On k-packings of Graphs

B.Hartnell *

Saint Mary's University, Halifax, N.S.

e-mail: hartnell@husky1.stmarys.ca

and C.A.Whitehead †

University of London, Goldsmiths College, U.K.

e-mail: maa01cw@gold.ac.uk

June 10, 1997

Abstract

A set $\mathcal{P} \subseteq V(G)$ is a k-packing of a graph G if for every pair of vertices u, v in $\mathcal{P}, d(u, v) \geq k+1$. We define a graph G to be k-equipackable if every maximal k-packing of G has the same size. In this paper, we construct, for $k \geq 1$, an infinite family \mathcal{F}_k of k-equipackable graphs, recognizable in polynomial time. We prove further that for graphs of girth at least 4k+4, every k-equipackable graph is a member of \mathcal{F}_k .

1 Introduction

A set $\mathcal{P} \subseteq V(G)$ is a k-packing of a graph G if, for every pair of vertices u, v in \mathcal{P} , $d(u, v) \geq k + 1$. This concept seems to have been introduced by Meir and Moon [9], who defined the k-packing number of G to be the number $\pi_k(G)$ of vertices in any largest k-packing of G. We call a graph G k-equipackable if every maximal k-packing of G has the same size. We note that whereas the problem of determining the k-packing number of a graph is known to be hard in general, and remains so even when the graphs is restricted to certain classes (see, for example, [1], [2], [3], [8]), in the case of a k-equipackable graph it can be determined by a greedy algorithm, for k > 1.

The case that has received the most attention in the literature is when k=1. A 1-packing of a graph G is called an *independent set* and the 1-packing number is called the *independence number* of G. Graphs which are 1-equipackable are called *well-covered*, a concept introduced by Plummer [10]. Some progress has been made on characterizing well-covered graphs subject to certain additional

^{*}Partially supported by a grant from NSERC of Canada

[†]Partially supported by a professional exchange grant from the British Council

conditions (see in particular [11] for an excellent survey of different approaches and progress), but a characterization of all well-covered graphs appears out of reach at present.

In this paper, we describe in Section 2 how, for given $k \geq 1$, an infinite family \mathcal{F}_k of k-equipackable graphs can be constructed and present a polynomial algorithm for deciding whether a given graph is in \mathcal{F}_k . We then prove, in Section 3, that every k-equipackable graph of girth 4k+4 or more is a member of \mathcal{F}_k . This gives a complete characterization of k-equipackable graphs of girth 4k+4 or more. We remark that an approach based on limiting the girth of the graph is one which has proved fruitful in characterizing well-covered graphs (see [4], [5]).

A related concept to k-packing, is k-domination. A k-dominating set of a graph G is a set $\mathcal{D} \subseteq V(G)$ such that for every vertex $v \in V(G)$, there is at least one vertex $x \in \mathcal{D}$ such that $d(v,x) \leq k$. The minimum size of a k-dominating set is called the k-domination number of G and denoted by $\gamma_k(G)$. In section 4, we show that every graph in the family \mathcal{F}_{2k} has the additional property that its 2k-packing number is equal to its k-domination number.

We use the following definitions and notation. A vertex of degree 1 is called a leaf and a vertex of degree 2 or more that is adjacent to a leaf is called a stem. For any pair of vertices u, v of a connected graph G, the distance between u and v is the length of the shortest [u, v]-path in G and denoted by d(u, v). The maximum value of d(u, v), taken over all pairs $u, v \in V(G)$, is called the diameter of G and denoted by diam G. A path of length diam (G) is called a diametrical path.

The set of vertices at distance j from a vertex v is denoted by $N_j(v)$ and the set at distance at most j from v is denoted by $N_j[v]$. For $u, v \in V(G)$, $u \neq v$, $N_j[u, v]$ denotes the set $N_j[u] \cup N_j[v]$. For $S \subseteq V(G)$, $\langle S \rangle$ denotes the subgraph of G induced by the set S.

All graphs considered in this paper are finite. Since a graph G is k-equipackable if and only if each of its connected components is k-equipackable, all graphs are assumed to be connected. Further, since any graph of diameter k or less is k-equipackable, with $\pi_k(G) = 1$, we shall restrict our discussion to graphs G for which diam G > k. Throughout this paper, we shall denote $\lfloor k/2 \rfloor$ by r.

