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ABSTRACT. Let S be a set of graphs on which a measure of
distance (a metric) has been defined. The distance graph D(S)
of S is that graph with vertex set S such that two vertices
G and H are adjacent if and only if the distance between G
and H (according to this metric) is 1. A basic question is
the determination of which graphs are distance graphs. We
investigate this question in the case of a metric which we call the
switching distance. The question is answered in the affirmative
for a number of classes of graphs, including trees and all cycles
of length at least 4. We establish that the union and Cartesian
product of two switching distance graphs are switching distance
graphs. We show that each of K3, Ka4 and K33 is not a
switching distance graph.
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1 Introduction

One of the most fundamental problems in graph theory is the determina-
tion of whether two given graphs are isomorphic. If the graphs are not
isomorphic, then the question arises as to how close to (or far from) be-
ing isomorphic the graphs are. A number of metrics have been defined
on various classes of graphs. The edge slide distance was defined in [1]
and [8], while the edge rotation distance was defined in [4]. These two
metrics were further studied in [2], [6] and [7]. In [9], Zelinka introduced
the induced subgraph distance metric, and in [10] introduced an analogous
metric to study a distance between isomorphism classes of trees. In [11],
various distances between isomorphism classes of graphs were compared. In
this paper we define the switching distance metric and describe and study
graphs associated with this metric.

For graph theory terminology we follow [3]. In particular, the empty
graph of order n has n vertices and no edges. For two graph G; and G»
with disjoint vertex sets the union G = G1UG> has V(G) = V(G,)UV(G2)
and E(G) = E(G,)U E(G»).

Let G and H be two graphs having the same vertex set. We say that G
can be transformed into H by a swiltching operation if G contains a subset U
of vertices that either induces a complete graph and is such that E(H) =
E(G) — E({(U)g) or induces an empty graph and is such that E(H) =
E(G)uU E((U)g)-

It is immediate that a graph G can be transformed into a graph H by
a switching operation if and only if H can be transformed into G by a
switching operation. More generally, we say simply that G can be trans-
formed into H by switching operations, written G — H, if there exists a
sequence Fy, Fy, ..., Fy, (m > 0) of graphs such that G = Fy, H = F,,,
and, if m > 1, F; can be transformed into F;;; by a switching operation
fori=0,1,...,m — 1. It is readily seen that “G can be transformed into
H” is an equivalence relation. Moreover, by switching on pairs of adjacent
vertices, every graph G can be transformed into the empty graph having
vertex set V(G). Therefore the following holds:

Proposition 1 Two graphs can be transformed into each other if and only
if they have the same vertez set.

Let G and H be two graphs having the same vertex set. We define the
switching distance d;(G, H) between G and H as 0if G = H and, otherwise,
as the smallest positive integer m for which there exists a sequence Fy, Fi,
..., Fin of graphs such that G = Fy, H = F,;, and F; can be transformed
into F;;1 by a switching operation for i =0,1,... ,m—1. By Proposition 1,
this “distance” is a well-defined concept.
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Let S be a set of (distinct) graphs having the same vertex set. Then
the switching distance graph D,(S) of S is defined to be that graph with
vertex set S such that two vertices G and H of D,(S) are adjacent if and
only if d,(G, H) = 1. We investigate here the question: Which graphs are
switching distance graphs?

2 'Which graphs are switching distance graphs?

In order to provide some answers to the question in the title of this section,
we begin with a few straightforward observations.

Fact 1 Forn > 4, the n-cycle Cy,, i3 a swilching distance graph.

Proof: Let V = {vp,v1,... ,vn—2} be a set of n — 1 vertices. Let Hy be
the empty graph with vertex set V, and let H,,_; be the complete graph
with vertexset V. For i =1,2,... ,n—2, let H; denote the graph obtained
from H;_; by adding the edge wv;. Then ds(H;, H;) = 1 if and only if
|¢ — 4| =1. Thus C, = Ds({Ho, H1, ..., Hn-1}). O

Proposition 2 Fvery induced subgraph of a switching distance graph is
again a swiltching distance graph.

An immediate consequence of Fact 1 and Proposition 2 now follows.
Fact 2 Forn > 1, the path P, on n vertices is a switching distance graph.

Fact 8 Forn > 1, the star K 5, is a switching distance graph.

Proof: Let H denote the empty graph with vertex set {v1,v2,... ,vn+1}-
For i =1,2,...,n, let H; denote the graph obtained from H by adding
the edge v;v;i41. Then ds(H, H;) = 1 for all ¢ and d,(H;, H;) = 2. Thus
Kl,ngDs({H, Hy,... ,Hn}). o

Fact 4 For n > 1, the n-cube Q, is a swilching distance graph.

