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Abstract

A set P C V(G) is a k-packing of a graph G if for every pair of vertices
u,vin P, d(u,v) > k+1. We define a graph G to be k-equipackable if every
maximal k-packing of G has the same size. In this paper, we construct,
for k > 1, an infinite family Fi of k-equipackable graphs, recognizable in
polynomial time. We prove further that for graphs of girth at least 4k 44,
every k-equipackable graph is a member of F.

1 Introduction

A set P C V(G) is a k-packing of a graph G if, for every pair of vertices u,v
in P, d(u,v) > k + 1. This concept seems to have been introduced by Meir
and Moon [9], who defined the k-packing number of G to be the number (G)
of vertices in any largest k-packing of G. We call a graph G k-equipackable if
every maximal k-packing of G has the same size. We note that whereas the
problem of determining the k-packing number of a graph is known to be hard
in general, and remains so even when the graphs is restricted to certain classes
(see, for example, [1], [2], [3], [8]), in the case of a k-equipackable graph it can
be determined by a greedy algorithm, for & > 1.

The case that has received the most attention in the literature is when k = 1.
A 1-packing of a graph G is called an independent set and the 1-packing number
is called the independence number of G. Graphs which are 1-equipackable are
called well-covered, a concept introduced by Plummer [10]. Some progress has
been made on characterizing well-covered graphs subject to certain additional
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conditions (see in particular [11] for an excellent survey of different approaches
and progress), but a characterization of all well-covered graphs appears out of
reach at present.

In this paper, we describe in Section 2 how, for given k¥ > 1, an infinite
family Fi of k-equipackable graphs can be constructed and present a polynomial
algorithm for deciding whether a given graph is in F;. We then prove, in Section
3, that every k-equipackable graph of girth 4k + 4 or more is a member of F.
This gives a complete characterization of k-equipackable graphs of girth 4k + 4
or more. We remark that an approach based on limiting the girth of the graph
is one which has proved fruitful in characterizing well-covered graphs (see [4],
(5))-

A related concept to k-packing, is k-domination. A k-dominating set of a
graph G is a set D C V(G) such that for every vertex v € V(G), there is at least
one vertex z € D such that d(v,z) < k. The minimum size of a k-dominating
set is called the k-domination number of G and denoted by vk (G). In section
4, we show that every graph in the family Fyx has the additional property that
its 2k-packing number is equal to its k-domination number.

We use the following definitions and notation. A vertex of degree 1 is called
a leaf and a vertex of degree 2 or more that is adjacent to a leaf is called a
stem. For any pair of vertices u, v of a connected graph G, the distance between
u and v is the length of the shortest [u,v]-path in G and denoted by d(u,v).
The maximum value of d(u,v), taken over all pairs u,v € V(G), is called the
diameter of G and denoted by diam G. A path of length diam (G) is called a
diametrical path.

The set of vertices at distance j from a vertex v is denoted by N;(v) and the
set at distance at most j from v is denoted by N;[v]. For u,v € V(G), u # v,
N;[u, ] denotes the set N;{u]U N;[v]. For § C V(G), (S) denotes the subgraph
of G induced by the set S.

All graphs considered in this paper are finite. Since a graph G is k-equipackable
if and only if each of its connected components is k-equipackable, all graphs are
assumed to be connected. Further, since any graph of diameter k or less is
k-equipackable, with m(G) = 1, we shall restrict our discussion to graphs G for
which diam G > k. Throughout this paper, we shall denote |k/2] by r.

2 Construction of 7

Let k be a positive integer, and let r = |k/2]. Let G be a connected graph with
diam G > k. An induced subgraph (V') of G is called a k-basic subgraph if V'
contains

(a) a central vertex b such that V' = N,[b], in the case when & is even; two
adjacent central vertices b, b’ such that V' = N,[b,b'], in the case when &
is odd;
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(b) a vertex z such that d(z,b) = r and, for all u € V(G) — V', every [z, u}-
path contains the vertex b in the case when k is even and the edge bb' in
the case when & is odd.

The vertex b is called an r-branchpoint of (V') and the vertex z a remote
vertex of (V').

We say that G belongs to the family Fj if V(G) can be partitioned into a
finite number m > 2 of pairwise disjoint subsets Vi, Vs, ..., Vi, such that, for
i=1,2,..,m, (Vi) is a k-basic subgraph of G.