2 Construction of \mathcal{F}_k

Let k be a positive integer, and let $r = \lfloor k/2 \rfloor$. Let G be a connected graph with diam G > k. An induced subgraph $\langle V' \rangle$ of G is called a k-basic subgraph if V' contains

(a) a central vertex b such that $V' = N_r[b]$, in the case when k is even; two adjacent central vertices b, b' such that $V' = N_r[b, b']$, in the case when k is odd;

(b) a vertex x such that d(x,b) = r and, for all $u \in V(G) - V'$, every [x,u]-path contains the vertex b in the case when k is even and the edge bb' in the case when k is odd.

The vertex b is called an r-branchpoint of $\langle V' \rangle$ and the vertex x a remote vertex of $\langle V' \rangle$.

We say that G belongs to the family \mathcal{F}_k if V(G) can be partitioned into a finite number $m \geq 2$ of pairwise disjoint subsets $V_1, V_2, ..., V_m$ such that, for $i = 1, 2, ..., m, \langle V_i \rangle$ is a k-basic subgraph of G.

An example of a graph G in \mathcal{F}_k for each of the values k=2 and k=3 is shown in Figures 1(a) and 1(b), respectively. In these figures, an r-branchpoint of each k-basic subgraph is denoted by a filled square (in both cases, r=1) and the remote vertices are denoted by filled circles.

We can make some immediate deductions concerning the structure of a k-basic subgraph B of a graph G in \mathcal{F}_k .

Lemma 2.1 Let $G \in \mathcal{F}_k$ and B denote a k-basic subgraph of G. Suppose that b is an r-branchpoint and x a remote vertex of B. Additionally, in the case when k = 2r + 1, let b' denote a vertex adjacent to b such that for all $u \in V(G) - V(B)$, every [x, u]-path contains the edge bb' and $B = \langle N_r[b, b'] \rangle$. Then

- (i) diam B = k, and every vertex of V(G) V(B) is at distance at least k + 1 from x;
- (ii) b is the only r-branchpoint of B;
- (iii) in the case when k is odd, b' is also uniquely determined.

Proof. By property (a), diam $B \leq k$. Let $u \in V(G) - V(B)$. Then the shortest [u, x]-path contains b when k = 2r and bb' when k = 2r + 1. However, $d(u, b) \geq r + 1$ when k = 2r, and $d(u, b) \geq r + 2$ when k = 2r + 1. Hence, in

either case, $d(u, x) = d(u, b) + d(b, x) \ge k + 1$. Thus diam B = k, establishing (i).

Suppose that b,c are both r-branchpoints of B. Let x be a remote vertex corresponding to b, and let $u \in V(G) - V(B)$ be such that d(u,x) = k+1. Suppose first k = 2r. Let P denote a shortest [u,x]-path. Then P contains b, which is thus the vertex of P at distance r+1 from u. Let w be the vertex of P adjacent to u. Then $w \in B$ and hence $d(w,c) \leq r$. Since $u \notin B$, we have d(w,c) = r. Let Q_1,Q_2 denote respectively a shortest [w,c]-path and a shortest [c,x]-path. Then since $d(c,x) \leq r$, the [u,x]-path $Q = uw + Q_1 + Q_2$ has length at most 2r+1=k+1. Thus Q has length exactly k+1 and is a shortest [u,x]-path. But then Q contains b, and the [b,x] section of Q is a shortest [b,x]-path. Hence b is the vertex of Q at distance r from r and r+1 from r0, and so r2. Thus the r2-branchpoint of a r2-basic subgraph is unique.

In the case when k=2r+1, a similar argument establishes both (ii) and (iii). \square

In general, a k-basic subgraph may contain more than one remote vertex, as in the examples shown in Figure 1. However, in the special case when k = 1 (so that r = 0), a remote vertex of a 1-basic subgraph coincides with its 0-branchpoint. Hence, in this case, each 1-basic subgraph contains a unique remote vertex, and this vertex is necessarily a leaf of G. Thus a 1-basic subgraph can be very simply described: it is isomorphic to K_2 .

Theorem 2.2 Let $G \in \mathcal{F}_k$ and let $B_1, B_2, ..., B_m$ denote the complete collection of k-basic subgraphs of G. Then G is k-equipackable and $\pi_k(G) = m$.

Proof. Let \mathcal{P} be a maximal k-packing of G. Since diam $B_i = k, 1 \leq i \leq m$, each k-basic subgraph B_i contains at most one vertex of \mathcal{P} . Suppose there exists a k-basic subgraph B_1 , say, that contains no vertex of \mathcal{P} . Let b denote the r-branchpoint and x denote a remote vertex of B_1 . Then since $x \notin \mathcal{P}$, there exists a vertex $s \in \mathcal{P}$ such that $d(s,x) \leq k$. However, $s \in V(G) - V(B_1)$ and hence $d(s,x) \geq k+1$, by Lemma 2.1. This contradiction establishes that B_1 contains at least one vertex of \mathcal{P} . Hence each of the sets B_i , i=1,2,...,m, contains exactly one vertex of \mathcal{P} . However, every vertex of \mathcal{P} is in at least one of the sets B_i , for $1 \leq i \leq m$. Hence $\pi_k(G) = m$. \square

It follows from Theorem 2.2 that for a graph $G \in \mathcal{F}_k$, $\pi_k(G)$ is given by the number of k-basic subgraphs in a collection partitioning G.

