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ABSTRACT. This paper provides an expository account, from a
design-theoretic point of view, of the important result of Ryser
that covering of the complete graph K, a total of A times by v
complete subgraphs can only be done in a very limited number
of ways.

1 Introduction

This is a largely expository paper that deals with a particular class of pair-
wise balanced designs. We recall the definition of a PBD: we have v varieties
arranged in b blocks. The varieties occur with frequencies r1,72,...,7y,
and these r; are selected from a set R; the blocks have lengths k1, k2, ..., ks
(each k; < v) and these k; are selected from a set K. Finally, each pair of
varieties occurs a constant number, A, of times in the blocks.

For example, consider the PBD comprising blocks 1234, 156, 25, 26, 35,
36, 45, 46. Here v = 6; b=8;r1 =2, ro=r3 =1r4 =3, 15 = 156 = 4,
R={2,3,4};k1=4,k2=3,k3=k4=k5=k6=k7=k8=2,
K={23,4}; A=1.

A PBD can also be presented as an incidence matrix, A, of dimensions
v x b. The rows correspond to varieties and the columns to blocks. Entry
aij = 1 if variety i occurs in block j; otherwise a;; = 0. Clearly >k =
3" r; = # of entries 1 in matrix A.

We should conclude this section by noting that, in a PBD, we require all
the blocks to be incomplete, that is, we require that no block contain all »
varieties. The case where complete blocks are allowed is trivial, since any
PBD with pair count A that contains ¢ complete blocks corresponds (by
deleting these blocks) to a PBD with only incomplete blocks that has pair
count A —t.
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In the special case that K contains only a single element k, then all blocks
have the same length. Variety ¢ must occur with A(v — 1) other varieties;
but it also occurs with r;(k — 1) other varieties. Hence r;(k—1) = A(v —1),
and all the r; have the same value » = A(v — 1)/(k — 1). Thus R likewise
contains only a single element, r. In this case, we speak of a Balanced
Incomplete Block Design (BIBD) with parameters (v, b,, k, ). As we have
seen, r(k—1) = A(v —1). Also, counting the totality of 1’s in the incidence
matrix gives the familiar result rv = bk.

2 The Fisher Theorem for PBDs

It is easy to calculate the product of the incidence matrix A by its transpose.
We find

nr A A A A
A m A A A
A A A A

T __ 3
AAT=1 % 2 2 A
A A A A

Expanding along the first column of a matrix of size (v + 1) x (b+ 1), we
have
det ( L] 5 ) = det AAT
z | AA !

where z is a column vector of zeros, j is a column vector of 1’s. Then
(subtracting A times the first row from the other rows), we have

det( 1. i )=detAA""
_)\1 Dl ’

where D, is a diagonal matrix with successive entries r; — A,r2 — A, 13 —
Aoy To — A

Expand along the first column of this last matrix, and we have the result

T _ Z L _1_ 1 1
det AT =D (m )‘){H'\(n—)\ m_at ot )}

T —A

i=1

But r; > A (if r; = A, then variety ¢ would have to occur in A blocks, each
of which contained all other varieties; but these would be complete blocks,
which are not allowed).

Hence det AAT > 0, and so the v x v matrix AAT has rank v.

Now suppose, if possible, that b < v; then AAT is the product of 2
matrices each of rank < b (the smaller dimension). But we know that the
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rank of a product can not exceed the lesser of the ranks of the matrices
being multiplied. Hence rank AAT < b < v. This is a contradiction and so
we have the

Theorem. In a PBD, v < b, that is, the number of blocks is at least equal
to the number of varieties.

In graph-theoretic terms, this means that, if the complete graph K, is
covered by a collection of complete graphs to a total of A times, then the
number of subgraphs > v.

H.J. Ryser was particularly interested in the extreme case when v and b
were equal. So we shall call such designs Ryser Designs. (Actually, Ryser
looked at the duals of these designs, but is seems considerably simpler
to look at the designs per se. The amount of labour involved becomes
considerably less if we concentrate on the more natural design point of
view and try to minimize the amount of matrix manipulation.)

3 The Ryser Theorem

Henceforth, we shall be considering the case v = b. From the discussion in
Section 1, it appears natural to introduce the qualities y; = (k; —1)/(v—1),
i ranging from 1 to v. Y will denote the column vector formed from the
quantities y;.

Lemma 3.1. If A is the incidence matrix of the PBD, then AY = Jj,
where j is the vector with all entries unity.

Proof: AY = ;1L A(ky —1,k2 - 1,...,ky — 1)T.

When we apply row i of A to the entries in the vector (k; — 1,k2 —
1,...,ky, —1)T, it will pick up an amount k; — 1 if and only if variety ¢
occurs in block j; so it will accumulate an amount equal to the number of
other elements that occur with variety <.

