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1. INTRODUCTION

Let r,n be positive integers, » < n. An r x n latin rectangle, usually
on the set of symbols {1,2,...,n}, is a rectangular array A = (ai;),i =
1,...,r5 = 1,...,n, with the property that every symbol appears in ex-
actly one cell of each row, and in at most one cell of every column. Two
r x n latin rectangles A = (a;;), B = (bs;) are orthogonalif |{(aij, bi;) : i =
1,...,m73=1,...,n} = rn,ie. if no two of the ordered pairs (a;;, b;;) are
equal.

It is a well-known classical result of M.Hall [H] that any r x n latin
rectangle with » < n can be extended, by adding a new row, to an (r +
1) X n latin rectangle, and so, eventually, to an n x n latin square. On the
other hand, one can easily find examples of pairs of orthogonal » x n latin
rectangles (» < n) which cannot be extended to a pair of orthogonal latin
(r+1) x n rectangles. For example, the two 3 x 4 latin rectangles in Fig.1a
are orthogonal but after the fourth row is adjoined to them - this can be
done in one way only - the condition of orthogonality is violated. Similar
can be said about the two 3 x 5 latin rectangles in Fig.1b.

1234 1324 12345 12345
4123 3241 21534 45123
3412 4132 45123 53214

(a) (b)
Fig.1
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Call a set of t orthogonal  x n latin rectangles mazimal if they cannot
be extended to a set of ¢ orthogonal (r + 1) x n latin rectangles. In this
article, our emphasis will be primarily on the case ¢ = 2. We denote a pair
of maximal orthogonal r x n latin rectangles by MOR(r,n). Our interest
is in determining, for n > 1, the possible number of rows r in a MOR(r, n),
i.e. the spectrum M(n) for MORs:

M(n) = {r: there exists MOR(r,n)}.

Trivially, M(1) = M(2) = {1}, and it is an easy exercise to obtain
M(3) = {3}, M(4) = {3,4}.

In what follows the interval [a, ] (the interval (a, b}, respectively) will
denote the set of all integers z:a < z < b (a < z < b, respectively). Let
P, = (n/3,n]. We conjecture that for sufficiently large n, M(n) = P,,
and we present several theorems and constructions towards proving our

conjecture.

2. A NONEXISTENCE RESULT

In this section we assume that all rectangular arrays are on the same set
S of n symbols. Let A = (a;;), B = (b;j) be rectangular arrays of size k x n
and r x n, respectively. We denote by C = Ao B = (c;;) the rectangular
array of size (k + r) x n obtained by adjoining the rows of B to those of A.
That is, for any j = 1,...,n, ¢ij = a5 for 1 < i < k, and ¢;; = bi_s ; for
k4+1<i<k+r.

Let A;,...,A, be orthogonal » x n latin rectangles. Then A4,,..., A,
are said to be jointly extendable if there exist 1 x » arrays Cy,...,C, such
that 4, 0 Cy,..., A, o C, are orthogonal (r + 1) x n latin rectangles.

Before stating the main theorem of this section, we need one more
piece of notation. Given an r x n array A = (a;;) on the set S, we let
A(Gj) =S —{asj:i=1,...,7}forj=1,...,2.

Theorem 2.1. Let A,,..., A, be orthogonal r x n latin rectangles. If
r < n/(2s) then A,,..., A, are jointly extendable.

The following two auxiliary statements are needed for the proof of The-
orem 2.1.
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Lemma 2.2. Let A = (a;;) be an r X n array on S such that each row
of A is a permutation of S. If r < n/2 then there ezists ¢ 1 x n array
B = (by,...,bs) such that for j=1,...,n, b; ¢ {aij:i=1,...,7}.

Proof. The statement of the lemma says that there exists a row B =
(b1,...,bn) such that the element b; of B differs from all elements in the
J-th column of A, or, equivalently, that A = {A(j): 5 =1,...,n} has a
system of distinct representatives [BR]. To see this, we only need to verify
P.Hall’s condition [BR] that

U 46) 2 17|
jeJ
for any J C {1,...,n}.