Lemma 2.3 Let $G \in \mathcal{F}_k$ and x, y be end-vertices of a diametrical path Q in G. Then we can find a remote vertex x' of a k-basic subgraph of G such that d(x', y) = diam G.

Proof. Since diam G > k, the vertices x, y are in distinct k-basic subgraphs, B, B' say. Suppose that x is not a remote vertex of B. Let au be the edge of Q such that $a \in V(B)$ and $u \in V(G) - V(B)$. Then $d(x, a) \leq k$ and hence

 $d(x, u) \le k + 1$. However, B contains at least one remote vertex, x' say. Then $d(x', u) \ge k + 1$, by Lemma 2.1 (i). Hence d(x', y) = diam G. \square

Now suppose that $G \in \mathcal{F}_k$ and Q is a diametrical path in G starting at a remote vertex x of a k-basic subgraph B. Since Q contains a vertex of V(G) - V(B), it contains the unique r-branchpoint b, say, of B and, in the case when k is odd, the central edge bb' of B as well. Thus b can be identified as the vertex of Q at distance r from x (and when k is odd, b' is the vertex of Q at distance r+1 from x). We also note that since Q is a diametrical path, it follows that the induced subgraph $\langle V(G) - V(B) \rangle$ is connected. Hence it either belongs to \mathcal{F}_k , or it has diameter k and consists of a single basic subgraph.

These renarks are the basis of the following polynomial algorithm for deciding, for a given positive integer k and a given graph G, whether G belongs to \mathcal{F}_k and, in this case, determining $\pi_k(G)$. Suppose first that k=2r.

Algorithm

- Step 1. Find a shortest path between each pair of vertices of G and determine diam G. If G is not connected or diam $G \leq k$, then conclude $G \notin \mathcal{F}_k$ and stop. Otherwise, set $G = G_1$ and all vertices unlabelled.
- Step 2. Suppose that we have identified a sequence of subgraphs $G_1, G_2, ..., G_{i-1}$ and vertices $b_1, b_2, ..., b_{i-1}, i \geq 2$, such that for $j \neq l$, $N_r[b_j] \cap N_r[b_l] = \emptyset$, every vertex of $N_r[b_j]$ has a permanent label j, $1 \leq j \leq i-1$, and all other vertices of G are unlabelled. Let U_i be the set of unlabelled vertices of G. If $U_i = \emptyset$, then conclude that $G \in \mathcal{F}_k$ and $\pi_k(G) = i-1$; then stop. Otherwise, let $G_i = \langle U_i \rangle$. Find diam G_i and a shortest path between each pair of vertices in G_i . If G_i is not connected or diam $G_i < k$, then conclude that $G \notin \mathcal{F}_k$ and stop.
- Step 3. Let D_i be the set of all vertices that are endpoints of diametrical paths in G_i . Choose a distinguished vertex $y \in D_i$ and let $D_i(y) = \{u \in D_i : d(y, u) = \text{diam } G_i\}$.
- Step 4. Choose $x \in D_i(y)$ and let Q[x, y] denote a shortest [x, y]-path in G_i . Give the vertex of Q[x, y] at distance r from x the temporary label b_i ; give all other vertices of G in $N_r[b_i]$ the temporary label i.
- Step 5. If any one of these vertices is already labelled, then delete all temporary labels and set $D_i(y) := D_i(y) \{x\}$. If now $D_i(y) = \emptyset$, then conclude that $G \notin \mathcal{F}_k$ and stop; otherwise, return to the start of step 4.
- Step 6. Find the component of $G b_i$ containing x. If this component contains only vertices that have the label i, then $\langle N_r[b_i] \rangle$ is a k-basic subgraph of G, with b_i as r-branchpoint and x as a remote vertex. Make the temporary labels permanent; return to start of step 2 and increment i := i + 1.
- Step 7. If diam $G_i = k$, then find the component of $G b_i$ containing y (this checks whether we have a k-basic subgraph if the roles of x and y are reversed).

If this component contains only vertices that have the label i, then make the temporary labels permanent; return to the start of step 2 and increment i := i + 1.

Step 8. Conclude that $G \notin \mathcal{F}_k$ and stop.

