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Abstract

A (n,5) - cage is a minimal graph of regular degree n and girth 5.
Let f{n,5) denote the number of vertices in a (n,5) - cage. The best
known example of an (n,5) - cage is the Petersen graph, the (3,5) - cage.
The (4,5) - cage is the Robertson graph, the (7,5) - cage is the Hoffman-
Singleton graph, the (6,5) - cage was found by O’Keefe and Wong [1]
and there are three known (5,5) - cages. No other (1,5) - cages are known
for n 2 8. In this paper, we will use a graph structure called remote edges
and a set of mutually orthogonal Latin squares to give an upper bound of
Jn5) forn = 2+ 1.

1. Introduction

All graphs considered in this paper are simple (i.e., contain no loops or
multiple edges), undirected and finite. For the most part, the terminology
follows that of Bondy and Murty [2]. Let G = (V,E) be a graph. V(G) and
E(G) denote the vertex set and edge set respectively. A graph G is k - regular if
dwv) = kforallv € V(G). The girth of G is the length of a shortest cycle in G.
A pair of edges are called remote edges if the distance between them is at least 3.
A subset S of V(G) is an independent set of G if no two vertices of S are adjacent
inG.

The problem of finding cages was not extensively studied until 1963
when P. Erd6s and H. Sachs [3] used a nonconstructive method to show the
existence of cages. The following Theorem by Tutte can be found in [4].
Wong gives an excellent survey on this subject (see[5]).

Theorem 1. Givenk l23 andg 23, lhege exists a k - regular graph with girth g
N Yl —1)2 —
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A Latin square of order s is identified as an s X s square. The s° cells are
occupied by s distinct symbols such that each symbol occurs exactly once in
each row and once in each column. Two Latin squares of the same order are
said to be orthogonal if, on superposition, each symbol of the first square occurs
exactly once with each symbol of the second square. A set of Latin squares (all
of the same order), any two of which are orthogonal, is said to be a set of
mutually orthogonal Latin squares. A set of s-/ mutually orthogonal Latin

+ 1} vertices.
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squares of order s is said to be a complete set of mutually orthogonal Latin
squares. Bose and Nair [6] proved that for any given prime power s, there exists
a complete set of orthogonal Latin squares of order s.

2. An Upper Bound of f{n,5) where n = 2 + 1

In this section we construct a family of regular graphs of degree n = 2*
+ 1 and girth 5. First, we observe from the Petersen graph, the (3,5) - cage, and
the Robertson graph, the (4,5) - cage, that there exist (» - 1)/2 remote edges
with n - I leaves that are appropriately joined to either a set of independent
vertices or a set of remote edges (see Figure 1). We call this set of remote edges
and independent vertices (or edges) an R/ structure. It was these two examples
that motivated the present work.
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Figure 1.

First, we use the RI structure to construct an n - regular graph on 2n° -
3n + 1 vertices, where n = 2* + 1. Since n - I = 2" is a prime power, there
exists a complete set of mutually orthogonal Latin squares of order » - 1. Let
L. L,,...,L.2 be a complete set of mutually orthogonal Latin squares defined by
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where [ ; = o0, + @, 0 = 0,04,...,,_, are the elements of a finite field
GF), 1<t<n-2and0<i,j<n-2.
Construction

Step #1: Define V(G).

Let m = (n-3)/2 and let ep,e;,...,en denote a set of remote edges with
each end vertex being joined to » - / vertices. These n - I vertices are called
leaves. Label the leaves by @,Q,,...,&, ;. Fori = 0,,...,n - 2 andj =

01,..n - 2, let r,; denote an independent vertex and let
n-2 n-2

I ;= UI;' i and I = UI ;- At this point, the graph has (n-1)* + 2n(n-2)/2
i=0 j=0

= 2n’- 3n + I vertices (see Figure 2). Each end vertex of the remote edges has
degree n and each leaf has degree 1.
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Figure 2. RJ Structure
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Step #2: Define E(G).
Let Cy be a set of leaves joined to an end vertex of a remote edge and
let rg; be joined to ¢; in C,for 0 <h <n-2where 0 <i <n-2. Now each leaf

has degree 2 and ro; has degree n - / for 0 <i <n - 2. We next define edges
-2

n
between C = UC, and I'=1-1, using the complete set of mutually
i=0
orthogonal Latin squares Ly, L,,...,L.2. Let r;; be joined to ¢, of Cifor0<h <
n-2ifandonlyif @, = I}, where 0<j,t<n-2and ] <i <n-2. Cleady,
any vertex in J; is adjacent to one vertex of C; and any vertex of C; is adjacent to
one vertex of I, It follows that all the vertices in C are of degree n and all
vertices in J are of degree n - /.
Step #3: Adding a matching in /.