An example of a graph G in Fi for each of the values k = 2 and k = 3 is
shown in Figures 1(a) and 1(b), respectively. In these figures, an r-branchpoint
of each k-basic subgraph is denoted by a filled square (in both cases, r = 1) and
the remote vertices are denoted by filled circles.

Fig.1(a) Fig.1(b)

We can make some immediate deductions concerning the structure of a k-
basic subgraph B of a graph G in F.

Lemma 2.1 Let G € i and B denote a k-basic subgraph of G. Suppose that b
s an r-branchpoint and © a remote verter of B. Additionally, in the case when
k =2r+1, let b’ denote a vertex adjacent to b such that for allu € V(G)-V(B),
every [z, u]-path contains the edge bb' and B = (N, [b,b']). Then

(1) diam B = k, and every vertez of V(G) — V(B) is at distance at least k + 1
from z;

(ii) b is the only r-branchpoint of B;
(iii) in the case when k is odd, b’ is also uniquely determined.

Proof. By property (a), diam B < k. Let u € V(G) — V(B). Then the
shortest [u, z]-path contains b when k = 2r and b6’ when k = 2r + 1. However,
d(u,b) > r+ 1 when k = 2r, and d(u,b) > r + 2 when k¥ = 27 + 1. Hence, in
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either case, d(u,z) = d(u,b) + d(b,z) > k + 1. Thus diam B = k, establishing
().

Suppose that b, ¢ are both r-branchpoints of B. Let z be a remote vertex
corresponding to b, and let u € V(G) — V(B) be such that d(u,z) = k + 1.
Suppose first k¥ = 2r. Let P denote a shortest (u,z]-path. Then P contains b,
which is thus the vertex of P at distance r + 1 from u. Let w be the vertex
of P adjacent to u. Then w € B and hence d(w,c) < r. Since u € B, we
have d(w,c) = r. Let Q, Q2 denote respectively a shortest [w,c]-path and a
shortest [c, z]-path. Then since d(c,z) < r, the [u, z]-path Q@ = vw + Q) + Q2
has length at most 2r + 1 = k + 1. Thus @ has length exactly k¥ + 1 and is
a shortest [u,z]-path. But then @ contains b, and the [b, z] section of Q is a
shortest [b, z]-path. Hence b is the vertex of Q at distance r from z and r + 1
from u, and so b = ¢. Thus the r-branchpoint of a 2r-basic subgraph is unique.

In the case when k = 2r + 1, a similar argument establishes both (ii) and
(iii). O

)In general, a k-basic subgraph may contain more than one remote vertex,
as in the examples shown in Figure 1. However, in the special case when k& =
1 (so that r = 0), a remote vertex of a l-basic subgraph coincides with its
O-branchpoint. Hence, in this case, each 1-basic subgraph contains a unique
remote vertex, and this vertex is necessarily a leaf of G. Thus a 1-basic subgraph
can be very simply described: it is isomorphic to K.

Theorem 2.2 Let G € Fi and let By, By, ..., By, denote the complete collection
of k-basic subgraphs of G. Then G is k-equipackable and 7 (G) = m.

Proof. Let P be a maximal k-packing of G. Since diam B; = k,1 <7 < m, each
k-basic subgraph B; contains at most one vertex of P. Suppose there exists
a k-basic subgraph B, say, that contains no vertex of P. Let b denote the
r-branchpoint and £ denote a remote vertex of B;. Then since z ¢€ P, there
exists a vertex s € P such that d(s,z) < k. However, s € V(G) — V(B;) and
hence d(s,z) > k+ 1, by Lemma 2.1. This contradiction establishes that B,
contains at least one vertex of P. Hence each of the sets B;, 1 = 1,2,...,m,
contains exactly one vertex of P. However, every vertex of P is in at least one
of the sets B;, for 1 < i < m. Hence mx(G) =m. O

It follows from Theorem 2.2 that for a graph G € Fi, mx(G) is given by the
number of k-basic subgraphs in a collection partitioning G.

Lemma 2.3 Let G € F; and z,y be end-vertices of a diametrical path @ in
G. Then we can find a remote verter z' of a k-basic subgraph of G such that
d(z',y)=diam G.