This algorithm can easily be adapted for the case where k = 2r + 1, $r \ge 0$. All that is required is that when we label b_i in step 4, we also give the vertex of Q at distance r + 1 from x_i the label b_i' and substitute $N_r[b_i, b_i']$ for $N_r[b_i]$ throughout. Similarly, we replace the graph $G - b_i$ by the graph $G - b_i b_i'$. Finally, when we reverse the roles of x_i and y in step 7, we also interchange the labels b_i and b_i' .

It is easily seen that the algorithm is polynomial. Suppose that G has order n. Then the shortest path between any pair of vertices can be found by Floyd's algorithm [6] in $O(n^3)$ operations. Steps 4, 6 and 7 can each be accomplished by a breadth-first search taking $O(n^2)$ operations. Thus the whole algorithm requires at most $O(n^4)$ operations and we have the following result.

Lemma 2.4 It can be determined in polynomial time whether a given graph G with diam G > k belongs to \mathcal{F}_k .

3 Characterization

In this section, we prove that for graphs of girth at least 4k+4, all k-equipackable graphs belong to \mathcal{F}_k and are thus recognizable in polynomial time. The proof is divided into several lemmas, all but one of which hold at girth lower than 4k+4. We give in each case the minimum girth required by the proof, thus giving some partial information on k-equipackable graphs with lower girth. The first result, that if a k-equipackable graph contains more than one k-basic subgraph, then all k-basic subgraphs are pairwise disjoint, holds without girth restriction.

Lemma 3.1 Let G be a k-equipackable graph and let B_1 , B_2 be distinct k-basic subgraphs of G. Then $V(B_1) \cap V(B_2) = \emptyset$.

Proof. Let b_i be the r-branchpoint and x_i be a remote vertex of B_i , i = 1, 2. We show first that x_1, x_2 are distinct. Let $w \in V(B_1) - V(B_2)$. Then, by Lemma 2.1(i), $d(w, x_2) > k$. However, $d(w, x_1) \le k$. Hence $x_1 \ne x_2$.

Suppose there is a vertex $u \in V(B_1) \cap V(B_2)$. Let \mathcal{P} be a maximal k-packing of G containing u. Then, by Lemma 2.1(i). $\mathcal{P}' = \mathcal{P} \cup \{x_1, x_2\} - \{u\}$ is also a k-packing of G. But $|\mathcal{P}'| > |\mathcal{P}|$, contradicting the assumption that G is k-equipackable. Thus $V(B_1) \cap V(B_2) = \emptyset$. \square

In the remaining results in this section, we establish that every vertex of a k-equipackable graph G of girth 4k+4 or more is contained in a k-basic subgraph. Our proofs all require a girth restriction on G of at least 3k+3.

It follows from Lemma 2.1 that for a graph G of girth at least 2r + 2, a k-basic subgraph B of G is a tree. In particular, a remote vertex x of B is a leaf of a subtree of depth r rooted at the r-branchpoint b of B, with the property that any path from a vertex $u \in V(G) - V(B)$ to x must pass through b.

We pointed out just before Theorem 2.2 that every 1-basic subgraph of a graph G in \mathcal{F}_1 is isomorphic to K_2 , where one vertex of each K_2 is a leaf in G. At girth 4 or more, the structure of a graph G in \mathcal{F}_2 is also simple to describe. In this case, each 2-basic subgraph B is a star, with its central vertex as the 1-branchpoint and a leaf (that is also a leaf of G) as remote vertex. A join between two distinct 2-basic subgraphs is an edge incident with a leaf of each star.

A 3-basic subgraph B of a graph $G \in \mathcal{F}_3$ of girth 4 or more consists of a pair of stars with adjacent centres, b, b', say. These stars have the property that every leaf (and there must be at least one) of B adjacent to b is also a leaf of G, while a join between B and another 3-basic subgraph is an edge incident with a leaf of B adjacent to b'. In this case, b is the 1-branchpoint of B and every leaf of B adjacent to b (but no leaf adjacent to b') is a remote vertex of B.

The structure of a k-basic subgraph of a graph of girth 2r+2 or more in \mathcal{F}_k for larger values of k is a generalization of the case when k=2 (if k is even) or k=3 (if k is odd). An example of such a k-basic subgraph for each of the values k=5 and k=6 is shown in Figure 2.

Fig.2

At girth 2k+4 or more, the structure of the subgraph $\langle N_{k+1}[u] \rangle$, for any vertex $u \in V(G)$, is a tree rooted at u. In this case, for vertices $w, z \in N_{k+1}[u]$, such that w precedes z on the unique [u, z]-path in $\langle N_{k+1}[u] \rangle$, we shall say that w is an ancestor of z and that z is a descendant of w.