In order to add one to the degree of every vertex in /, we add new edges
(ripriy+)) where 0<i<n-2andj € {0,2,4,...,n-3). The resulting graph, G, is
regular of degree  on 2n’ - 3n + I vertices.

Examples
(@) n=3.
The Petersen graph (see Figure 1) can be constructed by
00 01
I“’:(l 1)“"“‘=(1 0]
(b) n =35 (see Figure 3).
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Theorem 2. f(n,5) S2n°-3n+ 1,ifn=2"+ 1.

Proof: It suffices to show that the graph, G, constructed above, has girth 5.
Since any vertex of 7 is adjacent to one vertex in C, and one vertex in C,, there
are many 5 - cycles in G. To complete the proof, we now show that G is a
triangle free and 4 - cycle free graph.

Case 1. Verify that G contains no triangle.

Suppose there is a triangle in G. Note that there is no triangle in V(G)
- I since there are no edges in G/C], the induced graph on vertex set C. This
implies that any triangle must contain two adjacent vertices in /, say r;; and
ry+«» wherej € {0,2,4,...,n-3}. That is, there exists a vertex in C, say u € C,,
forsome 0 <h < n - 2, joined to two vertices in C,, which contradicts the fact
that every vertex in C; is adjacent to one vertex of I, Thus, G is a triangle free

graph.
Case 2. Verify that G contains no 4 - cycle.

Suppose there exists a 4 - cycle, C*, in G. Since G/I] contains only a
perfect matching, there are only three possibilities for the location of the four
vertices of C".

(@) Two adjacent vertices of C’ belong to /.

This implies the other two vertices of c’ belong to C, which
contradicts the fact that there are no edges in G/C]J.

(b) Two vertices in some C,, are adjacent to the same vertex of /.

This is impossible since any vertex of / is adjacent to only one vertex
of Ch.

(¢) C’ contains two nonadjacent vertices of / and two vertices in two different
leaf sets, say Cj; and Cyz, where h] #h2.

Let C = {ry, @, 1,, , &)} where ryy and 7, , are the nonadjacent

vertices of /and @, € C,;and ¢, € C,; are the nonadjacent vertices of C. F
one of {i,i} equals zero, say i = 0, then s = ¢ by the definition of the adjacency
of the vertices in /o This implies that there are two identical elements in the
J -throwof L,. This forces i = 0 since L, is a Latin square except in the
case i' = 0. That is, both ro; and ro, are joined to @ . Clearly, j = j by
the definition of adjacency of ro; and o, contradicting the fact that v,; and v,
are two different vertices. Thus, neither i nor i could equal zero. By the
definition of adjacency of r.; and riy, Ly=0,, I, =0, l,=0, and
J':‘,,2=a,. It follows that o, +Q; =0, +Q; and
o0, +0; = 0,0, +a; and, in turn, that (O;-0, X Q) -0),,) = 0. Since
h1#h2 ad @, #0;,, and GF;' is a field, we must conclude @;=@,. This
implies &; = @, and it follows thati = ' andj = j', a contradiction with
rij# I, . Therefore, G is a 4 - cycle free graph. [
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3. A further Discussion of the Upper Bound of f{(n,5)

In the RI structure, there is no edge in G/CJ]. This implies that there is
room for more edges to be added in order to give a better upper bound for f{n,5).
We now alter the R/ structure used in Theorem 2 to improve the upper bound
by n.

Theorem 3. f(n,5) <2n’-4n + 2,ifn =2+ 1.

To alter the R/ structure, we first remove the vertices rp, (0<i <n - 2)
and then add a perfect matching among vertices in C. Before proving this
theorem, we need the following two lemmas.

Lemma 1. In any complete set of orthogonal Latin squares L;L.,...,La2, if
I’ =1, then I, =17, where 0<i, j,s,t<n-2,1<m<n-2andn- 1 is

prime power.
The proof is straight forward from the definition of L.