Since for r < n/2, |A(j)] > n—1r 2 n/2 for j = 1,...,n, P.Hall’s
condition is trivially satisfied for any J C {1,...,n},|J| < n/2. On the
other hand, each element s of S occurs exactly once in each row of A, hence
s occurs in A exactly r times. Thus s occurs in at least n — 7 > n/2 sets
A(7). Therefore
| U]A(j)l > |J] for any J C {1,...,n},|J| > n/2, so P.Hall’s condition is

j€

satisfied also in this case, and the proof of the lemma is complete. O

If we are given an (r x n) array A satisfying assumptions of Lemma 2.2,
the row B guaranteed by the statement of Lemma 2.2 will be denoted by
A,

Let now A = (ay;), B = (bij) be orthogonal r x n latin rectangles and
let C = (c;) be a row such that D = Ao C is a latin rectangle. Define a
latin r x n rectangle D+ as follows. Let ¢; = z. The element in the i-th
row and j-th column of D! equals b;; provided a; = =.

Lemma 2.8. Ifr < n/4 then Ao C and Bo E*, where E = Bo D*, are
orthogonal latin rectangles.

Proof. As C is a permutation of S and A is a latin rectangle (i.e. any
row of A is also a permutation of S), each row of D+, and thus also each
row of E is a permutation of S. Since E is a (2r x n) array, we can apply
Lemma 2.2 to obtain a row E*. Since B is a part of E, B o E* is a latin
rectangle, and since D+ is also a part of E, AoC and BoE* are orthogonal.
(]
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We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1 Let 4,,..., A, be s mutually orthogonal r x n
latin rectangles with » < n/(2s). We will construct row arrays By,..., B,
such that A;0B,,...,A,0B, will be orthogonal as well. Set B; = A} ( note
that » < n/4, so Lemma 2.2 applies). Clearly, 4, o B, is a latin rectangle.
For1<t< s, set B,=E}, By =(A10B))  o---0(A¢-10Bi_1)* 0 As.
The matrix E; satisfies the conditions of Lemma 2.2, therefore E; exists.
Since A, is a part of E;, A; o E{ is a latin rectangle while the fact that
(A4j o Bj)" is a part of E, implies that A, o E} is orthogonal to 4; o B; for
any j=1,...,t — 1. The proof of the theorem is complete. O

Remark. A technique similar to that in the proof of Theorem 2.1
was used in [HKR] to prove that if 4,,..., A, are latin rectangles of sige
T4 X n,...,7, X n, respectively, where ry + -+ r, < n/2 then there exists
a row array B such that A; o B,..., A, o B are latin rectangles as well.

Corollary 2.4. Ifr < n/4 then any pair of orthogonal » xn latin rectangles
are jointly extendable.

3. SOME DIRECT CONSTRUCTIONS

Lemma 8.1. Let k,q > 3,k < q < 2k, and suppose there ezisis a pair
of mutually orthogonal latin squares (MOLS) of order k, and of order g,
respectively. Then there ezist a MOR(k,k + q).

Proof. Let A, A' and B, B’ be a pair of MOLS of order k and ¢, on
the sets {1,2,...,k} and {k+1,k+2,...,k+q}, respectively. Let B;, B,’
be a pair of orthogonal k x ¢ latin rectangles obtained from B and B’,
respectively, by deleting their last ¢ — k(> 0) rows. Let
X = || A|By|l Y = [|4|B/|
be two k x (k+q) arrays obtained by juxtaposition. Clearly, X and Y are or-
thogonal. To see that they cannot be extended to orthogonal (k+1) x (k+q)
latin rectangles, assume the contrary, and let C = (c1,...,¢k,Cht1,- -+
Ckiq)y D = (d1,...,di,dry1,...,dr4q) be the row added to X, and to
Y, respectively. Then none of ¢;,...,¢ck,dy,...,d; can equal either of
1,2,...,k (due to latinicity), thus {1,2,...,k} C {ck41,...,cr4q}, and
{1,2,...,k} C {dr41,...,dr4q}. Since g < 2k, by the pigeonhole principle
there exists a pair (cp, dp) such that {cp,dp} C {1,2,...,k}, a contradiction
with our orthogonality assumption. Thus X,Y form a MOR(k,k + ¢). O

The following theorem is a direct corollary of Lemma 3.1.
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Theorem 8.2. Let k > 3,k # 6,n > 2k,n —k # 6. Then there ezists a
MOR(k,n) whenever § <k < 3.