Lemma 3.2 Let G be a k-equipackable graph of girth at least 3k + 3 containing at least one k-basic subgraph. Then, for every $v \in V(G)$, there exists a k-basic subgraph B containing v.

Proof. Suppose there exists a vertex of G that is not contained in any k-basic subgraph. Then we can find a vertex u and k-basic subgraph B_1 with r-branchpoint b_1 , such that $d(u,b_1)=k-r+1$ and $u \notin V(B)$ for all k-basic subgraphs B of G. It follows from the girth restriction that there is a unique shortest $[b_1,u]$ -path in G. Denote this by $b_1v_1v_2...v_ru$ in the case when k=2r, by $b_1b_1'v_1v_2...v_ru$ in the case when k=2r+1, for $r\geq 1$, and by $b_1b_1'u$ when r=0. If r=0, let $v_0=b_1'$. Let $N_j'(u)$ denote the subset of $N_j(u)$ that contains just those vertices that are at distance j+1 from v_r , j=1,2,...,k+1.

Consider the induced tree $\langle N_{k+1}[u] \rangle$ rooted at u. We construct a subset $S \subseteq N'_{k+1}(u)$ as follows. If $N'_{k+1}(u) = \emptyset$, put $S = \emptyset$. Otherwise, for each vertex $w \in N'_{k-r+1}(u)$ that has a descendant $z \in N'_{k+1}(u)$, select just one such descendant and put this vertex in S. Then for any $s,t \in S$, we have $d(s,t) \geq k+1$, by the girth restriction. Since also $d(s,v_r) > k$, for all $s \in S$, the set $S \cup \{v_r\}$ is a k-packing and hence can be extended to a maximal k-packing \mathcal{P} of G.

We show that v_r is the only vertex of $N_k[u]$ in \mathcal{P} . Note that the only vertices of $N_k[u]$ that are at distance greater than k from v_r are those in $N_k'(u)$. Suppose $y \in N_k'(u)$ and let w be the ancestor of y in $N_{k-r+1}'(u)$. If w has a descendant in $N_{k+1}'(u)$, then w has one such descendant z, say, in S. However, $d(z,y) \leq d(z,w) + d(w,y) = 2r - 1 < k$, and hence $y \notin \mathcal{P}$. So we may assume that w has no descendant in $N_{k+1}'(u)$. This implies in particular that y is a leaf of G. Let w_0 be the predecessor of w on the unique [u,w]-path in $\langle N_{k+1}[u] \rangle$. Then for all $v \in V(G) - N_r[w_0]$, every [v,y]-path contains w_0 . It follows in the case when k = 2r, that w_0 is the r-branchpoint and y a remote vertex of a k-basic subgraph $B = \langle N_r[w_0] \rangle$. However, $d(u,w_0) = r$ and hence $u \in V(B)$, contrary to hypothesis.

In the case when k=2r+1, suppose first that w_0 also has no descendant in $N'_{k+1}(u)$. Let w'_0 be the predecessor of w_0 on the [u,w]-path in $\langle N_{k+1}[u] \rangle$. Then for all $v \in V(G) - N_r[w_0, w'_0]$, every [v,y]-path contains the edge w'_0w_0 . Hence $\langle N_r[w_0, w'_0] \rangle$ is a k-basic subgraph containing u, contrary to hypothesis. On the other hand, if w_0 has a descendant in $N'_{k+1}(u)$, then it has one such descendant z, say, such that $z \in S$. However, $d(z,y) \leq d(z,w_0) + d(w_0,y) = 2r+1 = k$, and hence $y \notin \mathcal{P}$.

We conclude that v_r is the only vertex of $N_k[u]$ in \mathcal{P} . Let x be a remote vertex of B_1 . Then d(u,x)=k+1. Further, for any $s\in S$, d(s,x)>k. Hence $\mathcal{P}'=\mathcal{P}\cup\{x,u\}-\{v_r\}$ is also a k-packing of G, but with $|\mathcal{P}'|>|\mathcal{P}|$. This contradicts the assumption that G is k-equipackable and thus establishes the result. \square

Lemmas 3.1 and 3.2 together give the following.

Corollary 3.3 Let G be a k-equipackable graph of girth at least 3k+3 containing at least one k-basic subgraph. Then $G \in \mathcal{F}_k$. \square

Lemma 3.4 Let G be a k-equipackable graph of girth 4k + 4 or more. Then G contains a leaf.

