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ABSTRACT. Arcs and linear maximum distance separable (M.D.
S.) codes are equivalent objects [25]). Hence, all results on arcs
can be expressed in terms of linear M.D.S. codes and conversely.
The list of all complete k-arcs in PG(2,q) has been previously
determined for ¢ < 16. In this paper, (i) all values of k for
which there exists a complete k-arc in PG(2,q), with 17 < ¢ <
23, are determined; (ii) a complete k-arc for each such possible
k is exhibited.

1 Introduction

In the projective plane PG(2, q) over the Galois field GF(q), a k-arc K
is a set of k points, no three of which are collinear. The (g + 1) -arcs
of PG(2,q) are called ovals. A k-arc K is called complete if it is not
contained in a (k + 1)-arc of the same projective plane. For a detailed
description of the most important properties of these geometric structures,
we refer the reader to [6]. In [7], [8], and [24], the close relationship between
the theory of complete k-arcs, coding theory and mathematical statistics is
presented. Partly because of this relationship, in recent years the interest
and research on the fundamental problem of determining the spectrum
of the values of k for which there exist complete k-arcs in PG(2,q) have
increased considerably.

In this article, all values of k for which there exists a complete k-arc in
the planes PG(2,17), PG(2,19), PG(2,23) are determined and an example
is given in each case. For smaller values of ¢ see Section 2.

The authors have also obtained some geometric and algebraic charac-
terizations of such complete k-arcs but the details are too involved to be
reported here. So they will be presented in another article.
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2 Notation and Background

With respect to the possible sizes of complete k-arcs in PG(2, ¢) some gen-
eral results are of particular interest. The cardinality of the largest arc in
PG(2, q) is denoted by m2(2, ¢), while the cardinality of the smallest com-
plete arc is denoted by n2(2, ). In this context, also the cardinality of the
second largest complete k-arc in PG(2, q) is s:gmﬁcant Let us denote this
by m3(2, q). The definition of my(2,4) can be formulated as an embedding
theorem: any complete k-arc having more than m2(2, q) points can be em-
bedded in an oval. We list some results that will be helpful in the following
sections.

g+1 ifqisodd

. . 2 = )
Theorem 2.1. (Bose (2]) m2(2, q) {q+ 2 ifqis even

Theorem 2.2. (Segre [18]) In PG(2, q), q odd, every oval is an irreducible
conic.

Theorem 2.3. (Segre [19]) Any g-arc of PG(2,q) , q odd, is contained in
a conic.

Theorem 2.4. (Blokhuis [1]) n2(2,p) > /3p+1/2, p prime.
Theorem 2.5. In PG(2,q), q odd, there exist

(a) (Lombardo Radice [12], Pellegrino [15]) complete ((q + 3)/2)-arcs;
(b) (Korchméros [10], Pellegrino [14]) complete ((q + 5)/2)-arcs;

(c) (Korchméros [10], Pellegrino [16]) complete ((g + 7)/2)-arcs for q =
4t —1,t# 2", or ¢q=2p — 1, p odd prime.

The catalogue of all complete k-arcs in PG(2, q) (up to projectivity) is
known for ¢ < 16. For ¢ < 9, the lists can be found in [6]; for ¢ = 11 and
g = 13 the lists were computed by Gordon [5]; independently, P. Lisonek
[11] and T. Penttila et al. [17] have listed the full catalogue of complete
k-arcs in PG(2,16). Table 2.1 summarizes the results on this topic. In the
table, an entry k(n) indicates that there are n projectively distinct complete
k-arcs for the given order q.



Size k of the known complete arcs with

q n2(21 q) n2(2, q) <k< m'2(2’ q) m2(21 q) m2(2, Q)
21 4(0) N T | 4()
3| 4(1) : 7| 40
11601 - I 6
51 6(1) » 6]
71 62) - 5 | 8()
8] 6(3) n 6 | 10()
91 6(1) 76 8 1 100)
1] 7() 8(9), 903) 10(1) | 12(1)
13 8(2) 9(30), 10(21) 12(1) | 140
16 9(6) 10(1944), 11(113), 12(32) 13(1) | 18(2)

Table 2.1. Orders of complete k-arcs in PG(2,q), ¢ < 16

Two k-arcs in PG(2,q) are eguivalent if there is a projectivity which
maps one onto the other. We are interested in the equivalence classes with
respect to this relation, i.e. the orbits of k-arcs under the action of the
group of projectivities of PG(2, g).

As a consequence of Theorems 2.1 - 2.4, a complete non-oval k-arc exists
in PG(2,p), p prime, only if

\/$+1/2<k<p.

Lemma 1. ([4]). The number of orbits of 5-arcs under the group of the
projectivities of the projective plane over a field of prime order p > 5 is:

O+ p* + 10p + 35 4 20(—3/p) + 30(—1/p) + 24(5/p)
Ew) = 120

where (m/p) is the Legendre symbol.