Since this is just A(v — 1), we have
AY = .vi_l O =1, v —1),..., v —1))T
=\ LA = A

We now introduce a new matrix

5= (V)

where v—A is a formal symbol having v—Av/—-A = —A.
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Then, using Lemma 3.1, we have

BET — (_AEYTY | -NT+ YTAT
“\T=NFAY | AT +AAT

_( A+ o
- 0 |D1 ’

where D; = diag(r; — A\, 72 — A,...,7y — A), as before.
Set u = —A+ Y32, and we may write

BBT = diag(u,r1 — A\, m2 = A,...,Ty — A).

Suppose that we now define a diagonal matrix

p=diag (g ),

and form a new matrix K = DB. Then
KKT = DBBTDT = D(BBT)D.

This is the product of 3 diagonal matrices and so we have
Lemma 3.2. KKT = I, where I is the identity matrix.
Now let us write down the rows of K. They are:

Row 1: \/-“;——",-5‘;,%,---'%
Row 2: ﬁ,%’%’“ﬂ%
Row 3: /32, Jfaly, —pads, . —ftus

etc.

The relation KKT = I tells us that each row is of unit length and all
rows are orthogonal, that is, R; - R; = &;;, where the dot indicates the
usual inner product. If we do this computation as a check, we naturally
find nothing new. However, we also have KTK = I, since the inverse of
matrix K is unique. Thus

Ci-C; =6y,

where C; denotes the ith column of K. This does give new results.
Use column 1 of K with column j of K(j > 1), and we find

\/_ v 1.+’.2_Aa2j+“.=0'
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‘We obtain
Z L R
To — A u
o
Now use column j of K with itself; we obtain

2 2
£+.ﬂj_+.ﬁ_

u ri—=A rz—/\+.”=1’

Hence, we have

2 2
_Y oy % Yy %
u _gra—z\ gra—a’
using the fact that each aq; is either 0 or 1 and 50 a2; = aa;j. We thus have

2
1-5 Y%
U u

In short, no matter what value j takes, y; satisfies the relation

y?—yj—u=0.

Thus, y; satisfies the quadratic equation y?—y—u = 0 and so there are only
2 possible values for 3, namely, y; and y2, where y; + y2 = 1, Y132 = —u.
We immediately deduce

Ryser’s Theorem [4]. In a PBD with v = b, there are only 2 possible
block lengths k; and k2, and ky + ko = v+ 1.

Proof: Since y; + y2 = 1, we have

ki—1 kp—1
v-1 + v-1 =1

whence k1 + k; = v+ 1.

In terms of graphs, we have the surprising result that, if K, is covered
) times by v complete subgraphs, then these subgraphs can be of only two
sizes.

We conclude this section by pointing out that the quantity « is negative.
Indeed, we have

Lemma 3.3. -} <u <0.

Proof: Since y7 — y; — u =0, we have

w:%uiwﬁﬁa.

But y; is a real number and so 1+ 4u > 0, that is, u > —}.
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Alsou=-A+Y (%‘:—11)2 Hence

uwv-172=-Av-1)>+) (k—1)?
=-d@—-1)+Av-1)+) k(ki =1) =D (ki —1)

Now A(3) = ¥ (%) = total number of pairs.
Hence u(v —1)2=A(v—1) = Y ki +v.
But Y ki=Y7: 23 .(1+ A) =v(1+ 1)), since each ; > A\. Then

uv-12 <A -1)—v(Q+A)+v=-)

ThllSuS—-(vTAﬁ;<0.

4 The Frequency Relation

We have seen that there can only be two block lengths in the Ryser PBDs.
Suppose that there are f; blocks of length k; and f> blocks of length k,.
First, we dispose of a special case.

Lemma 4.1. If k; = k2, then we have a Balanced Incomplete Block Design
with parameters (4X — 1,4) —1,2),2), 7).

Proof: We have k; = kp = %—1 From Section 1, we see that the design is
a BIBD with parameters (v,v, %1, 21, X). Then
v+1lv-1
2
whence v+ 1=4A, v=4X-1.

Except in the special case of Lemma 4.1, we take k3 > k;. Then we can
write down two frequency equations:

= A(lv - 1)1

i+ fa=n,

k1 k2\ _ (v
1(5)+4(5) =)
These two linear equations are easily solved to give fo, the number of long
blocks, as
s (k=D —23)

fa= v+1— 2k
Note that v + 1 — 2k; = ko — k; > 0. Of course, fi =v — fo.
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5 The Case A=1

The case A = 1 is rather special, but it illustrates the general procedure
well. We write down the frequency equation

(ke =1)(k1 —2)
fa=1- v+ 1— 2k

Casel. ky =1, kg =, fo =1, fy = v—1. We refer to this as
the degenerute case. There is one complete block (1,2,3,...,v) and v — 1
singletons.