Proof. Suppose that G is leafless. Then G is not a tree and hence G contains a cycle of length at least 4k + 4. Let $uv_1v_2...v_kw$ be any (k + 2)-path in G. Let $N'_j(u)$, $N'_j(w)$ denote the subsets of $N_j(u)$ and $N_j(w)$ respectively, containing just those vertices at distance at least j + 1 from v_{r+1} .

Since G is leafless and has girth at least 4k+4, every vertex $z \in N'_{k-r+1}(u) \cup N'_{k-r+1}(w)$ has a descendant $z' \in N'_{k+1}(u) \cup N'_{k+1}(w)$. We construct a subset $S \subseteq N'_{k+1}(u) \cup N'_{k+1}(w)$ by selecting exactly one such descendant z' of each vertex $z \in N'_{k-r+1}(u) \cup N'_{k-r+1}(w)$ and putting this vertex in S. By the girth restriction, $d(s,t) \geq k+1$, for any $s,t \in S$. Since also $d(s,v_{r+1}) > k$, for all $s \in S$, the set $S \cup \{v_{r+1}\}$ is a k-packing and hence can be extended to a maximal k-packing \mathcal{P} of G. However, $\mathcal{P}' = \mathcal{P} \cup \{u,w\} - \{v_{r+1}\}$ is also a k-packing of G, but with $|\mathcal{P}'| > |\mathcal{P}|$, contrary to the assumption that G is k-equipackable. Hence G contains a leaf. \square

Lemma 3.5 Let G be a k-equipackable graph of girth 4k + 2 or more that contains a leaf. Then G contains a k-basic subgraph.

Proof. The result is clear when k = 1, 2 and hence we shall assume that $k \ge 3$. Suppose first that G is a tree. Let x, y be leaves such that $d(x, y) = \operatorname{diam} G$. Let b be the vertex of the unique [x, y]-path such that d(x, b) = r. Then b is the r-branchpoint of a k-basic subgraph containing x as a remote vertex.

We may thus assume that G contains a cycle of length at least 4k + 2. Let $V_0(G)$ denote the subset of vertices of G that lie on at least one cycle. Suppose that G contains no k-basic subgraph. For each leaf x, let D(x) denote the minimum distance of x from any vertex of $V_0(G)$. Let c be the maximum value of D(x), taken over all leaves x, and let $L = \{x : D(x) = c\}$. For each leaf $x \in L$, let n(x) denote the number of vertices in $V_0(G)$ at distance c from x. Choose a leaf $x_0 \in L$ such that $n(x_0)$ is minimum.

Let x_c be a vertex on a cycle C such that $d(x_0, x_c) = c$ and let $x_0x_1...x_c$ be a shortest $[x_0, x_c]$ -path. If $c \ge k+1$, denote the $[x_0, x_{k+1}]$ section of this path by R; otherwise, extend the path by adjoining a section $x_cx_{c+1}...x_{k+1}$ of the cycle C to give the path R.

Consider first the induced tree $\langle N_{k+1}[x_{k+1}] \rangle$ rooted at x_{k+1} . Let $N'_j(x_{k+1})$ denote the subset of $N_j(x_{k+1})$ containing just those vertices at distance j+1 from x_k , j=1,2,...,k+1. Construct a subset $S_1 \subseteq N'_{k+1}(x_{k+1})$ as follows. For each vertex $w \in N'_{k-r+1}(x_{k+1})$ that has a descendant $z \in N'_{k+1}(x_{k+1})$, we select just one such descendant and put this vertex in S_1 . Then for any $s,t \in S_1$, we have d(s,t) > k and $d(s,x_k) > k$.

Consider next the induced tree $\langle N_{k+1}[x_0] \rangle$ rooted at x_0 . Let $N'_j(x_0)$ denote the subset of $N_j(x_0)$ containing just those vertices at distance j or more from x_k , j=1,2,...,k+1. Construct a subset $S_2 \subseteq N'_{k+1}(x_0)$ as follows. If $N'_{k+1}(x_0) = \emptyset$, let $S_2 = \emptyset$. Otherwise, for each vertex $w \in N'_{k-r+1}(x_0)$ that has a descendant $z \in N'_{k+1}(x_0)$, select just one such descendant and put this vertex in S_2 . Then d(s,t) > k and $d(s,x_k) > k$, for any $s,t \in S_2$. Further, for any $s \in S_1$, $t \in S_2$, we have $d(s,t) \geq k+1$, by the girth restriction. In any case, the set $\{x_k\} \cup S_1 \cup S_2$ is a k-packing of G and hence can be extended to a maximal k-packing \mathcal{P} of G.