Proof: Let V = {uy,us,... ,un} U {v1,v2,... ,9,} be a set of 2n vertices,
and let E = {u;%; | 1 < i < n}. For j =0,1,...,n, let G; be the set of
all graphs G = (V;, E;) having the vertex set V; =V and edge set E; C E
with |Ej;| = j. Then for each graph G = (V}, Ej) in G;, there corresponds
a binary n-tuple (ai,as, ... ,a,) where a; is 1 if u;9; € E; and 0 otherwise.
Hence, letting S = GoUG; U - - - U Gy, there is a one-to-one correspondence
between the vertices in D;(S) and the vertices in @Q,. Furthermore, if
G = (V;,E;) € Gj and H = (V;, E;) € G;, then d,(G, H) = 1 if and only if
|i = ] =1 and |E; N E;| = min{i, j}. Thus, D,(S) = Q,. |
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Fact 5 Kj 3 is a switching distance graph.

Proof: Let V = {v;,vs,v3} and let Hy (G;) denote the empty graph
(complete graph, respectively) with vertexset V. For i = 2,3, let G; = H1U
{v1v;}, and let Hy = G — vov3. Then Kp3 = D,({H,, H3,G1,G2,G3}). O

We make the following observation concerning complements of graphs.

Proposition 3 If G and H are two graphs having the same vertez set,
then ds(G, H) = ds(G, H).

Proof: If d,(G,H) = 0, then G = H, implying that G = H. As
sume, then, that d,(G,H) = m > 1. Hence there exists a sequence
G=FF,...,F, = H of graphs where F; can be transformed into
F;;1 by a switching operation for i = 0,1,...,m — 1. Observe that F;
can be transformed into F;,; by the same switching set that transformed
F; into F;1;. Thus the sequence

G=F, F,...,Fp=H (1)

implies that d,(G, H) < ds(G, H) = m. Now by applying the above tech-
nique to the sequence (1), we have d,(G, H) < dy(G, H) or m = d,(G, H) <
ds(G, H) < m, producing the desired result. O

The following lemmas will be useful in establishing that a number of large
classes of graphs are switching distance graphs. Let G’ denote the graph
obtained from a graph G by adding a new vertex v and joining v to every
vertex of G, so G’ &£ G + K;.

Lemma 1 For any two graphs G and H having the same vertez set, d,(G, H)
=d,(G',H').

Proof: A sequence of switching sets of vertices used to transform G into
H may be used to transform G’ into H’, so d,(G’,H’) < d,(G, H). Fur-
thermore, we may assume without loss of generality that in a sequence of
switching sets of vertices used to transform G’ into H’ none of the switching
sets S contain v for otherwise we may obtain a feasible sequence of switching
sets if we delete v from all those sets S. Hence d,(G, H) < d,(G’,H'). O

Corollary 1 For any two graphs G and H having the same vertez set,
ds(G,H) =1 if and only if d,(G',H') = 1.

By repeatedly applying Corollary 1 we have:

Lemma 2 Let G be a switching distance graph and m a positive integer.
Then there is a set T of m-connected graphs such that G =2 D,(T').
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Lemma 3 Let Gy and Ho be connected graphs with disjoint vertex sets,
and let G, (H;) be a connected graph having the same vertex set as Gy
(Ho, respectively). Then ds(GoU Hp,G1 U Hy) = 1 if and only if either
Go = Gl and ds(Ho, Hl) =1 or Ho = H1 and dg(Go, G]) =1.

Proof: Certainly, either Go = G, and ds;(Hp, H1) = 1 or Ho = H; and
d,(Go,G1) = 1 implies that d,(Go U Hp,G;1 U H;) = 1. Suppose, then,
that d,(Go U Hp, G1 U H;) = 1. Let S be the switching set of vertices that
transforms Go U Hp into G; U H;. If S contains a vertex of Gy and Hp,
then it is evident that the subgraph of Go U Hp induced by S is empty.
It follows that the switching set S transforms Gp U Hy into a connected
graph since each of Gy and Hj is connected. This contradicts the fact
that G, U H; is disconnected. Hence either S C V(Gy), in which case
Hy = H; and d,(Gy,G1) =1, or S C V(Hp), in which case Gp = G; and
ds(Ho, H) = 1. O

Using Lemmas 2 and 3 we establish that the union and Cartesian product
of two switching distance graphs are switching distance graphs.