Proof. Since diam G > k, the vertices z,y are in distinct k-basic subgraphs,

B, B' say. Suppose that  is not a remote vertex of B. Let au be the edge of
Q such that a € V(B) and u € V(G) — V(B). Then d(z,a) < k and hence
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d(z,u) < k + 1. However, B contains at least one remote vertex, =’ say. Then
d(z',u) > k+ 1, by Lemma 2.1 (i). Hence d(z', y)=diam G. D

Now suppose that G € Fi and @ is a diametrical path in G starting at a
remote vertex z of a k-basic subgraph B. Since Q contains a vertex of V(G) —
V(B), it contains the unique r-branchpoint b, say, of B and, in the case when k
is odd, the central edge bb’ of B as well. Thus b can be identified as the vertex
of @ at distance r from z (and when k is odd, b’ is the vertex of Q at distance
r+ 1 from z). We also note that since Q is a diametrical path, it follows that
the induced subgraph (V(G) — V(B)) is connected. Hence it either belongs to
Fk, or it has diameter k and consists of a single basic subgraph.

These renarks are the basis of the following polynomial algorithm for decid-
ing, for a given positive integer k and a given graph G, whether G belongs to
Fr and, in this case, determining n(G). Suppose first that k = 2r.

Algorithm

Step 1. Find a shortest path between each pair of vertices of G and determine
diam G. If G is not connected or diam G < k, then conclude G ¢ Fi and stop.
Otherwise, set G = () and all vertices unlabelled.

Step 2. Suppose that we have identified a sequence of subgraphs G, Ga, ..., Gi_;
and vertices by, b2,...,b;_1, i > 2, such that for j # [, N.[b;]N N.[b;] = 0, every
vertex of N,[b;] has a permanent label j, 1 < j < i—1, and all other vertices of
G are unlabelled. Let U; be the set of unlabelled vertices of G. If U; = @, then
conclude that G € F; and mx(G) = i — 1; then stop. Otherwise, let G; = (U;).
Find diam G; and a shortest path between each pair of vertices in G;. If G; is
not connected or diam G; < k, then conclude that G ¢ F; and stop.

Step 3. Let D; be the set of all vertices that are endpoints of diametrical paths
in G;. Choose a distinguished vertex y € D; and let D;(y) = {u € D; : d(y,u) =
diam G;}.

Step 4. Choose = € D;(y) and let Q[z,y] denote a shortest [z, y]-path in G;.

Give the vertex of Q[z,y] at distance r from z the temporary label b;; give all
other vertices of G in N, [b;] the temporary label i.

Step 5. If any one of these vertices is already labelled, then delete all temporary
labels and set D;(y) := Di(y) — {z}. If now D;(y) = @, then conclude that
G ¢ Fi and stop; otherwise, return to the start of step 4.

Step 6. Find the component of G — b; containing z. If this component contains
only vertices that have the label 7, then (N,[b;]) is a k-basic subgraph of G,
with b; as r-branchpoint and z as a remote vertex. Make the temporary labels
permanent; return to start of step 2 and increment ¢ := ¢+ 1.

Step 7. If diam G; = k, then find the component of G — b; containing y (this
checks whether we have a k-basic subgraph if the roles of z and y are reversed).
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If this component contains only vertices that have the label i, then make the
temporary labels permanent; return to the start of step 2 and increment z :=
i4 1.

Step 8. Conclude that G ¢ Fj and stop.

This algorithm can easily be adapted for the case where k = 2r + 1, r > 0.
All that is required is that when we label b; in step 4, we also give the vertex
of Q at distance r + 1 from z; the label b} and substitute N, [b;, ] for N,[b;]
throughout. Similarly, we replace the graph G—b; by the graph G—b;b}. Finally,
when we reverse the roles of z; and y in step 7, we also interchange the labels
b; and b..

It is easily seen that the algorithm is polynomial. Suppose that G has order
n. Then the shortest path between any pair of vertices can be found by Floyd’s
algorithm [6] in O(n®) operations. Steps 4, 6 and 7 can each be accomplished
by a breadth-first search taking O(n?) operations. Thus the whole algorithm
requires at most O(n*) operations and we have the following result.

Lemma 2.4 It can be determined in polynomial time whether a given graph G
with diam G > k belongs to Fy.