We now show that x_k is the only vertex of $N_k[x_0] \cup N_k[x_{k+1}]$ in \mathcal{P} . The proof that if G contains no k-basic subgraph, then x_k is the only vertex of $N_k[x_{k+1}]$ in \mathcal{P} is identical to the proof given in Lemma 4.2 that v_r is the only vertex of $N_k[u]$ in \mathcal{P} . We shall therefore suppose that $y \in N_k[x_0]$ and $d(y, x_k) \geq k+1$. Let x_m denote the vertex closest to y on the $[x_0, x_k]$ section of R.

Suppose first that y has a descendant in $N_{k+1}(x_0)$. If one such descendant z, say, is in S_2 , then since $d(y,z) < d(x_m,z) \le k$, we have $y \notin \mathcal{P}$. If y has no descendant in S_2 , then we must have $y \in N_j(x_0)$, where $k-r+2 \le j \le k$. In this case, y has an ancestor $w \in N_{k-r+1}(x_0)$ and w has a descendant s, say, in S_2 . However, d(y,s) = d(y,w) + d(w,s) < k and hence again $y \notin \mathcal{P}$.

We may therefore suppose that y has no descendant in $N_{k+1}(x_0)$. Thus every path in $\langle N_{k+1}[x_0] \rangle$ starting at x_m and containing y terminates in a leaf at distance at most k-m from x_m . Let y_0 be one such leaf (where possibly $y_0=y$). Let $Q=x_0x_1...x_my_q...y_1y_0$ denote the unique $[x_0,y_0]$ -path in $\langle N_{k+1}[x_0] \rangle$. Let v be a vertex of $V_0(G)$ at minimum distance from y_0 . Then since $d(y_0,x_k)>d(x_0,x_k)$, it follows that $d(y_0,x_m)>d(x_0,x_m)$. Hence the vertex of Q nearest to v is one of the vertices y_j , $1 \leq j \leq q$, since otherwise $D(y_0)=d(y_0,v)>c$, contradicting the definition of c. Let y_i be the vertex of Q at minimum distance from v (where possibly $y_i=v$). If there is more than one choice for v, then choose v so that i is minimum. Since $y_i \neq x_m$, it follows that v and x_c are distinct.

We note that $d(x_0, v) \ge c$. Suppose first that $d(x_0, v) = d(x_0, y_i) + d(y_i, v) > c$. It follows from the choice of x_0 , that $d(y_0, v) = d(y_0, y_i) + d(y_i, v) < c$. Hence

$$d(y_0, y_i) < d(x_0, y_i). (1)$$

Now suppose that $d(x_0, v) = c$. If $d(y_0, v) = c$, the shortest path from y_0 to a vertex $u \in V_0(G)$ at distance c must include y_i but no vertex of Q between y_i and x_0 , since otherwise $d(x_0, u) < c$. But, then $n(x_0) > n(y_0)$, contradicting the choice of x_0 . Hence this case cannot occur. We must therefore have $d(y_0, v) < c$, and the inequality (1) holds again.

Since y_i has a descendant v on a cycle, it follows from the girth restriction that y_i has a descendant $z \in N_{k+1}(x_0)$. Now $d(y,z) \le d(y_0,z) = d(y_0,y_i) + d(y_i,z) < d(x_0,z)$, by (1). Hence $d(y,z) \le k$. Thus, if y_i has a descendant in S_2 , then $y \notin \mathcal{P}$. If y_i has no descendant in S_2 , then we must have $y_i \in N_j(x_0)$, where $k-r+2 \le j \le k$. In this case, y_i has an ancestor $w \in N_{k-r+1}(x_0)$ and

w has a descendant s, say, in S_2 . However, d(y,s) = d(y,w) + d(w,s) < k and hence again $y \notin \mathcal{P}$.

We conclude that x_k is the only vertex of $N_k[x_0] \cup N_k[x_{k+1}]$ in \mathcal{P} . Hence $\mathcal{P}' = \mathcal{P} \cup \{x_0, x_{k+1}\} - \{x_k\}$ is also a k-packing of G, but with $|\mathcal{P}'| > |\mathcal{P}|$. This contradicts the assumption that G is k-equipackable, establishing the result. \square

In conclusion, from Theorem 2.2, Lemmas 3.4 and 3.5 and Corollary 3.3, we deduce the following characterization of k-equipackable graphs of girth 4k + 4 or more.

Theorem 3.6 Let G be a graph with diam G > k and girth at least 4k + 4. Then G is k-equipackable if and only if $G \in \mathcal{F}_k$. \square

From Lemma 2.4, we can deduce the following corollary to Theorem 3.6.