Since a coordinate system of a projective plane PG(2, q), ¢ > 2, is defined
by a 4-arc and since the group of projectivities is transitive on the coor-
dinate systems of PG(2,q), we can map every complete k-arc of PG(2, q)
onto an equivalent k-arc which contains the canonical coordinate system

{U1=(1,0,0), U=(0,1,0), Us=(0,0,1), U=(1,1,1)}

by an element of PGL(3, q).

Lemma 2. In PG(2,p), for any prime p > 5, choose Os,p) of its mutually
non-equivalent 5 — arcs , Ky, ..., Ko, containing the four points of the
canonical coordinate system. Then every complete k-arc is equivalent to
some complete k-arc which contains a 5 — arc K; € (K, ..., Koy, }.
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Proof: Using Lemma 1 and the transitivity properties of the group of
projectivities of PG(2,p), the result follows immediately.

Applying Lemma 2, an exhaustive computer search to produce a com-
plete k-arc for each admissible k in a fixed PG(2, p), can be performed by
trying to complete in turn every one of the 5-arcs K, ..., Ko ,, by adding
appropriate points of the plane.

Our computer program tried to find the complete k-arcs by an exhaustive
backtrack search. The procedure followed to obtain our complete k-arcs in
PG(2,p) was as follows. Lists were stored of the lines through each point
of the plane, and of the points lying on each line. There were also two
2-dimensional Boolean arrays used to describe the status of every point
and line of the plane with respect not only to the arc currently under
consideration, but also to arcs formed by the first 6, 7, 8, ... points of
that arc. In each case, it was recorded whether or not a given point had
the property of lying on no secant of the arc, and whether or not a given
line was exterior. When a point was being added to the arc, the program
considered in turn the lines through this point. If such a line was exterior
to the old arc, it had to be noted as not exterior to the new arc: in the
contrary case, it was necessary to go through the list of points on that line,
and note that each of them now lay on a secant. When the last point that
had been added to the arc was to be deleted, the properties of the remaining
arc were still available in the store. The programs are available from the
authors.

In the following sections we describe the results of our computer search
on the spectrum of the values of k for which complete k-arcs in PG(2, p),
p = 17,19, 23, exist.

3 The spectrum of the sizes of the complete k-arcs in PG(2,17)
We summarize the results of this section in the following

Theorem 3.1. The spectrum of the sizes of the complete k-arcs in PG(2,17)
is: {10,11,12,13,14,18}.

Proof: From Theorems 2.1 and 2.5, it follows that complete k-arcs with
k = 10,11, and 18 exist, and that m(2,17) = 18; also, by Theorems 2.3
and 2.4, non-oval complete k-arcs exist only if 7 < k < 17.

Our search was finished without finding complete k-arcs with k < 9 and
k = 15,16, but we found complete k-arcs with k € {10,11,12,13}, and a
unique (up to projectivity) complete 14-arc. So we are able to present a
complete k-arc Hj, for each k € {10,11,12,13, 14}. Since every such k-arc
H), contains the point set S = {U; = (1,0,0), Uz = (0,1,0), Us = (0,0, 1),
Us=U=(1,1,1), Us = (1,2,3), Us = (1,3,2)}, below we only list the



points of the (k — 6)-arcs Cj := H\S, for all k € {10,11,12,13,14}.

Cwo ={(1,4,5),(1,5,4),(1,6,13),(1,10,7)}.

Cu ={(1,4,5),(1,5,4),(1,6,13), (1,14,6), (1, 16,9)}.

Ci2 ={(1,4,5),(1,5,4),(1,6,14),(1,7,11),(1,9,12), (1,12, 9)}.

Cis ={(1,4,10),(1,5,6),(1,7,11),(1,8,4), (1,11,7), (1,12, 5), (1,16,15)}.

Cius = {(1,4,10),(1,5,6),(1,7,11),(1,10,13), (1,11, 7), (1, 12, 5),(1, 14, 9),
(1,16,15)}.

We remark that the existence (and the uniqueness) of the complete 18-
arc is a simple consequence of Theorems 2.1 and 2.2. So the proof of our
Theorem now ends.

Remark 1: It has recently come to the attention of the authors that
Penttila and Royle [17] have completed an exhaustive computer search for
complete arcs in the projective plane under consideration, generally from
alternate viewpoint, finding (up to equivalence) 560 complete 10-arcs, 2644
complete 11-arcs, 553 complete 12-arcs, 8 complete 13-arcs, a unique com-
plete 14-arc, and so they reached the same conclusion about the possible
sizes.

4 The spectrum of the sizes of the complete k-arcs in PG(2,19)
As in the previous section, we summarize the results in the following

Theorem 4.1. The spectrum of the sizes of the complete k-arcs in PG(2,19)
is: {10,11,12,13, 14, 20}.

