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ABSTRACT

Let B(G) and B.(G) denote the bandwidth and cyclic bandwidth of graph
G. respectively. In this paper, we shall give a sufficient condition for graphs to
have equal bandwidth and cyclic bandwidth. This condition is satisfied by trees.
Thus all theorems on bandwidth of graphs apply to cyclic bandwidth of graphs
satisfying the sufficiency condition, and in particular, to trees. We shall also give
a lower bound of B.(G) in terms of B(G).
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1. Introduction

For a graph G = (V, E) of order p, a one-to-onc mapping from V onto
{1,2, ---,p} is called a numbering of G. A onc-to-one mapping from V
into the set of integers Z is called an extended numbering of G.

Definition 1.1. Suppose f is a numbering of G. Let
B(G, f) = max |f(u) = f(v)].
The bandwidth of G, denoted by B(G), is defined as

B(G) = min{B(G, f)| f is a numbering of G}.

Definition 1.2. Suppose f is a numbering of G. Let
B(G, f) = max |f(u) — f(v)le,
weFl

where |z|. = min{|z|, p — |z|} for 0 < |z| < p. The cyclic bandwidth of G,
denoted by B.(G), is defined as

B.(G) = min{B(G, f)| f is a numbering of G}.
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A numbering f of G satisfving B.(G) = Bc(G, f) is called a cb-optimal
numbering of G.

The bandwidth problem of graphs has a wide range of applications in-
cluding sparse matrix computation, data structure, coding theory and cir-
cuit layout of VLSI designs (sce [1]). The problem became very important
since the mid-sixties - see Chinn et al [2] or Chun and Seymour [3]. In its
original formulation, the problem is to lay vertices of a graph on a path in
such a way so that the maximum distance between any two vertices con-
nected by an edge is minimized. Besides a path, other candidates are also
available, and at times may cven be more appropriate. In [1] and (4], laying
vertices on a grid P, X P, and on a cycle C,, respectively, are considered.
When vertices are laid on a cycle, we get cyclic bandwidth as in Definition
1.2

In this paper, we shall study cyclic bandwidth. In section 2, we introduce
the concept of a relative numbering and in section 3, we usc this concept
to show that bandwidth is equal to cvclic bandwidth for a class of graphs,
which includes trees. Finally, we give a lower bound for cyclic bandwidth
in terms of bandwidth. Notation and terminology of graph theory are the
same as described in the book of Bondy and Murty [5], and Grimaldi [6]
unless otherwise defined in this paper.

2. Relative Numbering

In the rest of this paper, G shall denote a graph with vertex set V of
order p and edge set E.

Definition 2.1 Suppose f is a numbering of G. A onc-to-one mapping
g from V into the set of integers Z is called an extended numbering of G

relative to f if
lg(v) — g(u)| < |f(v) — f(u)le (2.1)
for all uv € F.

Lemma 2.1 Supposc f is a numbering of a tree G. Then there exists
an extended numbering of G relative to f.

Proof We shall use the following algorithm to construct an extended
numbering of G relative to f.

1. Choose a vertex v € V. Set S = {v} and put g(v) = f(v).

2. G[9] is a tree. For any v € N(S), there exist © € S which is adjacent
to v. This u is also unique, because two vertices in S cannot be both
adjacent to v. Otherwise there will be a path in S connecting these two
vertices, and this path together with the edges connecting v to its end-
points will form a cycle in G. But that is impossible because G is a tree.
Put g(v) = g(u) + f(v) — f(u) + pby. 4, where

0 |flv)-fwl< &,
6u,v = -1 f(v) - f('LL) > %9 (22)
1 f(v)-f(u) <-§.
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3. Put §=SUN(S). If S # V, then go to (2). Otherwise stop.

We shall show that g is an extended numbering of G relative to f.
Suppose u and v are two vertices of G. Because G is a tree, u and v are
connccted by a unique path in G. Let this path be s;s5...5,, where s, = u
and s, = v. We have

n—-1
9(v) —g(u) = Z{g(si+l) —9(si)}
1

n—1 (23)
= Z{f(s,'+1) — f(s:) +P65¢,s;+1}

1

= f(v) = f(u) + pé,

where § = Zl"l 0s;,9:4,- Since p does not divide f(v) — f(w), therefore

9(v) # g(u).

The definition of 6, , ensures that if uv € E, then

l9(v) — g(w)| = 1f(v) = f(u) + Pbu,u| = |f(v) = f(w)le- (2.4)
This shows that g is an extended numbering of G relative to f. |
Figure 1 illustrates a tree with numbering f. Also shown is the num-

bering g which is an extended numbering relative to f. Vertex ug is the
initial vertex in the algorithm for obtaining g.