Corollary 3.7 Given a graph G with diam G > k and girth at least 4k + 4, we can decide in polynomial time whether G is k-equipackable. \square

The lower bound on the girth of G in Lemma 3.4 is sharp. This follows from noting that if u, v are consecutive vertices in any k-packing of the cycle C_g , then $k+1 \le d(u,v) \le 2k+1$. Hence C_g has a maximal k-packing of size 2 when $2k+2 \le g \le 4k+2$, of size 3 when $3k+3 \le g \le 6k+3$, of size 4 when $4k+4 \le g \le 8k+4$, and so on. Thus C_g is k-equipackable if $g \le 3k+2$ and also for the isolated case when g=4k+3, for which C_g has maximal k-packings of size 3 only. For all other values of $g \ge 3k+3$, C_g has maximal k-packings of at least two different sizes.

In [5], it is shown that in the case when k = 1, the cycle C_7 is in fact the only well-covered graph of girth 7 that does not belong to \mathcal{F}_1 . A similar result has been obtained by the authors and G.Gunther [7] in the case when k = 2. That is, the cycle C_{11} is the only 2-equipackable graph of girth 11 that is not a member of \mathcal{F}_2 . We make the following conjecture.

Conjecture 1 The cycle C_{4k+3} is the only k-equipackable graph of girth 4k+3 that is not a member of \mathcal{F}_k .

4 A remark on k-domination

In [9], it is proved that for any tree T, $\pi_{2k}(T) = \gamma_k(T)$, for $k \geq 1$. It is easily seen that the inequality $\pi_{2k}(G) \leq \gamma_k(G)$ holds in any graph G. For, suppose that \mathcal{P} is a maximal 2k-packing and \mathcal{D} any minimal k-dominating set in G. Then every vertex $s \in \mathcal{P}$ is contained in a set $N_k[c]$, for some $c \in \mathcal{D}$. However, no set $N_k[c]$ contains more than one vertex of \mathcal{P} , for any $c \in \mathcal{D}$. Thus $|\mathcal{P}| \leq |\mathcal{D}|$.

It follows that if we can exhibit a 2k-packing \mathcal{P} and a k-dominating set \mathcal{D} such that $|\mathcal{P}| = |\mathcal{D}|$ in a graph G, then \mathcal{P} is a 2k-packing of maximum size and \mathcal{D} is a k-dominating set of minimum size.

Theorem 4.1 Let $G \in \mathcal{F}_{2k}$. Then $\gamma_k(G) = \pi_{2k}(G)$.

Proof. Let $B_1, B_2, ..., B_m$ denote the 2k-basic subgraphs of G and b_i denote the k-branchpoint of B_i , i = 1, 2, ..., m. Then the set $\{b_1, b_2, ..., b_m\}$ is both a 2k-packing and a k-dominating set of G, giving $\gamma_k(G) = \pi_{2k}(G)$. \square

The proof of Theorem 4.1 establishes that graphs in \mathcal{F}_{2k} have the additional property that they contain a set of vertices that is both a minimal k-dominating set and a maximal 2k-packing. Meir and Moon [9] point out that this is not true in general in the case of trees.

References

- [1] Yair Caro, Subdivisions, parity and well-covered graphs, Journal of Graph Theory, 25 (1997), 85-94.
- [2] Yair Caro, M.N.Elligham, J.E.Ramey, Local Structure when all maximal independent sets have equal weight, manuscript.
- [3] G.J.Chang, G.L.Nemhauser, The k-domination and k-stability problems on sun-free chordal graphs, SIAM J. Alg. Disc. Meth. 5 (1984), 332-345.
- [4] A.Finbow, B.Hartnell, A game related to covering by stars, Ars Comb. 16-A (1983), 189-198.
- [5] A.Finbow, B.Hartnell, R.J.Nowakowski, A characterization of well-covered graphs of girth 5 or greater, J.Comb.Th. (Ser.B), 57 (1993), 44-68.
- [6] R.W.Floyd, Algorithm 97, Shortest path, Comm. ACM 5 (1962), 345.
- [7] G.Gunther, B.Hartnell, C.A.Whitehead, On 2-packings of graphs of girth at least 9, Congr.Numer. 110 (1995), 211-222.
- [8] M.C.Kong, Y.Zhao, On computing maximum k-independent sets, Congr. Numer. 95 (1993), 47-60.
- [9] A.Meir, J.W.Moon, Relations between packing and covering numbers for a tree, Pacific J.Math. 61 (1975), 225-233.
- [10] M.D.Plummer, Some covering concepts in graphs, J.Comb.Th. 8 (1970), 91-98.
- [11] M.D.Plummer, Well-covered graphs: a survey, Quaestiones Math. 16 (1993), 253-287.