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ABSTRACT. Let H, < S,, where H, is a Sylow p-subgroup
of S, the symmetric group on n letters. Let h, denote the
number of derangements in H,, and f, = Tﬁ:T We will show
that the sequence {fn}5%; is dense in the unit interval, but is
Cesaro convergent to 0.

1 Introduction

Let S, denote the symmetric group on n letters, i.e. the group of all
permutations of the set X, = {1,...,n} for n > 1. Given a subgroup
H, < S, let h, denote the number of derangements in H,, which act on
Xy with no fixed points. Roger Alperin [1] has asked whether there are
interesting families of subgroups Hy,, < Sy (with H, C H,,; when we view
Sy, as a subgroup of S, in the obvious way) for which limy,_,c ]%?.T exists.
He uses exponential generating functions to show that this limit equals -i-
if each H, = S,, (well known), and again if each H,, = A,, the alternating
group. We will let p be an arbitrary prime which is fixed throughout and
take H,, to be a Sylow p-subgroup of S,,, and show that this limit does not
exist. Indeed, after introducing a probabilistic point of view, we will find
a formula for f, = ]'I'Lin'l' and show that the sequence {f,}32, is dense in
the unit interval, but is Cesaro convergent to 0. Note that the value of f,
does not depend on the choice of Hy, since all Sylow p-subgroups of S, are

conjugate, and conjugate elements of S,, have the same cycle structure.

We begin by establishing some notation. Let m = Hﬁj and let the base
p expansion of n be given by n = Y _iv dip*, where each d; € {0,...,p—1}.
Note that m = 0 iff n < p iff p{ n!, and we may regard this case as trivial,
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since then a Sylow p-subgroup of S, is trivial with no derangements and
fn = 0. Most of what follows is true for m = 0 though often vacuous in
this case; but, in any event, we may assume henceforth that m > 1, i.e.
n 2> p. Let & = | %] for0<i<mandlete=73 ", e. It is well known
that p®||n!, i.e. p° | n! and p*+1 { nl.

2 Construction of Sylow p-subgroups

The basis of our approach is to consider a certain family B of subsets of X,,.
For integers ¢ > 0, if the natural numbers are partitioned into consecutive
blocks of length p*, the jth block is B; j = {(j —1)p* +1,...,5p'}. We will
use the notation B; ; = [(j — 1)p* + 1,7°]. In particular, B, ; = [j]. Now
B,Janiffjp‘eX,.lﬁ'OSiSmandl5_7'56;. LetB§={B§'jl
1<j<e}for0<i<mandlet B=J,B; and By =|J, B;. Thus
|B;| = e;, and |B| = e. For example, if p = 3, and n = 16, we have m = 2,
the base 3 expansion of

n=1x3"+2x3'+1x3%2and e=e; +ea=5+1=6

Bo = {Bo,,Boz2---,Bo16} = {11, (2], ...,(16]}
B: = {Bi1,Bios. Bist = {(L3MA6}...,[13 15]}
B, = {B2,.1} = {[1,9]}

For each element B € B, let op € S, be the permutation of X,, which
fixes all elements of X, — B and permutes the elements of B ahead cyclically
through ,—l,th the length of the block B. Thus, if x € B € B; with ¢ > 1,

then op(z) € B and op(z) = z+p'~! (mod p*). Clearly, each o has order
pin S,. Let T, = {op | B € B;} and let H,, = (I'y) be the subgroup of
S, generated by I',,. We again use the example from above:

oB,, = (123), oB,, =(456), 0B, s = (789),
0B14 = (101112), OB s = (131415)
OB, = (147)(258)(369)

Proposition 1. H,, is a Sylow p-subgroup of S,.

Proof: We will show that every element of H,, may be uniquely expressed
in the form

o= H og?® with each ap € {0,...,p - 1}. (1)
BeB+

For definiteness, we shall understand all such products to be expanded with
the B’s ordered lexicographical, so B;; precedes Bi (i.e. occurs to the
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left of it in the product) iff either ¢ < k or else i = k and j < h. Once this
is shown we will have |H,| = p°® and the proposition will follow.

Let K denote the set of all elements o € S,, which may be expressed as
in (1). It is clear that ', C K C H, and therefore, to show that K = H,,
(i.e. to show that every element of H, may be expressed as in (1)), we need
only show that K is closed under composition.

First note that if B € By and B’ € B;, then op(B’) € B; also, and in
fact op(B’) = B’ unless B’ C B (B’ is properly contained in B). In this
case, og(B’) # B’ and o%(B’) = B’ iff pla.