Remark. Using Lemma 3.1 and Theorem 3.2, we obtain that there
exists a MOR(k, n) whenever %n < k < in,k > 3 except possibly when
(k,n) € {(6,12), (6, 13), (6, 14), (6, 15), (6, 16), (6, 17), (5, 11), (4, 10)}.
However, concerning the last two cases, the existence of a pair of incomplete
MOLS of order 6 with a hole of size 2 (see [ACD]) shows that a slight
modification of Lemma 3.1 ensures the existence of a MOR(5,11) and of a
MOR(4,10) as well.

Theorem 8.8. Let r < 3(r # 2,6), and suppose there ezists MOR(k,r).
Then there ezists a MOR(n — r + k,n).

Proof. It is well known [H1] that a pair of MOLS of order = can be
embedded in a pair of MOLS of order n if and only if r < $- Consider a pair
of MOLS of order n, say, X, X', with a pair of MOLS of order r, say 4, 4’,
embedded in the lower left-hand corner of X, X', respectively. Replace
now A, A' with two k x r latin rectangles B, B’ forming a MOR(k, r) (by
placing B, B’ to occupy the first k rows of A, A', respectively), and delete
the last » — k rows of X, X’. Since B, B' form a MOR, the resulting two
(n — 7 + k) x n orthogonal latin rectangles are clearly maximal. O

Corollary 8.4. There ezists a MOR(r,n) for %n < r < n, ezcept possibly
for (r, n) € {(30, 36), (33, 39), (36, 42), (39, 45), (42,48), (45,51)}.

Proof. Follows from Theorem 3.2, the Remark following it, and from
Theorem 3.3. O

Suppose A and B form a MOR(r,n). The definition of a8 MOR(r,n)
says that no matter how row C (D, respectively) is adjoined to A (B,
respectively), to form two (r + 1) x n latin rectangles, there will be at
least ome cell (r + 1, 5) such that the ordered pair (c;,d;) already occurs
among the ordered pairs obtained by superimposition of A and B, and thus
violates orthogonality. If, however, this is true for every cell (r+1,7), the
corresponding MOR is said to be strong. Note that, in particular, for each
r # 2,6, the MOR(n, 2n) constructed in Lemma 3.1 is strong.
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Theorem 3.5. If there ezist two orthogonal latin squares of order 2n and
a MOR(r,2n) then there ezists a MOR(3n + r,6n).

Proof. Let X,Y, Z be three pairwise disjoint 2n-element sets. Consider
the following two (3n + r) x 6n latin rectangles M, M":

4, C B A B ¢
M=|B A ¢Cc|, M=|B ¢ 4
C: By A; Cy' By A

where 4;A,' [C1, B, and By, Cy/, respectively] is a strong MOR(n, 2n)
(from Theorem 3.1) based on X [based on Z,Y, resp., and on Y, Z, resp.].
Further, B, B' [A,C’, and C, 4, resp.] are two MOLS of order 2n based
on Y [based on X, Z, and on Z, X, resp.]. Finally, A3, Ay’ [Bs, Ba', and
C3,Cy', resp.] is a MOR(r, n) based on X [based on Y, and on Z, resp.].

Clearly, M and M’ are orthogonal (3n + r) x 6n latin rectangles. Let
us show that M, M’ cannot be extended to a pair of (3n + r + 1) x 6n
orthogonal latin rectangles.Consider the entries in the cell (3n + = + 1,1)
(i=1,...,2n) of M and M’. They cannot both belong to Y since B, B’
is a pair of MOLS of order 2n, and they cannot both belong to X since
Aj, Ay is a strong MOR(n, 2n).Assuming that the (3n + 7 + 1,1) entry of
M belongs to X and that of M’ belongs to Z (or vice versa) leads to a
contradiction since A, C’ is a pair of MOLS of order 2n (and so is C, A").
This leaves only the possibility that both (3n + r + 1,4) entries of M, M’
belong to Z. This must be true for all i = 1,...,2n which is impossible
since C3,Cy' is a MOR(r,n) based on Z. O

Theorem 38.8. If there ezists a set of 3 MOLS of order n then there exists
a MOR(n +2t,2n) fort=1,...,|%].