3 Characterization

In this section, we prove that for graphs of girth at least 4k+4, all k-equipackable
graphs belong to Fx and are thus recognizable in polynomial time. The proof is
divided into several lemmas, all but one of which hold at girth lower than 4k +4.
We give in each case the minimum girth required by the proof, thus giving some
partial information on k-equipackable graphs with lower girth. The first result,
that if a k-equipackable graph contains more than one k-basic subgraph, then
all k-basic subgraphs are pairwise disjoint, holds without girth restriction.

Lemma 3.1 Let G be a k-equipackable graph and let By, By be distinct k-basic
subgraphs of G. Then V(B,)NV(By) = 0.

Proof. Let b; be the r-branchpoint and z; be a remote vertex of B;, 7 =1,2. We
show first that z;,z, are distinct. Let w € V(B;) — V(B2). Then, by Lemma
2.1(1), d(w, z2) > k. However, d(w, z,) < k. Hence z, # z,.

Suppose there is a vertex u € V(B;)NV(B3). Let P be a maximal k-packing
of G containing u. Then, by Lemma 2.1(i). P’ = P U {z1,z2} — {u} is also
a k-packing of G. But | P’ |>| P |, contradicting the assumption that G is
k-equipackable. Thus V(B;)NV(B;) =0. O

In the remaining results in this section, we establish that every vertex of a k-
equipackable graph G of girth 4k +4 or more is contained in a k-basic subgraph.
Our proofs all require a girth restriction on G of at least 3k + 3.
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It follows from Lemma 2.1 that for a graph G of girth at least 2r + 2, a
k-basic subgraph B of G is a tree. In particular, a remote vertex = of B is a leafl
of a subtree of depth r rooted at the r-branchpoint & of B, with the property
that any path from a vertex u € V(G) — V(B) to z must pass through b.

We pointed out just before Theorem 2.2 that every 1-basic subgraph of a
graph G in Fj is isomorphic to K3, where one vertex of each K3 is a leaf in G.
At girth 4 or more, the structure of a graph G in F; is also simple to describe.
In this case, each 2-basic subgraph B is a star, with its central vertex as the
1-branchpoint and a leaf (that is also a leaf of G) as remote vertex. A join
between two distinct 2-basic subgraphs is an edge incident with a leaf of each
star.

A 3-basic subgraph B of a graph G € F3 of girth 4 or more consists of a
pair of stars with adjacent centres, b, b’, say. These stars have the property that
every leaf (and there must be at least one) of B adjacent to b is also a leaf of G,
while a join between B and another 3-basic subgraph is an edge incident with
a leaf of B adjacent to &'. In this case, b is the 1-branchpoint of B and every
leaf of B adjacent to b (but no leaf adjacent to b’) is a remote vertex of B.

The structure of a k-basic subgraph of a graph of girth 2r 4+ 2 or more in F%
for larger values of k is a generalization of the case when k = 2 (if k is even)
or k =3 (if k is odd). An example of such a k-basic subgraph for each of the
values ¥ = 5 and k = 6 is shown in Figure 2.

SRR

5-basic subgraph 6-basic subgraph
Fig.2

At girth 2k + 4 or more, the structure of the subgraph (Ni41(u]), for any
vertex u € V(G), is a tree rooted at u. In this case, for vertices w,z € Ny [u),
such that w precedes z on the unique [u, z}-path in (Ni41[u]), we shall say that
w is an ancestor of z and that z is a descendant of w.
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Lemma 3.2 Let G be a k-equipackable graph of girth at least 3k + 3 containing
at least one k-basic subgraph. Then, for every v € V(G), there exists a k-basic
subgraph B containing v.

Proof. Suppose there exists a vertex of G that is not contained in any k-
basic subgraph. Then we can find a vertex u and k-basic subgraph B; with
r-branchpoint b, such that d(u,b,) = k —r+ 1 and u ¢ V(B) for all k-basic
subgraphs B of G. It follows from the girth restriction that there is a unique
shortest [b;, u]-path in G. Denote this by b1v;v2...v,u in the case when k = 2r,
by b1b{viva...vru in the case when k = 2r 4+ 1, for » > 1, and by b1bju when
r=0.Ifr =0, let vo = b]. Let N(u) denote the subset of N;(u) that contains
Jjust those vertices that are at distance j + 1 fromv,, j=1,2,...,k+ 1.

