) as t goes
to infinity is —1/24.

If the diameter is 4, however, then it turns out that the edge-integrity
can be as small as what connectivity guarantees (recall Proposition 2). For
example, construct graph H, as follows. Take s disjoint cliques, each with
s vertices, and designate one vertex in each clique; then add s — 1 edges
between the designated vertices to form a star. The resulting graph H, has
radius 2 and the same edge-integrity as the path on s2 vertices, viz. 2s—1.
The graph Hj is illustrated in Figure 1.

Figure 1.
The graph Hj4 has radius two and minimum edge-integrity
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3 Maximum Edge-Integrity and Diameter

For graphs with large edge-integrity and large diameter consider the fol-
lowing graphs. Given a sequence aop, a1, . .., aq of positive integers, we de-
fine the“leveled” graph Glay,ay,...,ad] as follows: take disjoint cliques
Ao, A1, ..., Aq where A; has q; vertices (i =0,1,...,d), and add all edges
between A; and A; 4 fori =0,1,...,d-1. Figure 2shows G[1,1,2,2,2,1, 1].
Of course, Glag,ay, ..., aq] has diameter d.

Figure 2. An honest leveled graph of diameter 6

The following lemma aids in the calculation of the edge-integrity of lev-
eled graphs:

Lemma 2. Let G = Glag, a1,...,aq4] be a leveled graph, and let S be a
minimum I'-set of G. Then

(a) the removal of S does not split any of the A;, and

(b) if the removal of S separates A; and Aiyy thenic€ {1,2,...,d -2}
and a; < ai+2 and aiyy < @i—).

Proof:

(a) Suppose the removal of S splits some A;. Let ¢ be the smallest such
index. Let H; and Hs be two components of G — S that contain
vertices of A;. Let B, = {j: AjN H, # 0} for r = 1,2. Two cases
arise:

(1) One of the B, is a subset of the other. Say By C Ba. Then
combine H; and Hj; that is, expunge from S and add to G — §
all the edges that join vertices of H; and Hy. The number of
edges expunged from S is at least | H,|, while the increase in the
maximum component order is at most |H;|. Thus S was not a
minimum I’-set, a contradiction.

(2) Neither of the By is a subset of the other. Say i—1 € B;—DBs. Let
T=HnNA;_1,U=HiNA;, V = HoNA;, and W = HoNA; 4. If
|W| < |T] then add to G —S the edges between V and TUU and
remove the edges between V and W. Effectively this transfers
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V from H; to Hi, while saving at least |V| edges. Thus S was
not a minimum I’-set.

If |W| > |T| then remove from G — S the edges between U and
T, splitting H, into two pieces, and add all edges between the
piece of H, containing U and H,. It can be checked that the net
decrease in the number of edges removed is again at least the
increase in the maximum component order. Thus S was not a
minimum I’-set, a contradiction.

(b) Now suppose S separates A; and A;;;. If ¢ = 0 then reinsert into
G — S the edges between A; and A;yq. If a;—; < a;4; then reinsert
into G — S the edges between A; and A;;+; and remove (if necessary)
the edges between A; and A;—;. In both cases, the saving in edges
removed is at least |A;|, while the increase in maximum component
order is at most |A;|. So S was not a minimum I’-set, a contradiction.

A similar argument holds if i =d — 1 or a;42 < a;.
O

Corollary 3. Let G[ag, a1, . .., aq) be a leveled graph for which there exists
an r such that for 0 < i < r—2 it holds that a; < a;y2,and forr < i < d—-2
it holds that a; > a;4+2. Then G is honest.

Proof: By the above lemma a minimum I’-set of the graph is empty. 0O

For example the leveled graph G[1,1,2,2,2,1,1] of Figure 2 is honest
(use r = 3). We will show that the cheapest way to satisfy the hypothesis
of the corollary gives the honest graph of diameter d with minimum order.
We will need the following lemma:

Lemma 4. Let m be a given integer, and consider the following problem:

Minimize 3" b; such that bsbjy1 > Y00 b; for
i=0,1,...,m-1,

where the b; are positive integers. Then the minimum is |(m+2)2/4}, and
the unique best sequence of the b; is given by the first m + 1 entries of
B=1,1,2,2,3,3,4,4...

Proof: Let 8; = Y7_, bi. Rearranged, the constraint says that b;(b;41 —
1) > Bj—1- So by calculus it follows that b; + (bj41 — 1) = [24/B;-1].
Thus Bj4+1 = bj41 + b5 + Bj—1 2 1+ [24/Bj-1] + Bj-1. Since p; > 1 and
B2 > 2, by induction it then follows that 8; > |(j + 2)2/4]. (We omit the
straight-forward calculation.) The characterization of when equality occurs
is also proved by induction. 0

Theorem 5. The minimum number of vertices in an honest graph of
diameter d is [(d + 2)(d + 4)/8].
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Proof: Let G be an honest graph with n vertices and diameter d. Let v
be a vertex such that there is a vertex at distance d from v. Let A; denote
the set of vertices at distance i from v, and let a; = |A;|. Further, let r be
the largest index such that 3 ;_, a; < n/2.