Indeed, this degenerate case occurs for and A. It uses A complete blocks
and v — ) singletons. In graph-theoretic terms, it corresponds to covering
the complete graph K, a total of X times by using A copies of K, and v — A
copies of Kp.

Case 2. kl =2.

Here ks =v —1, fo = 1, fi = v — 1. This gives a PBD with one long
block (1,2,3,...,v — 1) and v — 1 blocks of length 2, namely, (%,v), where
1 ranges from 1 to v — 1.

In graph-theoretic terms, we cover K, by using K,_; together with all
the Kjs (that is, edges) that emanate from the point not in the K,_;.
Case 3. k; > 2.

Heref2=1—Mk‘—"2)-<l.

v+1-2ky
But f; is an integer, and so fo = 0 and f; = v. Hence

(ks = (ks —2) _

v+1-—2k L

whence v = k} — k; + 1.

Thus we have v short blocks forming a BIBD with parameters (k¥ —
ky+1,k% — ky +1,ky, k1, 1) in the case k; > 2. The BIBD with k; =2 is
provided by Lemma 4.1.

The result of this section, that K, can only by covered (non-trivially) by
a near-pencil (Case 2) or a finite projective geometry (Case 3 and Lemma
4.1) was first obtained (for the dual situation) by Erdés and de Bruijn in
1948 (3].

68 Some Results for General A

We have seen that, for A = 1, there can be a single long block. Let us now
investigate whether this can occur for A > 1. Suppose

_(k=1)(k—2))

vri_2% =vL

fa=1=2X
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For convenience, we have set k; = k. Then
(k—1)(k—2X)
v41-2k
whence v = -(k—_;é#)- +1.
We then have 1 block of length v+ 1 —k and v —1 blocks of length k. Let

T4 be the frequency of elements from the long block in the short blocks; let
7 be the frequency of elements not in the long block. Then

fb(k—1)=A(v—l),
_Mv=1) Mk-2)
fo==4—1T = x-1°

If A of these other elements occurred in each of the v — 1 short blocks, the
number of pairs from these elements would be

()2\)(”_1)= )\(k—lz)(k-2) =/\(k;1)'

But there are exactly k —1 elements not in the long block, and so this is the
proper number of pairs. Any deviation from an equal number of elements
per block would increase the pair count [5]; hence we have

Lemma 6.1. The elements not in the single long block intersect the short
blocks in exactly A elements.

=A-1,

We now look at the elements in the long block; for any element, we have
(v=—k)+ry(k-1)=Av-1)
Then

ra(k—1)=Av-1)—-(v-1)+(k-1)
=A-1)v-1)+k-1
=(k-1)(k-2)+k-1.
Thusra=k-24+1=k-1.
Now let us look at the » — 1 short blocks. Pick a specific block and let

d; be the number of i-elemet intersections with the other short blocks. We
have:

dYdi=dot+di+dy+dz+---=v-2

D idi = Mre — 1) + (k= A)(ra — 1)
_ N%(k—2)

=S - A+ (= Nk -2)

X (o)4=()a-n- ()
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Now it is well known that, for all s,
s(s+1) . i
D(s) = —2—24 - Szide+z (2)de

=Y 4 (3(3;1) —si+i(i+l))

2 4+5—28i+i2—i
=) d >

=Edi(s—i)(s2—i+1)20.

Let us form D(A —1). Then

D(,\-1)="—()‘—2——1)-(v-2)—(A—l)(kz—,\k-zkw\)

_Az(k-2)+('2°)(a-1)- (";")
—2A—k.

But f =1 and hence k > 2).
Thus D(X — 1) < 0 and this is a contradiction since D(s) > 0 for all s.
Hence we have

Theorem 6.1. For A > 1, it is not possible to have only 1 long block.

Theorem 6.1 was originally given, from a matric point of view, by Bridges

2.

7 The Case A=2

We will now discuss the case A = 2 from the design-theoretic point of view
(cf. [4] for A =2, [1] for A = 3). We start from the frequency relation

(k1 = 1) (k1 — 4)

f2=2-""000 ok

The case k; = 1 gives the degenerate solution of 2 complete blocks and
v — 2 singletons.

The case k; = 2 yields fo = 2+ ;23. Sov—3=1lorv—-3=2If
v = 4, then fo = 4, fi = 0, and all blocks are long; we have the BIBD
(4,4,3,3,2). If v = 5, then f, = 3, fi = 2, k2 = 4. So we need 3 blocks
of length 4, 2 of length 2. Suppose an element occurs a times in the long
blocks, § times in the short blocks; then 3+ 8 = 8 and the only solution
is & = B = 2. Clearly we can not have 5 elements each occurring twice in
the 2 short blocks.
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Thecasek1=3yieldsfg=2+ﬁ. Sov—-5=1or2, thatis, v =26
or 7. If v = 6, there are 4 blocks of length 4, 2 blocks of length 4. With
« and B again denoting frequencies in the long and short blocks, we have
3a+28 = 10, whence a = § = 2. But we can not have 6 elements occurring
twice in the short blocks. On the other hand, if v = 7, there are 3 blocks
of length 5, 4 blocks of length 3. With the usual notation, 4+ 28 = 12,
whence (o, 8) = (3,0) or (2,2). Suppose there are p varieties of type (3,0)
and q of type (2,2); then p+ g = 7, 3p+ 2¢g = 15. It follows that p = 1,
g==6.