Proof. Start with the strong MOR(n,2n) as obtained in Lemma 3.1
(from two MOLS(n)):
X=|4|B|Y =] 4B
where A = (ai;), A’ = (ai;') are based on I = {1,...,n}, and B =
(b:5), B' = (bi;') are based on J = {n+1,...,n}. Moreover, we have
bij = ai; +n, and b;' = aij' +n. Let Th,..., T, [TY,...,Tn', respec-
tively] be the set of cells of simultaneous transversals of A, A’ [of B, B,
respectively], and suppose T, contains the cells (i1,,1), (i2,12), .-+, (inss 7)
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(then T,’ will contain the cells (i1, + m,1),...,(in, + n,n)). For a set
Sc{1,...,n},let As = (ai;%),Bs = (b.','s) be the n x 2n latin rectangles
obtained from A, B by interchanging the elements of 7, for all s € S, i.e.
;% = b;; if (4,7) € Ts,s € S, and = a;; otherwise, while b,-,-s = aj; if
(3,7) € Ts,s € S, and = b;; otherwise. The latin rectangles As’ and Bg’
are defined similarly.

We now describe an extension of X,Y to a pair of (n + 2t) x 2n or-
thogonal latin rectangles. In order to keep the notation from getting out
of hand, we will give a description for the case S = {1}, with the case of
general S being handled similarly. Let X’,Y’ be two #» x n (orthogonal)
latin rectangles defined by
X' = ||ApyBay Il Y = || Ay’ | Bgay'lls
and consider two (n + 2) x n latin rectangles X’ o C and Y’ o C' where
C =(C1,C3),C' = (C',Cy') where
C1=(c11y++ 1 Clay C1n 41+ - -y €1,20)s
Cz = (631, cee3Cany C2n41, .- .,c;g‘zn),

Gt = (enr's. s e1n’sCrpngr’y o ooy €1,20")
Cg' = (Cn', ceey Cg,.', 63‘“+1', eny 63,3,.'). ,

Here (c11,...,€1n) is a projection of Ty in 4, (c1,n41,---,C1,20) is 8
projection of Ty’ in B, (ca1',...,¢2s’) is a projection of Ty in A’, and
(c3,41"s+- -, €2,20") is & projection of Ty’ in B'.

The rows C3; and C,’ are now determined as follows. The first n el-
ements of Cz will all be elements of J; they must be chosen in such a
way that the pairs (c31,¢21’), ..., (Cans €2n’) do not occur as ordered pairs
in (A{1},Ag1y’), the set of ordered pairs resulting when Agyy and Agy)’
are superimposed. The first components ¢31,...,¢3, can in turn be se-
lected so as to satisfy this requirement if there exists an SDR for the family
Uyy...,Up where U; = I\V;, and Vj = {2 : (2, ca;' € (A(1}, (1))} Since
we have clearly |Uy| = .- = |Uy,| = ¢ (say), and (U4,...,U,) induces a
regular bipartite graph on JUJ, an SDR of the required kind is guaranteed
to exist (as long as ¢ > 0).

The last n elements c3p41,...,¢2,2n Of C3 are determined similarly
except that they will all be elements of I. The first (and last) n elements
for the row C; are determined in a similar manner. The obtained pair of
(m» + 2) x 2n orthogonal latin rectangles is clearly maximal.
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We can proceed in this fashion (i.e. keep extending a pair of (n+2t) x 2n
latin rectangles by adding another two rows) as long as the sets analogous
to Uh,...,U, described above are nonempty, i.e. while ¢ > 0. This will
clearly be the case when ¢t < [%]. O

We illustrate Theorem 3.6 starting with a (strong) MOR(5,10) to obtain
MOR(7,10) and a MOR(9,10).

12345678910
51234106789
45123910678
34512891067
23451789106

14253697108
42531971086
25314710869
53142108697
31425869710

MOR(5,10)

62345178910
51734106289
45128910673
39512841067
23410178956
14253697108
71086953142

64253197108
42103197586
256319710864
58142103697
31475869210
81079641352
13524681079

MOR(7,10)

67345128910
51784106239
95128410673
39101284567
23410678951
14253697108
71086953142
42531971086
10869731425

69253147108
42108197536
75319210864
58642103197
31471086925
81079641352
13524681079
96810752413
24135796810

MOR(9,10)
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4. SOME FURTHER CONSTRUGTIONS

Theorem 4.1. For every m and every t,1 <t < m + 1 there ezisis a
MOR(2m +1,2m +1+1t).