Consider the induced tree (Ni4i[u]) rooted at u. We construct a subset
S C Ni,,(u) as follows. If Ny (u) =0, put S = 0. Otherwise, for each
vertex w € N{__.,(u) that has a descendant z € Ny, (u), select just one
such descendant and put this vertex in S. Then for any s,t € S, we have
d(s,t) > k+1, by the girth restriction. Since also d(s,v.) > &, for all s € S, the
set SU {v,} is a k-packing and hence can be extended to a maximal k-packing
PofG.

We show that v, is the only vertex of Ni[u] in P. Note that the only
vertices of Ni[u] that are at distance greater than k from v, are those in Nj (u).
Suppose y € N{(u) and let w be the ancestor of y in Ny __,,(u). If w has a
descendant in N[ ,(u), then w has one such descendant z, say, in S. However,
d(z,y) < d(z,w) +d(w,y) =2r — 1 < k, and hence y ¢ P. So we may assume
that w has no descendant in N;,(u). This implies in particular that y is a leaf
of G. Let wy be the predecessor of w on the unique [u,w]-path in {(Nky1[u]).
Then for all v € V(G) — N, [wo], every [v,y]-path contains wp. It follows in
the case when k = 2r, that wg is the r-branchpoint and y a remote vertex of a
k-basic subgraph B = (N, [wp]). However, d(u,wp) = r and hence u € V(B),
contrary to hypothesis.

In the case when k = 2r + 1, suppose first that wg also has no descendant in
N{1(u). Let wy be the predecessor of wg on the [u, w]-path in (Ni41[u]). Then
for all v € V(G) — N, [wo, wp), every [v, y]-path contains the edge wowo. Hence
(N, [wo, wp)) is a k-basic subgraph containing u, contrary to hypothesis. On the
other hand, if wop has a descendant in Ny, ,(u), then it has one such descendant
z, say, such that z € S. However, d(z,y) < d(z,wo) + d(wo,y) =2r+1 =k,
and hence y ¢ P.

We conclude that v, is the only vertex of Ni[u] in P. Let z be a remote
vertex of B;. Then d(u,z) = k + 1. Further, for any s € S, d(s,z) > k. Hence
P' = PU{z,u} — {v,} is also a k-packing of G, but with | P’ |>| P |. This
contradicts the assumption that G is k-equipackable and thus establishes the
result. O

Lemmas 3.1 and 3.2 together give the following.
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Corollary 3.3 Let G be a k-equipackable graph of girth at least 3k+3 containing
at least one k-basic subgraph. Then G € Fi. O

Lemma 3.4 Let G be a k-equipackable graph of girth 4k + 4 or more. Then G
contains a leaf.

Proof. Suppose that G is leafless. Then G is not a tree and hence G contains a
cycle of length at least 4k + 4. Let uv vz...v5w be any (k + 2)-path in G. Let
Nj(u), N(w) denote the subsets of Nj(u) and Nj(w) respectively, containing
just those vertices at distance at least j + 1 from v,4;.

Since G is leafless and has girth at least 4k +4, every vertex z € N{_,.,, (u)U
N{_,;1(w) has a descendant 2’ € Ngy;(u) U Niy,(w). We construct a subset
S C Nf,,(u) UN{,, (w) by selecting exactly one such descendant 2z’ of each
vertex z € N/_ ., (u) UN;_,,,(w) and putting this vertex in S. By the girth
restriction, d(s,t) > k + 1, for any s,t € S. Since also d(s,vr41) > k, for all
5 € S, the set SU{v,41} is a k-packing and hence can be extended to a maximal
k-packing P of G. However, P’ = P U {u,w} — {vr41} is also a k-packing of
G, but with | P’ |>| P |, contrary to the assumption that G is k-equipackable.
Hence G contains a leaf. O

Lemma 3.5 Let G be a k-equipackable graph of girth 4k + 2 or more that con-
tains a leaf. Then G contains a k-basic subgraph.

Proof. The result is clear when k = 1,2 and hence we shall assume that & > 3.
Suppose first that G is a tree. Let z,y be leaves such that d(z,y) = diam G.