Lemma 2. If G is a graph on n vertices (7 = 2* and ¥ > 2) and G is of regular
degree n/2 - 1, then G contains a perfect matching.

Proof: If G is a disconnected graph, then G = K,,» + Kz and clearly G contains
a perfect matching. Otherwise, we claim that G must be a 2 - connected graph.
Suppose, to the contrary, that ¢ is a cut vertex of G and let G, and G. be a pair
of components of G - {c}. If there existsx € G, and y € G such that (x,c) ¢
E(G) and (y,¢) & E(G), then |V(G)| 2 |N(x)| + INW| + 1 =n/2 + n/2 + | =
n + 1, a contradiction. This implies that ¢ has to be joined to every vertex of
G, or G,. For example, assume c is joined to every vertex of G;. Since G is an
(n/2 - 1) - regular graph, ¢ is not adjacent to any vertex of G,, a contradiction
with the choice of c.

Let L be the longest path of G. By a theorem of Dirac (see[2]), G has a
cycle of length at least 2(n/2 - 1) =n - 2. It follows that |[L]| > n-1. I |L| = n,
the existence of a perfect matching is trivial. If |L| =n - 1, there exists a vertex
not on L which is joined to a vertex on L. Since |L| = n - 1 is odd, there exists
two disjoint paths with even lengths in G and these two paths contain all »
vertices of G. This implies a perfect matching in G. O

Afterrg; for 0 <i <n- 2 are removed, a perfect matching joining ¢, of

C,to &, of Cys3 and joining &, of C, to &, of Cnywhere 0 <'s, t <n-2 and s

= Q0and t = ] (mod 4), is added. Since only one perfect matching is added,
there is no triangle or 4 - cycle in C. In fact, there is no triangle in G since ¢,

appears only once in each row of L,. The only possible 4- cycle must involve a
newly added edge and an edge in /, say C'={ o/ ,a,f,r”"z,r: }. We now redefine

the existed perfect matching in 7/ to avoid such 4 - cycles. Note that for any
vertex rn, its adjacency to vertices of C is decided by the i-th row of L,. To

avoid such 4 - cycles, 7., should not be joined by any vertex », such that l,-'f's =
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Isifs=0(mod4orl” =17, ift = I (mod 4). By Lemma 1, there

ju+l
are (n-2)/2 vertices in I, to which r,; can not be joined. In other words, there
are (n-1)/2-1 vertices in /, which can be joined by an arbitrary vertex r,; without
creating a 4 - cycle. This, together with Lemma 2, implies that we can always
add a perfect matching in I, without creating 4 - cycles. O
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%

Figure 4.

From Theorem 3, f{5,5) < 32. The unique (5,5) - cage is the
Robertson-Wegner graph on 30 vertices. However, the following further
modifications can be made to obtain the Robertson-Wegner graph based on the
structure used in Theorem 3. First we remove two vertices from /3, and then
add two more edges between Cp and C; and add two more edges between C; and
Cs. Secondly we have to redefine the edges in I by the following: (r;0711),
(r,_g,r,,g), (rz'a,rz'z), (ra.,723) and (I'J_z.l‘j,})‘ The resulting graph shown in
Figure 4 is the Robertson-Wegner graph on 30 vertices. From this example,
one can see that it may be possible to improve the upper bound given in
Theorem 3, since there is still room to add edges in C and reduce the number of
vertices in /. In general, implementation of this improved upper bound requires
the following steps.
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Step #1: Construct a regular graph without triangles and 4 - cycles in
C.

Step #2: Redefine the edges in / so that 4 - cycle can be avoided.
Unfortunately, we have not been able to find a proper way of redefining the edges
of /in general. We propose the following conjecture.

Conjecture. f(2'+1,5) s(2*'-2)2 + 2 fork 22 and 1 <1 <(k-1)/2.

Note that the upper bound given in Theorem 3 is as good as the best
result proved by O’Keefe and Wong [5] in 1984, in which they proved fin,5) <
2(n-2) forn 27 and n - 2 a prime power. However, the R/ structure shows a
very explicit graph structure that may lead to further improvement on the upper
bound of f{n,5). For example, if the above Conjecture is true, then the
coefficient of the linear term in O’Keefe and Wong’s upper bound could be
changed from a constant 8 to (3 + 2) and therefore the upper bound would be
reduced to 2n° - (3+2)n + (2 - 1) wheren = 2 + 1 and 2/ Sk-1.
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