Proof. Let M = Zamye41. Consider a function f : [0,2m] — M
defined by f(i) = 4,0 < i < mand f(i) = i+¢t,m+1 < i< 2m.
Clearly, f is a 1-1 mapping of [0,2m] onto [0, m] U [m + 1 + ¢,2m + ).
Now let A = (ai;), B = (b;5),0 < i < 2m,0 < j < 2m + ¢ be defined by
aij = i+ J,bij = i + j + f(i) where the sums are taken in the group M.
Obviously, A is a latin rectangle. To prove that B is a latin rectangle as well
it suffices to show that the mapping g : [0, 2m] — M, g(i) = i+ f(i) is one-
to-one, i.e. that i # k implies g(i) # g(k). This is clear when 4,k € [0, m]
or i,k € [m+1,2m). Let now,say,0<i<mandk=m+s,1<s<m.
Assuming g(i) = g(k) gives 2i = 2(m 4 s) + t in M, and it follows that
2i=2m+t+4+14+28—-1=2s—-1,stillin M. Butif 0 < i < m and
1< s < m, we cannot have 2i = 2s — 1in M = Z3,,4¢41. Hence g is 1-1,
and B is a latin rectangle.

Next we show that our two (2m + 1) X (2m + 1 + ¢) latin rectangles
A and B are orthogonal. Assume the contrary, and let there exist pairs
(3,7) # (r,s) such that a;; = a,, and b;; = b,,,ie. i+j=1r+sand
i+j+ f(3) = r+ s + f(r). Thus, i # r but f(i) = f(r), contradicting the
fact that f is 1-1. Thus A and B are orthogonal.

It remains to be shown that A, B cannot be extended to a pair of
orthogonal rectangles by adding a row. We prove a much stronger version,
namely that it is impossible to add the elements a3m41,0 and bam 41,0

Let z=2m+1,1 <1 <, and consider the set B, ={y € M : 2z =a;;
and y = b;; for some 4,5,0 < i< 2m,0 < j < 2m +1t}. Now,y € B; is
andonlyify=i+j+ f(§) fori+i=2m+1,1<I1<t. f0<i<m
then y = 2i+ 5 =2i+ (2m+1—¢) = i+ 2m + I. In other words, if
i€[0,mjthenye 2m+1,2m+#U[0,m+1—1— 1) C M (note that
the last interval is empty whenl =1andt=m+1). fm+1<i<2m
theny=2i+t+j=2i+t+(2m+l-9)=i+2mtt4l=i+1-1
in M, and therefore y € [m + I,2m + 1 — 1] in this case. Summing up, if
z=2m+1,1<l<tthen B,=[m+,2m+tfju0,m+1-t-1].

Now let us determine the entries ;o (i.e. we put j = 0). We know that
bio=i+f(i); f0<i<mthenbo=2iandifi=m+s1<s<m

137



then bjo = 2(m + 8) +1 = 25 — 1 (in M). We see that b;o € [0, 2m] for each
1,0 < i < 2m. Note that the same is true for the entries a;o.

Finally, assume that there were entries azm41,0 and bam+1,0 which would
appear in the corresponding cells of the new row to be added to A and B,
respectively. It follows from our earlier considerations that both, azm41,0
and bzm41,0 must belong to the set [2m + 1,2m + {]. But then, putting
T = Gam41,0 We see that bani1,0 € Bz, ie. bamy10€ [m+1-t,m+1-1).
However, ] <t < m + 1 implies that m +1— 1 < 2m + 1 (as always
m+1—1t2>0), and therefore 2m+ 1,2m+¢)N[m+1—-t,m+1-1]=0.
Thus there is no way to choose bam41,0 for any given azmi1,0. Thus 4, B
form a MOR, and the proof is complete. J

The next example is an application of Theorem 4.1 with m =2, =3
and M = Zg = {0, 1,...,8} to produce MOR(5,8).