Let b be the vertex of the unique [z, y]-path such that d(z,b) = r. Then b is the

r-branchpoint of a k-basic subgraph containing x as a remote vertex.

We may thus assume that G contains a cycle of length at least 4k + 2. Let
Vo(G) denote the subset of vertices of G that lie on at least one cycle. Suppose
that G contains no k-basic subgraph. For each leaf z, let D(z) denote the
minimum distance of z from any vertex of V4(G). Let ¢ be the maximum value
of D(z), taken over all leaves z, and let L = {z : D(z) = ¢}. For each leaf
z € L, let n(z) denote the number of vertices in V4(G) at distance ¢ from z.
Choose a leaf zg € L such that n(zo) is minimum.

Let z. be a vertex on a cycle C such that d(z¢, z.) = ¢ and let zoz;...z. be a
shortest [z, zc]-path. If ¢ > k + 1, denote the [z, zx41] section of this path by
R; otherwise, extend the path by adjoining a section zczc41...zx41 of the cycle
C to give the path R.

Consider first the induced tree (Nk41[zk41]) rooted at zx41. Let Nj(zk41)
denote the subset of N;(zk4+1) containing just those vertices at distance j + 1
from zx, j = 1,2, ...,k + 1. Construct a subset S} C N{,(zk+1) as follows. For
each vertex w € N{_,,,(k+1) that has a descendant z € Ny, (zk+1), we select
just one such descendant and put this vertex in S;. Then for any s,t € S;, we
have d(s,t) > k and d(s, zx) > k.

105



Consider next the induced tree (Ni4.1[zo]) rooted at zo. Let N}(zo) denote
the subset of N;(zo) containing just those vertices at distance j or more from =z,
i=12,. k+1 Construct a subset S; C Ny ., (o) as follows. If N/ () = 0,
let 5'2 (0 Otherwise, for each vertex w € Ni_,,,(zo) that has a descendant
z € Ny (20), select just one such descendant and put this vertex in S». Then

d(s,t) > k and d(s, zx) > k, for any s,t € Sp. Further, for any s € S;,t € Sy, we
have d(s,t) > k+1, by the girth restriction. In any case, the set {zx} US; US,
is a k-packing of G and hence can be extended to a maximal k-packing P of G.

We now show that z is the only vertex of Ni[zo]UNi[zk41]in P. The proof
that if G contains no k-basic subgraph, then z; is the only vertex of Ni[zx41]
in P is identical to the proof given in Lemma 4.2 that v, is the only vertex of
Ng[u] in P. We shall therefore suppose that y € Nk[zo] and d(y,zx) > k + 1.
Let z,, denote the vertex closest to y on the [z, zx] section of R.

Suppose first that y has a descendant in Ni4+1(zo). If one such descendant
z, say, is in S, then since d(y, z) < d(zm,z) < k, we have y € P. If y has no
descendant in S, then we must have y € N;(zo), where k—r+2< j <k. In
this case, y has an ancestor w € Nix—,+1(20) and w has a descendant s, say, in
Sa. However, d(y, s) = d(y, w) + d(w, s) < k and hence again y ¢ P.

We may therefore suppose that y has no descendant in Ngyi(zg). Thus
every path in (Ny41{zo]) starting at z,, and containing y terminates in a leaf at
distance at most k—m from z.,. Let yo be one such leaf (where possibly yo = ¥).
Let @ = zoZ)...ZmYq..-%1Y0 denote the unique [zo, yo]-path in (Ni41[zo)). Let
v be a vertex of Vp(G) at minimum distance from yo. Then since d(yo, zx) >
d(zo, z), it follows that d(yo,zm) > d(zo0, zm). Hence the vertex of @ nearest
to v is one of the vertices y;, 1 < j < g, since otherwise D(yo) = d(yo,v) > c,
contradicting the definition of ¢. Let y; be the vertex of Q at minimum distance
from v (where possibly y; = v). If there is more than one choice for v, then
choose v so that i is minimum. Since y; # z,, it follows that v and z. are
distinct.