Theorem 1 Let G and H be switching distance graphs. Then
(a) GU H is a switching distance graph, and
(b) G x H is a switching distance graph.

Proof: (a) By Lemma 2, we can find sets S and T of connected graphs
such that D,(S) & G, D,(T) = H, each graph in S has order m, each
graph in T has order n and m # n. Then GUH = D,(SUT).

(b) By Lemma 2, we may assume that there exist disjoint sets S and T
of connected graphs for which D,(S) & G and D,(T') = H. Assume that
S = {Gy | u € V(G)} with d,(Gu,Gw) =1 if and only if uw € E(G).
Similarly, T = {H, | v € V(H)}. We show that

G x H= D,({GyUH, | u€V(G), ve V(H))).

By Lemma 3, d,(G, U H,, Gy U H,/) = 1 if and only if either G, = G,
and d,(H,,Hy) = 1 or H, = H,s and d,(Gu, Gw) = 1. Thus d,(G, U
H,, G,,' U Hy) = 1 if and only if either u = «’ and vv’ € E(H) or v = v’
and vy’ € E(G), that is, there is an edge in G x H between (u,v) and
(v',v’). This yields the desired result.

By Proposition 2, we have the following corollary.
Corollary 2 Let G and H be switching distance graphs with disjoint verter

sets. For each pair v, w with v € V(G) and w € V(H), the graph obtained
Jrom G and H by
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(a) identifying v and w, or by
(b) joining v and w with an edge,
i3 a switching distance graph.

Proof: That the graph described in (a) is a switching distance graph is
immediate since it is an induced subgraph of the switching distance graph
G x H. To establish (b), consider the complete graph F ¢ K» on two
vertices v’ and w’. Applying (a), form the new graph G’ by taking G and
F and identifying » and v'. We may now produce the graph described in
(b) by taking G’ and H and identifying v’ and w. u]

By repeated application of the above result, we have the following corol-
laries.

Corollary 3 A graph is a switching distance graph if and only if each of
its blocks is a switching distance graph.

Corollary 4 Ewvery tree is a switching distance graph.

3 Which graphs are not switching distance graphs?
We begin this section with the following lemma.

Lemma 4 Let G and H be two graphs having the same vertex set V, and
let U C V. Let Gy (Hy) be the subgraph of G (H, respectively) induced by
the vertez set U. Then d;(Gu, Hy) < ds(G, H).

Proof: Let m = d,(G, H) and let Fp, Fy, ..., Fy, be the sequence of
graphs such that G = Fy, H = F,,,, and F; can be transformed into F;,
by a switching operation for i =0,1,... ,m—1. Fori=0,1,... ,m—1, let
F} be the subgraph of F; induced by U. Then Fg, Fj, ..., F,, is a sequence
of graphs such that Gy = F§, Hy = F,,, and if F] # F{,,, then F] can be
transformed into F{,, by a switching operation for i = 0,1,... ,m - 1. It
follows that d,(Gy, Hy) < m. ]

Proposition 4 The complete graph K3 is not a switching distance graph.

Proof: Assume, to the contrary, that there exist graphs H;, H; and Hj
such that K3 = D,({H\, H2, H3}). Then there is an edge in one of the
graphs H; that is not an edge in the other two graphs. Without loss of
generality, we may assume that H; contains an edge uv that is not an edge
of Hy or Hs. If the switching set Sz used to transform H; into Hj is the
same as the switching set S3 used to transform H, into Hg, then it is evident
that Hy = Hj, which is not the case. Without loss of generality, we may
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assume that w € Ss — S3 # 0. Let [y, F» and F3 be the subgraphs induced
by {u,v,w} in H;, H; and Hj, respectively. Then F; & K3, F; = K3 and
F; = K3 — e. Hence, by Lemma 4, 2 = d,(F3, F3) < ds;(Ha2, H3) = 1, which
is impossible. (]

Theorem 2 Let G and H be two graphs having the same vertex set and
such that ds(G, H) = 2. Then there are at most three graphs that are at
switching distance 1 from each of G and H.

Proof: If d,(G,H) = 2, there exists at least one graph F at switching
distance 1 from each of G and H. Let A (B) be the switching set of
vertices used to transform G into F (F into H, respectively). Necessarily,
|Al, |B| = 2. We now prove three claims.

Claim 1 If AN B = @, then there are precisely two graphs at switching
distance 1 from each of G and H.

Proof: Without loss of generality, we may assume that each of A and B
induce a complete graph in G (and therefore an empty graph in H). Hence,
E(G) — E({A)¢) — E({B)g) = E(H). Since AN B = §, it is evident that
every edge of G (H) that does not have both ends in A or both ends in B
is an edge of H (G, respectively).