Example 4.2. MOR(5,8)

012345667 01234567
12345670 23456701
23456701 45670123
345667012 12345670
45670123 34567012

Theorem 4.8. If there ezists a MOR(k,n) then there ezists a MOR(2n +
14+k,3n+1)

Proof. Let A, A’ form a MOR(k,n) on elements z,,...,2, ¢ Zany1.
Define now a pair oflatin rectangles B = (b;;), B’ = (bi;') as follows (arith-
metic operations on subscripts are in Z while the remaining operations are
in Zant1):

@ ogij<2n. Put My={i—t:te[l,n]}, M/ ={i+t:t€[1,n]}
note that M; N M;' =0, M; UM;' = {i} € Zap41. Then define
bij=2i—-7if j ¢ M;, and b;; =z if j=i-t e M;,
b,'j'=2j—iifj¢ M, and b.',": g if j=i+te M.

(i) bign4j =i+ G bigns; =i+2jfor0<i<2n,1<j<n.

(iii) bansij = 26+ J,ban4i =i+ jfor 1<i<k,0<5< 20,
(iv) ban+iants = @iy bangisnti =i for 1<i<k,1<j5<n.
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(Note that a;; = z;,1 < j < n.)

It is a routine matter to verify that B and B’ are indeed orthogonal
(2n+ 14 k) x (3n + 1) latin rectangles. Letting now By’ = {by;' : z; = bi;}
for a fixed £,1 <t < n we see that B, = {b;;' : j=i—-t} ={i—t:i¢€
Zan4+1} = Zan+1. This shows that in a purported extension of B, B' by one
additional row, no element of Z3,41 can appear in the 2n+ 1+ j-th column
of this additional row for any j = 1, ...,n. Thus the last n elements of this
new row added to B’ would have to be z;’s which is impossible since A4, A’
form a MOR. O

We remark that the construction of Theorem 4.3 is very similar to that
in [DK] used to obtain a pair of MOLS of order 3n + 1 (Theorem 11.4.5 of
[DK]).

Theorem 4.4. Let m be odd and l even such that 2m <1 < 4m. Then
there ezists a MOR(3m,3m +1).

Proof. Consider the group Z, where n = m + 1. Let F = (f;;),F' =
(£;;),0<i<3m—1,0< j<n—1be given by
fii =i+25 fi' =i+3,
the sums being taken in the group Z,. Since » > 3m and n is odd, F, F'
are orthogonal 3m x n latin rectangles. Define now six m x m subarrays of
F and F' as follows (we always assume 0 < 4,5 <m—1):
C = (cij)sij = fijs D = (dij)ydij = fiym,jr B = (ei5), €5 = fitam,jn C' =
(cii')veii' = fif's D' = (dif)s dis’ = firms's B! = (ei'), €' = fivam,s'-
Thus we have:

m l m {
.mC r, M c’

F:0lp] ml| P im[D]l ®
m| E m|F

Let Zn® and Z,,? be two disjoint groups isomorphic to Z,, (and both
disjoint from Z, introduced above). Put Z,* = {ao,a1,...,am-1},
ZmP = {Bo,B1)..1Bm-1}, and let & + aj = iy, Bi + B = Piyj 0 <
i,j < m—1 (the sum in the subscript being mod m).

On Z,,* define two m x m arrays A = (a;;) and 4’ = (a;;'),0<4,5 <
m — 1 by a;j = @i4j,8ij' = @ijyzj. Similarly we define two m x m arrays
B = (bi;), B' = (bij’) on Zm® by bij = Pitajs bis’ = Bi.
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Again, since m is odd, A, A’ are orthogonal latin squares, and so are
B,B'.

Now let L and L' be two 3m x (3m + I) arrays on the set of symbols
Zm® U ZP U 2, defined as follows:

A'|B|C C'|A|B
L=|D|A|B R|L=|A|B|D F
B'|E|A B |E|A

It is obvious from the construction that both L and L’ are latin rectan-
gles. To prove that they are orthogonal wé have to show that the pairs of
arrays (4, B), (4',C'), (B, D'),(A, D) and (B’,C) are orthogonal. This is
obvious for the pair (A4, B). Of the remaining four cases, consider (4, D);
the others are similar. Thus, assume that a;4; = a,4, and di; = d,, where
0<4jrns<m-1 Thusi+j=1r+s(modm)andi+m+25 =
T+ m + 2s (mod n). Substituting i + j = r + s + em,e € {0,+1,-1}
into the second equation we obtain m + j = m + em + s (mod m), i.e.,
Jj =8+ em (mod n). But 0 < j,s < m —1 and n > m which implies that
€=0,j = 8, and i = ». This proves orthogonality.