We note that d(zo,v) > c. Suppose first that d(zo,v) = d(zo, %) +d(3i,v) >
c. It follows from the choice of zo, that d(yo, v) = d(yo, ¥;) +d(¥i, v) < c. Hence

d(yo, i) < d(zo,v:). (1)

Now suppose that d(zo,v) = c. If d(yo,v) = ¢, the shortest path from yo to
a vertex u € V;(G) at distance ¢ must include y; but no vertex of Q between y;
and zo, since otherwise d(zo, u) < c¢. But, then n(zo) > n(yo), contradicting the
choice of zo. Hence this case cannot occur. We must therefore have d(yo,v) < ¢,
and the inequality (1) holds again.

Since y; has a descendant v on a cycle, it follows from the girth restriction
that y; has a descendant z € Npy1(zo). Now d(y,z) < d(yo,z) = d(yo,v:) +
d(yi, z) < d(zo,2), by (1). Hence d(y,z) < k. Thus, if y; has a descendant in
Sz, then y € P. If y; has no descendant in Sz, then we must have y; € N;(zo),
where k —r + 2 < j < k. In this case, y; has an ancestor w € Nx_,41(z0) and
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w has a descendant s, say, in S;. However, d(y,s) = d(y,w) + d(w, s) < k and
hence again y ¢ P.

We conclude that zj is the only vertex of Ni[zo] U Ng[zk+1] in P. Hence
P' =PU{zo, zk41} — {z«} is also a k-packing of G, but with | P’ |>| P |. This
contradicts the assumption that G is k-equipackable, establishing the result. O

In conclusion, from Theorem 2.2, Lemmas 3.4 and 3.5 and Corollary 3.3, we
deduce the following characterization of k-equipackable graphs of girth 4k + 4
or more.

Theorem 3.6 Let G be a graph with diam G > k and girth at least 4k + 4.
Then G is k-equipackable if and only if G € F;. D

From Lemma 2.4, we can deduce the following corollary to Theorem 3.6.

Corollary 3.7 Given a graph G with diam G > k and girth at least 4k + 4, we
can decide in polynomial time whether G is k-equipackable. O

The lower bound on the girth of G in Lemma 3.4 is sharp. This follows
from noting that if u,v are consecutive vertices in any k-packing of the cycle
Cy, then k+ 1 < d(u,v) < 2k + 1. Hence Cy has a maximal k-packing of size 2
when 2k + 2 < g < 4k + 2, of size 3 when 3k + 3 < g < 6k + 3, of size 4 when
4k+4 < g < 8k +4, and so on. Thus Cy is k-equipackable if g < 3k +2 and also
for the isolated case when g = 4k + 3, for which C,; has maximal k-packings of
size 3 only. For all other values of g > 3k + 3, Cy has maximal k-packings of at
least two different sizes.

In [5], it is shown that in the case when k = 1, the cycle C7 is in fact the
only well-covered graph of girth 7 that does not belong to ;. A similar result
has been obtained by the authors and G.Gunther (7} in the case when k = 2.
That is, the cycle C); is the only 2-equipackable graph of girth 11 that is not a
member of ;. We make the following conjecture.

Conjecture 1 The cycle Cax43 is the only k-equipackable graph of girth 4k +3
that is not a member of Fy.

4 A remark on k-domination

In [9], it is proved that for any tree T', max (T') = v (T), for k > 1. It is easily seen
that the inequality mox(G) < 7%(G) holds in any graph G. For, suppose that
P is a maximal 2k-packing and D any minimal k-dominating set in G. Then
every vertex s € P is contained in a set Ni[c], for some ¢ € D. However, no set
Ny[c] contains more than one vertex of P, for any ¢ € D. Thus | P |<| D |.

It follows that if we can exhibit a 2k-packing P and a k-dominating set D
such that | 7 |=] D | in a graph G, then P is a 2k-packing of maximum size
and D is a k-dominating set of minimum size.
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Theorem 4.1 Let G € Far. Then v (G) = n(G).

Proof. Let By, By, ..., By denote the 2k-basic subgraphs of G and b; denote
the k-branchpoint of B;, i = 1,2,...,m. Then the set {b),b2,...,b,} is both a
2k-packing and a k-dominating set of G, giving 7 (G) = m(G). D

The proof of Theorem 4.1 establishes that graphs in Fox have the additional
property that they contain a set of vertices that is both a minimal k-dominating
set and a maximal 2k-packing. Meir and Moon [9] point out that this is not
true in general in the case of trees.
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