Now let F’ be the graph formed from G by switching on the set B. Then
F’ may be transformed into H using the switching set A. Hence F and F’
are at switching distance 1 from each of G and H. We show that F and
F' are the only two such graphs. If this is not the case, then there exists
a graph F”, not equal to F or F’, at switching distance 1 from each of G
and H. Let S; (S2) be the switching set of vertices used to transform G
into F” (F” into H, respectively). Then Sy # A and S; # B. We show
that either AC Sy and |[AN Sz <lorBC Syand |[BNS2| < 1.

If A¢g S) and B ¢ S, then there exist vertices a € A and b € B that
do not belong to S;. Since every edge of G (H) that does not have both
ends in A or both ends in B is an edge of H (G, respectively), at least one
of a and b, say a, cannot belong to So. Hence a ¢ S; and a & S2. But
then the set A does not induce an empty graph in H, which produces a
contradiction. Hence AC Sy or BC S). If A C Sy and B C S, then
we must have A C S; and B C S;. But then A (B) does not induce an
empty graph in H, a contadiction. So either ACS;or BC S,. If AC S,
and |[AN S3| > 2, then A would not induce an empty graph in H. Hence
if A C Sy, then |[AN S| < 1. Similarly, if B C Sy, then [BN Sy| < 1.
We deduce, therefore, that either A C S; and [AN S| <1or BC S and
|[BNSy| <1.

Without loss of generality, we may assume that A C S; and [ANS,| < 1.
Now let v € S; — A. Then v must be adjacent to every vertex of A in
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G. Hence v is not adjacent to any vertex of A in F”. Since |AN S| <1,
there is therefore at least one vertex a of A that is not adjacent to v in H.
However every edge of G (H) that does not have both ends in A or both
ends in B is an edge of H (G, respectively). In particular, the edge va of
G is also an edge of H, producing a contradiction. Hence F and F’ are at
switching distance 1 from each of G and H. ]

Claim 2 If |[AN B| =1, then there are at most three graphs at switching
distance 1 from each of G and H.

Proof: Let ANB = {v}. Let F’ be the graph formed from G by switching
on the set B. Then F’ may be transformed into H using the switching
set A, so F and F’ are at switching distance 1 from each of G and H.
Observe that every edge of G (H) that does not have both ends in A or
both ends in B is an edge of H (G, respectively). Let A, = A — {v} and
let B, = B — {v}. If |A,] 2 2 or |B,| > 2, then it is not too difficult to see
that F and F’ are the only two graphs at switching distance 1 from each of
G and H. On the other hand, if |A,| =1 and |B,| = 1, then let A, = {a}
and let B, = {b}. If ab € E(G) and va,vb ¢ E(G), or if ab ¢ E(G) and
va,vb € E(G), then let F” be the graph obtained from G by switching on
the set {a, b}. Note that F” may be transformed into H using the switching
set AUB = {a,b,v}. Hence F” is at switching distance 1 from each of
G and H. In this case it is not too difficult to see that F, F’ and F” are
the only such graphs. If the subgraph of G induced by a, b and v is not as
described above, then it is evident that F' and F’ are the only two graphs
at switching distance 1 from each of G and H. a

Claim 3 If |AN B| 2 2, then there are at most three graphs at switching
distance 1 from each of G and H.

Proof: Without loss of generality, we may assume that A induces a com-
plete graph in G. Since |AN B| > 2, it is evident that B induces an empty
graph in F. It follows that, if A— B # @ and B — A # @, then F is the only
graph at switching distance 1 from each of G and H. Suppose, then, that
either A C B or B C A. Suppose, firstly, that A C B. Then if |A| > 3 or
|B — A| 2 2, it is evident that F is the only graph at switching distance 1
from each of G and H. On the other hand, if |A| =2 or |B — A| =1, then
let A= {ag,a1} and let B — A = {b}. For i = 0,1, let S; = {a;,b} and let
F; be the graph formed from G by switching on the set S;. Then F; may
be transformed into H using the switching set S;—;. Hence F, Fy and Fy
are all at switching distance 1 from each of G and H. In this case, F, Fp
and F) are the only such graphs. Suppose, next, that B C A. Then using
a similar proof as in the case where A C B, we may show that there are at
most three graphs at switching distance 1 from each of G and H. (u]

116



By Claims 1, 2 and 3, there are at most three graphs that are at switching
distance 1 from each of G and H. This completes the proof of Theorem 2. O

An immediate corollary now follows.
Corollary 5 K34 is not a switching distance graph.