It remains to be shown that L, L' are maximal orthogonal. Assume to
the contrary that (Azm ;) and (Asm,;'),0 < j < 3m +1 — 1 are two new
rows which could be added to L and L' to form a new pair of orthogonal
latin rectangles. The way in which L, L' were defined implies that (Z,,* U
ZmP) O {dem; 1 0 < 5 < 3m =1} = 0 and (Zm® U Zn®) N {Dgms;’
0 <j<3m-1} = 0. Thus both sets Lgm = {Agm+j : 7 > 3m} and
Lam' = {Xsm+;' : j > 3m} contain the 2m-element set Zm® U Z,,° as
a subset. However, since |Lgm| = |Lgm'| = | < 4m, there must be a
pair (Asm+j, Asm+;’) for some j,3m < j < 3m + I such that both Asm+j
and Agm+;' belong to Z,* U Z,,2. But by our construction, L, L' already
contain all the 4m2? ordered pairs of elements of Z,* U Z,,° (just consider
the pairs of squares (4, 4'), (4, B), (B, A) and (B’, B)). This contradiction
proves maximality. O
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Theorem 4.5. Let m and l be odd, m < | < 2m. Then there ezisis a
MOR(3m,3m +1).

Proof. Put n = 2m + 1 and let D = (d;;),D' = (d;;'),0 < i <
3m —1,0 < 5 < n -1 be two orthogonal 3m x n latin rectangles where
dij = i+ j,dij' = i+ 2j (sums in Z,, n odd). Consider the subarrays
By, Ci, Bi',C)' of D and D', k = 1,2, 3 as depicted:

D= m 1 Bl 01 D, _m B]_' 01’
“m Bz Cg Dl “m Bg' Cz' Dx'
m |Bg| Cs m Bs' C'a'

Let now A, A’ be a pair of orthogonal latin squares on the group Z,,“
(asin the previous proof) given by A = (a;;), aij = aiyj, A' = (ai5'),a:' =
@435 where 0 < 4,5 < m — 1, and the sums in subscripts are taken mod
m. Consider the following two 3m x (3m + 1) arrays L, L’ on Z, U Z,*:

AlB g B'lA |G
L=|By] A |Cq D| L'=|A|B|Cy D’
Bg|Cs| A B |Cd'| A

Both L and L' are obviously latin. To prove their orthogonality it
suffices to show that A L (B,' U B;'), and A’ L (B, U B;) (in the obvious
sense of this unusual symbol). We show just the first part, as the second one
is similar. Let a;j4;j = ar4, and i+25 = r+2s+6m (mod n) where § = 0 or
1, according as we have elements from the same By’ or from different By'-
’s. Substituting i+ j = r+ s+ em, € € {0,1, —1}, into the second equation
we obtain j = s + xm where x € {-1,0,1,2}. But 0 < j,s < m—1, and
from j = s + km (mod n), n > 3m we have j = s and hence i = r. (Note
that in the case A’ L (B, U B;) we really need I > m, i.e. n > 3m to prove
the orthogonality.)

The fact that L, L’ are maximal can be proved similarly as in Theorem
4.3. Indeed, let (Asm ;) and (Asm') be two new rows which could be added
to L and L'. Again, if Lgm = {Asm,j : J 2 3m}, Lam’ = {Asm,;' : 5 > 3m}
then it follows from the construction that Z,* C Lg,, and Z,,* C Lsm'.
But since |Lgm| = |Lsm’| =1 < 2m, there is a 5 > 3m such that both Agpm j
and Agp, ;' belong to Z,®. This contradicts the fact that all m? ordered
pairs of elements of Z,,* have already been used up (just consider the pairs
of squares 4, A’). O
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5. SMALL ORDERS

A small improvement on Corollary 2.4 is offered by the following.
Lemma 5.1. There ezists no MOR(2,n) for any n.