1 1

8 2 8 10
7 3 -1 3
6 4 6 4
(u0) (uo0)
5 5
A graph G with a numbering f g is an extended numbering

relative to f

Figure 1
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3. Graphs with Cyclic Bandwidth Equal to Bandwidth

In this section, we shall describe a class of graphs with cyclic bandwidth
equal to bandwidth, and this class of graphs includes trees.

Theorem 3.1 Suppose G is a tree, then B(G) = B.(G).

Proof 1t is sufficient to show that B(G) < Bc(G). Let f be a c¢b-
optimal numbering of G, and let g be the entended numbering of G relative
to f as obtained in Lemma 2.1. Arrange the vertices of G in ascending order
of values under g, so that g(u;) < g(uz2) < ... < g(up). Define a numbering
h of G by letting h(u;) =i for i = 1, 2, ..., p. We can see that h is a
numbering of G. It also follows from (2.4) that if u;u; € E, then

|h(us) = h(u;)] < lg(ws) = guy)l = |f(ws) = f(u5)le- (3.1)
Therefore B(G) < B(G,h) < B:(G, f) = Bc(G). 1

Theorem 3.2 Let G = (V, E) be a graph. If the length of the longest
cycle is 7 and 7B(G) < p, then B(G) = B(G).

Proof Let Gt = (V, Er) be a spanning tree of G and f a numbering
of G with B.(G, f) = Bc(G). Then f is also a numbering of Gr. As in
lemma 2.1, we can obtain a numbering g of Gr relative to f.

Let uv € E\Er. Because G is a tree, there is a unique path in Gr
joining u and v. Letting this path be s152...5,, where s; = u and s, = v,
we have (2.3). Because uv € E, we can determine the integer 6, , so that
|f (@) = f(©)le = | f(v) = f{u) + Pbu.y|. Now the last two expressions of (2.3)
may be re-stated as

n—1
S T {F(5141) = £(50) + Pbssign } = F(0) = f() + Pbuy + P(6 = 6u). (3:2)
1

Since the path P together with the edge uv form a cycle of length n in G,
we have nB.(G) < rB.(G) < p. Rearranging (3.2), we get

n-1

‘p(‘s - 6u,v)| S z If(si+l) - f(si) +p63iy5i+ll + If('u) - f(u) +p6u,v|
1

<nB(G) <p.
(3.3)
Inequality (3.3) is possible only if § — 6, = 0, and (2.3) now becomes

lg(v) — g(w)l = |f(v) — f(u) + péul|

= |f(v) = f(w)le < Be(G). (3.4)
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Clearly |g(v) — g(u)| = |f(v) = f(u)l if uv € Er, thercfore (3.4) actually
holds for any uv € E.
Now we define a numbering h of G as in theorein 3.1. Because of (3.1)

and (3.4), we sce that B(G) < B(G,h) < B:(G, f) = B.(G). |

Theorem 3.3 Suppose B(G) = B and B,(G) = B,. Then G may be
imbedded into another graph H such that B.(H) = B(H) = B.

Proof There is nothing to prove if G is a tree. Let r be the length of
the longest cycle in G. If 7B < p, then the theorem follows from theorem
3.2. So we assume that B > p. Now let f be a numbering of G with
B(G, f) = B, and u be the vertex with f(u) = p. Construct a graph H by
adding a path u;, us ... ux to u, where v; ¢ V(G) and k = rB+1—p.
Obviously, H is of order 7B+ 1 and B(H) = B. Since rB.(H) < rB(H) =
rB < |H|, we can apply thcorem 3.2 to get B.(H) = B(H) = B.

Since the bandwidth and cyclic bandwidth of trees are identical, all re-
sults on bandwidth of trees ([7] - [9]) will be applicable to cyclic bandwidth
of trees. We shall conclude this paper with the following theorem, which
establishes a bound relationship between bandwidth and cyclic bandwidth
of a general graph.

Theorem 3.4 For any graph G, we have #l < BA(G) £ B(G).

Proof It is sufficient to show that B(G) < 2B.(G). Let f be given.
We define g as follows

= {00 i /()] < (B,
TE=Vap— f)] +1 i flu) > (2],

Clearly g is a numbering of G. Let uv € E.
If f(u), f(v) < |8); or if f(u), f(u) > [B]; then

lg(u) — g(v)| < 2|f(u) = F(V)| = 2|f(u) = F(v)l.. (3.6)
If f(u) < &) and f(v) > |§], then
lg(w) — g(v)l = 12f(u) — 2[p - f(v)] - 1

= [2[f(v) = f(u) + 2f(u) - p] - 1 (3.7)
< 2|f(u) - f(v)].

(3.5)

and

lg(v) — g(u)l = 12[p — f(2)] + 1 - 2f (u)]
=2[p - fv) + f(u)] - 4f (u)] + 1 (3.8)
< 2lp - f(v) + fu)l.

Inequalities (3.6) to (3.8) imply that |g(u) — g(v)| < 2|f(u) — f(v)]c. So we
have proved that B(G) < B(G, g) < 2B(G). |
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