The proof of Theorem 2 also shows us which graphs give rise to a switch-
ing distance graph that is isomorphic to K»3. Let G and H be two graphs
having the same vertex set V' and such that d,(G, H) = 2. If Fy, F, and
F3 are three graphs at switching distance 1 from each of G and H, then it
follows from the proof of Theorem 2 that there exists a subset S of V of car-
dinality 3 such that E(G)—-E((S)¢) = E(H)-E((S)u). Let S = {u,v,w}.
Since d,(G, H) = 2, there are only two possibilities for the subgraph induced
by S in G and H. Firsly, E((S)¢) =0 and E((S)y) = {uv, uw}, in which
case E((S)r,) = {uv,uw,vw}, E((S)r) = {uv} and E((S)r,) = {uw},
and secondly, E((S)¢) = {uv, uw,vw} and E({S)y) = {uv}, in which case
E((S)r) = {w,uww}, E((S)r,) = {uwv,vw} and E((S)r,) = 0. Hence
there can be no graph F with vertex set V that is distinct from G and H
at switching distance 2 from each of G and H and at switching distance 1
from each of Fi, F; and F3. Therefore we have the following corollary of
Theorem 2.

Corollary 6 K33 is not a switching distance graph.

4 An upper bound on the switching distance between two graphs

The minimum number of cliques partitioning the edge set E(G) of a graph
G is an upper bound on the distance of G from the empty graph, but the
distance can be much smaller. For example, the stars K 1,» have switching
distance 2 (from the empty graph and also from each other) and partition
number n — 1. Erdds, Goodman and Pésa [5] proved that the edge set
of any graph on n vertices can be partitioned into at most n2/4 edge-
disjoint complete subgraphs which are triangles and edges. Switching each
of them, we get the empty graph. This gives an upper bound of n?/2
on the switching distance between two graphs having the same vertex set
consisting of n vertices. We show that this upper bound can be improved
to 4n — 2loggy n + 2.

For a positive integer n, we denote by R(n) the “inverse” of the Ramsey
function; that is, R(n) is the largest integer k such that every 2-coloring of
the edges of the complete graph K, on n vertices contains a monochromatic
K.

Theorem 3 If G is a graph with n vertices, then
ds(G,K,) < 2n —2R(n) + 1.

117



Proof: Suppose R(n) = k. Then G contains an independent set of cardi-
nality k or a clique of cardinality k. If G contains a clique on k vertices, then
switch on this set to produce an independent set of cardinality k. Having
obtained an independent set S on k vertices, k < n, we choose any vertex
v not in S, and transform S U {v} to an independent set in (at most) two
switching steps as follows. First we switch on the set S, of neighbors of v
in S to produce a new graph in which v and its neighbors S, in S induce
a complete graph. Then we switch on the set Sy U {v}. Continuing in this
way, G can be transformed into an empty graph on n vertices by at most
2n — 2R(n) + 1 switching operations. o

Corollary 7 Let G, be the set of all graphs having the same vertez set V,
where |V| =n. For any two G, H € Gy,

ds(G,H) <4n —2loggn+2.

Proof: By Theorem 3, d,(G, H) < da(G K.)+ds (K, H) < 4n— 4R(n)+
2 < 4n — 2logs n + 2, since R(n) > §log4 n.

5 Concluding remarks

In the course of this investigation we encountered a number of problems
which we have yet to settle. A partial listing of these problems follows.

1. Characterize the class of switching distance graphs.

2. Are there minimal forbidden induced subgraphs other than K3 , K3 4
and K33? (If there is an infinite family of minimal forbidden sub-
graphs, then the recognition problem of switching distance graphs
becomes more interesting.)

3. What is the complexity of determining the switching distance between
two graphs?

4. Let G, be the set of all graphs having the same vertex set. Consider
the switching distance graph S, of G,. Prove that the radius and the
diameter of S,, are of the form cn+o(n) as n gets large and determine
that value of c. Are the empty graph and the complete graph central
in the sense that the largest distance from them is the radius?

5. What is the expected switching distance between two randomly cho-
sen graphs of order n? What is the expected switching distance of a
random graph from the complete graph?

6. Given a switching distance graph H, determine the smallest n = n(H)
such that H is the switching distance graph of a set of (distinct)
graphs on 7 vertices.
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7. Another interesting measure of distance can be defined among the
isomorphism classes of graphs, that is, for two graphs G and H of the
same order, find a sequence of switching operations that will trans-
form G into a graph which is isomorphic (but not necessarily identical)
to H.
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