Proof. In view of Corollary 2.4 and our remarks in Section 1, we need
to prove the statement only for n = 5,6,7. Let A = (a;;), B = (b;) be
orthogonal 2 x n latin rectangles. We will show that there always exist
row arrays C and D such that A o C and B o D are orthogonal 3 x n
latin rectangles. We may assume w.l.o.g. that a;; = b forj=1,...,n.
Set C = (b31,...,b2a). Clearly, Ao C is latin as az; # b3j. Let E =
Bo(AoC)t = (eij). To complete the proof we need to show that £ =
{E(3) : 7 = 1,...,n} has a system of distinct representatives. As the
first row of (A o C)* equals C which equals the second row of B, we get
|E(j)] = n—-3forj =1,...,n. Thus P. Hall’s condition is trivially satisfied
forany J C {1,...,n},|J| < n— 3. In addition, any element of the symbol
set S occurs in at most 3 columns of E, hence
| UJA(j)| = n > |J| for any |J| > 4. This proves the statement for

je

n = 6,7. When n = 5 this leaves still the case |J| = 3. Assuming in this
case that £ does not have a system of distinct representatives leads again

to a contradiction (this case does require further analysis but we omit the
details). O

Lemma 5.2. M(5) = {3,5}.

Proof. An exhaustive search establishes that there exists no MOR(4,5).

This, together with the example given in the Introduction, and Lemma 5.1
establishes the claim. O

Lemma 5.3. M(6) = {3,4,5}.

Proof. The existence of MOR(r,6) for r=3 follows from Lemma 3.1,
and for r=>5 from the existence of a pair of incomplete MOLS of order 6
with a hole of size 2 (see, e.g., [ACD]). The nonexistence of a MOR(6,6) is
equivalent to the nonexistence of a pair of MOLS of order 6. An example
of a MOR(4,6) is given below. O

423156 132465
315642 321654
261534 213546
134265 564123
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Lemma 5.4. M(7) = {3,4,5,6,7}.

Proof. Lemma 3.1 ensures the existence of a MOR(3,7) while Theorem
3.3 yields MOR(~,7) for »=6,7. Examples of MOR(r,7) for r=4 and 5 are
given below. O
4321765 3247615
3417256 4132576
2146537 1425367
1235674 2316754

MOR(4,7)

1234567 1526374
7123456 5263741
6712345 2637415
5671234 6374152
4356721 4715236

MOR(5,7)
Lemma 5.5. M(8) = {3,4,5,6,7,8}

Proof. Again, MOR(r,8) for r=3,4 is obtained by Lemma 3.1, for
r=7,8 by Theorem 3.3, and for r=6 by Theorem 3.6. An example of
MOR(5,8) was given in Example 4.2. O

Lemma 5.6. {4,5,7,8,9} C M(9).

Proof. Theorem 3.2 implies the existence of a MOR(4,9). A MOR(r,9)
for r=8,9 exists by Theorem 3.3. An example of a MOR(7,9) is given below.
)

123456789 162738495
912345678 627384951
891234567 273849516
789123456 738495162
678912345 384951627
567891234 849516273
435768912 591267384

MOR(7,9)
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Lemma 5.7. {4,5,7,8,9,10} C M(10).

Proof. The existence of a MOR(r,10) for r=4,5 is ensured by Theorem
3.2 and the remark following it, for r=9,10 by Theorem 3.3, and for r=7,9
by Theorem 3.6. The example of a MOR(8,10) given below was supplied
to us by Don Kreher. O

0189674523 0189674523
1098765432 2301896745
2301896745 4523018967
3210987654 6745230189
4523018967 3210987654
5432109876 1098765432
6745230189 7654321098
7654321098 5432109876

MOR(8,10)

6. CONCLUSION AND OPEN PROBLEMS

The results of previous sections lead us to the following conjecture on
the spectrum for MORs:

Conjecture. For sufficiently large n, M(n) = (§,n].

(Here "sufficiently large” is not likely to mean "very large”, rather some-
thing like n > 30.)

However, we are currently unable to prove, for example, that MOR(r, n)
does not exist for 3 < » < %, nor are we able to "fill in” the spectrum
completely within the conjectured range. The smallest open problem is to
decide the existence of a MOR(6,9).
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