We now discuss this case. The long blocks all have the form lxzzz, 1zzzz,
lzzzz. The short blocks have the form zzz, zzz, zzx, Tzx. The elements
2,3,4,5,6,7, occur twice each in both long and short blocks. So, if we re-
move the element 1 from the long blocks and add it to the short blocks, we
have constructed a BIBD (7,7,4,4,2), a well known design which is just the
complement of the BIBD (7,7,3,3,1). So this case does produce a design
which can be written as

12345 246 347
12367 257 356
14567

This is an example of a special design that is always derivable from the
BIBD (4X —1,4X —1,2),2)\,)) of Lemma 4.1. Simply delete one element
from 2X blocks and add it to the other 2A — 1 blocks (the current case is
for A = 2). The result is a design with 2 — 1 blocks of length 2\ + 1, 2\
blocks of length 2\ — 1.

Next, we come to the case ky =4. Then fo =2, fi=v -2, ks =v —3.
With the usual ¢, 8 notation, we have a(v — 4) + 38 = 2(v — 1). We find
the solutions (e, 8) = (2,2) or (1, %$2) or (0, -2y,

Suppose there are p, q, r, elements of each type; then p+ g+ r = v,
2p + g = 2(v - 3). It follows that ¢+ 2r =6 and so p —r = v — 6. We may
thus set (p,q,7) = (v+r — 6,6 — 2r,7). Now consider the distribution of
the p elements in the v — 2 short blocks; since each occurs twice, we have
2p<v—2,thatis, 204+ 2r-12<v-2,v<10—2r. Also ky =4, k2 > 4;
hence v > 8. Thus we must have » = 0 or 1. In either case ¢ > 0, and so
some elements occur once in the long blocks, "s—ﬂ times in the short blocks.
Hence v =1 (mod 3) and so v =10, r = 0, ¢ = 6, p = 4. Now delete the
4 elements (1,2,3,4) that occur twice in the long blocks. We are left with a
BIBD on 6 elements with parameters (6,10,5,3,2). For this design, we have

D odi=9, ) id=12 Z(;)d.-=3.
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Then

D =Y - Tik+ 3 ;)
=d0+d3 =0.

But the 2 triples obtained from the 2 long blocks are disjoint, and this
contradiction rules out the case k; = 4.

Finally, if k; > 4, the relation

(k1 —1)(k1 —4)
v+ 1-— 2’51

shows that f < 2. But fo = 1 is ruled out by Theorem 6.1. And f2 =0
means that all blocks are short blocks of length k; forming a BIBD with
(ks — 1)(ky —4) = 2(v + 1 — 2k;). This gives v = 1+ (¥';!) and the design

is a BIBD (1 +(*),1+ (';‘),kl,klﬂ), ki > 4.

Summing up, the only solutions for A = 2 turn out to be the biplanes
(BIBDs with v = b= 1+ (%), r = k = k1, A = 2) and the single design
on 7 elements with 3 blocks of length 5, 4 blocks of length 3. It is worth
noting that the biplanes come out in three ways: with v = 4, all blocks are
“long” and of length 3; with v = 7, we have k; = k3 = 4 in Lemma 4.1;
with k; > 4, we get all the remaining biplanes (all blocks “short” and of
length k).

fo=2-

8 Conclusion

We have derived some general results connected with Ryser Designs and
shown how these can be used to carry out the discussion for A = 1 and
X = 2. Further discussion will appear in a second paper.

References

[1) William G. Bridges, Jr. and Earl S. Kramer, The Determination of all
M-Designs with A\ = 3, J. Combinatorial Theory 8, No. 4 (1970), 343
349.

[2] William G. Bridges, Jr., Some Results on A-Designs, J. Combinatorial
Theory 8, No. 4 (1970), 350-360.

[3] N.G. de Bruijn and P. Erdés, On a Combinatorial Problem, Indaga-
tiones Math. 10 (1948), 421-423.

143



[4] H.J. Ryser, An Extension of a Theorem of de Bruijn and Erdds on
Combinatorial Designs, J. Algebra 10 (1968), 246-261.

[5] R.G. Stanton, Two Lemmas on Balance, Bulletin of the ICA 2 (1991),
87-88.

144