By considering the removal of all edges between A; and A; 1, it follows
that necessarily

J
aja,-+122a5 forj=0,...,r
i=0
and
d

a;jaj41 > Z a; forj=r+1,...,d-1.
i=j+1

By the above lemma it follows that 3°7_g a; > [(r+2)?/4], and >4 10 2
|(d - r +1)2/4). Since the two sets U]_gA; and UZ.,..; A; are disjoint, it
follows that

8n>2(r+2)%+2(d—r+1)? -8,

where €4, = 0 if r is even and d is odd, €4 = 1/2 if d and r both odd, and
€dr = 1/4 otherwise.

If d is even, then the lower bound for 8n is minimized at r = d/2 or
r =d/2—1. It follows that 8n > d?+6d+8, as required. If disodd and r is
even, then the lower bound for 87 is minimized at r = (d—1)/2 where it has
value 8n > d2+6d+9 If d and r are both odd then we use the above lemma
to observe that Y"T—la; > |(r +1)2/4] and T a; > [(d — 1 + 2)?/4),
and thus that

8n>2(r+1)2+2(d—r+2)2>d>+6d+9.

To obtain a best sequence of the a; we put together two almost equalized
initial segments of B with the second one reversed: If d is even the two
initial segments differ in length by 1; if d =1 (mod 4) then the two initial
segments have the same length; and if d = 3 (mod 4) then the two initial
segments differ in length by 2. For example, for d = 6 the best {a;} is
1,1,2,2,2,1,1. For d = 7 it is 1,1,2,2,3,2,1,1. The associated leveled
graphs are honest by Corollary 3. ]

We believe that “honest leveled graphs with tails” have nearly maximum
edge-integrity for their order and diameter. Let

Gd—GLll 111223 -»3,2,2,1,1,1,1,...,1},

t d t
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where the middle portion gives the honest graph G4 of minimum order
nq described in Theorem 5. Then G has diameter D = 2t + d and order
N =ng4+2t. By Lemma 2, it follows that the subgraph G4 remains virtually
intact after the removal of a minimum #'-set S (except maybe losing one
vertex at both ends). So m(G% —S) > ng — 2. Calculations then show that

ng, ng 2t+ 3;
I'Gy)=q~na—2+(2+2)/(na—2), V2t<ng<t+3;
= I'(Pp41), ng < V2.

Specifically, we conjecture:
Conjecture 1: For ng > t+ 3, the graph GY has the mazimum edge-

integrity for a graph of its order N and diameter D.
That edge-integrity is approximately (N — D)+ /8(N — D)+1, and the
range of appropriate D is roughly V8N — 3 < D < 2N/3.

4 Edge-Integrity and Eigenvalues

In this section we derive a simple lower bound on the edge-integrity of a
graph in terms of its eigenvalues.

Let G be a graph and A a subset of the vertices. Then the edge boundary
b(A) of A is the number of edges of G with exactly one end in A. We let b(m)
denote the minimum of b(A) taken over sets A of m vertices. Isoperimetric
inequalities give lower bounds for edge-integrity, as was observed in [7):

Proposition 3. [7]. Let G be a graph on n vertices and let f(z) be a real
convex function such that f(m) < b(m) for all m € {1,2,...,n}. Then

, o, n
I'(G) > 2121%1:1:+ 2“,f(:t:).

Alon and Milman (1] established a link between the edge boundary and
eigenvalues. Let L denote the Laplacian matrix D — A of the graph, where
A is the adjacency matrix of the graph, and D a diagonal matrix with
the degrees of the vertices on the diagonal. Then the eigenvalues of L are
real and nonnegative. Let A; denote the second smallest eigenvalue. (The
smallest is 0.) Alon and Milman showed:

Proposition 4. [1]. For a graph on n vertices it holds that b(m) >
Aim(l —m/n).

A corollary of the above two results is:

Theorem 6. For a graph G on n vertices whose Laplacian has second
smallest eigenvalue ),

I'(G) > n-min(1, A1/2).
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Proof: By the above two propositions,

n)\lz(l —z/n)

Y] .
I'(G) 2 minz + 9

where the minimum is taken over real z € [0,7]. The minimum is attained
either at £ = n, where it has value n, or at z = 0, where it has value
nA1 / 2. O

Corollary 7. If A\; > 2 then G is honest.

For example, all the hypercubes have A\; = 2 and are thus honest. This
was first shown by Bagga et al. [2].

In [11] the third author showed that there are only finitely many cubic
graphs which are honest. In contrast, when d is sufficiently large, almost
every d-regular graph is honest. For, Friedman [9] showed that for a random
d-regular graph almost surely Ay > d — 2v/d—1 — O(logd). Hence for d
sufficiently large, by Corollary 7 the graph is almost surely honest.
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