Proof: From Theorems 2.1 and 2.5, it follows that complete k-arcs with
k = 11,12,13, 20 exist, and that my(2,19) = 20. Also, by Theorems 2.3
and 2.4, non-oval complete k-arcs exist only if 8 < k < 19.

Our search was finished without finding complete k-arcs with k < 9 and
k = 15,16,17 and 18. But we found complete k-arcs with k& €{10, 11, 12,
13, 14}. So we are able to present a complete k-arc Hj, for each k €{10, 11,
12, 13, 14}. Below we only list the points of the (k — 6) -arcs Cx := H\S,
for all k €{10, 11, 12, 13, 14}, where S is the same set as in Section 3.

Cio = {(1,4,8),(1,6,16),(1,7,10),(1,8,7)}.

Cu ={(1,4,5),(1,5,4),(1,6,8),(1,7,16),(1,15,11)}.

Ci2={(1,4,5),(1,5,4),(1,6,8),(1,7,16),(1, 8,6), (1,14,11)}.

Ciz=1{(1,4,5),(1,5,4),(1,6,8),(1,7,16),(1, 8,13), (1,11, 14),(1, 16, 6)}.

Ciu ={(1,4,5),(1,5,4),(1,6,8),(1,8,6),(1,11, 14), (1,13,16), (1, 14, 11),
(1,16,13)}.



We remark that the existence (and the uniqueness) of the complete 20-
arc is a simple consequence of Theorems 2.1 and 2.2. So the proof of our
Theorem now ends.

Remark 2: Asin the previous section, it has recently come to the attention
of the authors that Penttila and Royle [17] have completed an exhaustive
computer search for complete arcs in the projective plane PG(2, 19), gen-
erally from alternate viewpoint, finding (up to equivalence) 29 complete
10-arcs, 9541 complete 11-arcs, 30135 complete 12-arcs, 2232 complete 13-
arcs, 70 complete 14-arcs, and so they reached the same conclusion about
the possible sizes.

5 The spectrum of the sizes of the complete k-arcs in PG(2,23)

Theorem 5.1. The spectrum of the sizes of the complete k-arcs in PG(2, 23)
is: {10,12,13,14,15,16,17,24}.

Proof: By application of our Lemmas 1 and 2 on orbits of arcs in projective
planes, we were able to show that n3(2,23) = 10 and that (up to projectiv-
ity) there is a unique 10-arc in PG(2,23). From Theorems 2.1 and 2.5, it
follows that complete k-arcs with k = 13, 14, 15, 24 exist. Besides, we were
able to produce complete k-arcs for k € {12,16,17}. Since Kaneta showed
that m;(2, 23) = 17 (see [9]), for the problem of determining the spectrum
of the values of k for which there exist complete k-arcs in PG(2,23) it re-
mains to prove the existence of complete 11-arcs. Our search was finished
without finding complete 11-arcs.

As in the previous sections, we present only one complete k-arc Hy for
each possible size.

HIO = {Ul: U2: U3) U» (19 2) 3)1 (1’ 3: 11)) (114v 2): (l) 9, 15): (lv 113 19),
(1,15,16)}.

Below we only list the points of the (k — 6)-arcs Cx := Hi\S , for all
k € {12,13,14,15,16,17}, where S is the same set as in Section 3.

Ci2 ={(1,4,5),(1,5,4),(1,6,8),(1,7,11),(1,8,21), (1, 11, 16) }.

Cis ={(1,4,5),(1,5,4),(1,6,8),(1,7,11), (1, 8,21), (1,11, 9),(1, 20, 10) }.

Ciua ={(1,4,5),(1,5,4),(1,86, 8),.(1,7, 11),(1,8,21),(1,11,9),(1,12,22),
(1,20,17)}.

Cis = {(1,4,5),(1,5,4),(1,6,8),(1,7,11), (1,9, 16), (1, 10, 6), (1,11, 9),
(1,17,12), (1,20,17)}.



Cis = {(1,4,5), (1,5,4), (1,6,8), (1,7,11),(1,12,7), (1, 14, 16), (1,16, 19),
(1,18,13), (1,19, 22), (1,22, 15)}.

Crr = {(1,4,5), (1,5,18), (1, 6,13), (1,8,14), (1,9,7), (1,10, 8), (1, 12, 20),
(1,14,11),(1,17,12), (1,19, 21), (1,22, 19)}.

Finally, the existence and the uniqueness of the complete 24-arc is a
simple consequence of Theorems 2.1 and 2.2.

6 Concluding Remarks

The problem of compiling the full catalogue of complete k-arcs in PG (2,9)
for ¢>25 seems to be extremely hard. For example, with respect to ) My (2 9),
g small, only the following values are known (see (3], [8], [21]): m(2,25) =
21, my(2,27) = 22, my(2, 64) =

Regarding the exact size of the smallest complete k-arcs in PG(2,q)
for ¢>25 no exact results have been obtained. However, some results are
known, see [13].
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