Now suppose B € B; and B’ € B; with 1 < i < k. Then either B and
B’ are disjoint or else B’ C B. If B and B’ are disjoint, then clearly o5
and og/, commute. Assume next that B’ C B. If B’ = B, then again opg
and op commute, being equal. So now assume that B’ C B. If we were to
write o5+ in disjoint cycle notation, as a product of p*~! disjoint p-cycles
whose constituents together comprise B’, then chrB:o;l would equal the
expression in which the constituents of these cycles have been acted upon
by op. The new constituents together would comprise og(B’), and since
op maps B’ onto og(B’) in order preserving fashion, it is evident that
opopog! = Oop(B’) SO

OBOB = 0,5(B')0B (2)
if B’ C B. In fact, this holds whenever B€ By and B€B; with1 <i <k
since, in all other such cases, we have og(B’) = B’ and we already know
that og and og commute.

Now suppose 0 =[] gep, 05 and 7 = [[ 5em, o}P are given. We obtain
an expression for or by juxtaposing these, and the repeated use of (2)
gives an expression o7 = [[gep, 0F Where we may assume each cp €
{0,...,p — 1} since each o has order p. Thus, K = H,.

It remains only to prove uniqueness of the expressions. Let o and 7 be
as in the previous paragraph and assume ¢ = 7. For each B € B,,, we may
choose some B’ € B,,_1 with B’ C B and then, since o g is the only element
of B, which moves B’, we have o%8(B') = o(B') = 7(B’) = o2 (B');
therefore 032 ~°2(B’) = B’, p | (ag —bs), and ap = bp. Multiplying o and
7 on the right by 05 for all B € By, gives new expressions which we again
call o and 7 and which are again equal, and so we may assume ag = bg =0
for all B € B,,. This allows us (if m > 2) to argue similarly that for each
B € By,—1 we have ag = bg = 0; then (if m > 3) for B € By,—2,... etc., and
finally for B € B;. So expressions as in (1) are unique. o

3 The number of derangements of H,

We now look at the number of derangements in H,,. In order to aid us in
doing so, we make our family B into a directed graph as follows. For each
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block B € B; with i > 1, there are exactly p distinct elements B’ € B;_;
with B’ C B, and we include an edge from B to each of these elements B'.
So elements of B4 have out-degree p and elements of By have out-degree
0. All elements have in-degree either 0 or 1.

For our purposes, a tree will be a finite, nonempty directed graph in
which a single vertex called the root has in-degree 0 and there is a unique
path from the root to any other vertex. Vertices having out-degree O are
called leaves. A forest will be a directed graph F which is a disjoint union
of a finite number of trees, and then these trees are exactly the maximal
subtrees of F'. For i > 0 we let T; denote a full p-ary tree of height i, so all
paths from the root to a leaf contain i edges and every non-leaf vertex has
out-degree p.

We may view X,, as a disjoint union of d,,, blocks of length p™, followed
by dm—1 blocks of length p™~1, .. ., etc., followed by do blocks of length
p° = 1, where d; is the coefficient of p' in the expansion of n. Then we
see that these blocks are exactly the elements of B having in-degree 0,
and B is a forest consisting of d,, trees isomorphic with T,, d;—; trees
isomorphic with T, 1, ..., etc., and dg trees isomorphic with Ty. These are
the maximal subtrees of B and their roots are the above blocks comprising
Xn. Note also that a path in B is a maximal path iff it extends from the
root to a leaf of one of the maximal subtrees of B. For each element j € X,,,
let p; denote the set of blocks along the maximal path in B containing [3],
and note that we have p; = {B € B | j € B}. So j — p; gives a bijective
correspondence between X, and the set of all maximal paths in B. Once
again we use the above example to depict these concepts in what follows:

(1,9]

[1.3) . (7.9] [10,12] (13,15)

N

@ [ ) o [ ]
(11 2 31 (4 (51 (61 (M (8 9 11 ] (111 (121 0131 014y (15) [16]

-

T T

Next we consider derangements in H,. Suppose ¢ € H, and j € X,,.
If o(j) = j, then we must have o(B) = B for each B € p;. Write 0 =
[Ises, o8° with each ag € {0,...,p — 1}. We claim that o(j) = j iff
ap=0for Be p = p; N B,. Let k denote the height of the maximal
subtree of B contalmng [7], so p; consists of one element from each B; with
0 < i < k. Assume first that o(5) = j. If k > 1 and B is the element of
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pj N By, and B’ the element of p; NBy_1, then B’ = 0(B’) = o3x*(B’) and
ap = 0. Then, if k > 2, we see similarly that ag = 0 if B is the element of
; N Bi—1. Similarly, ap = 0 for all B € p]. Conversely, if ap = 0 for all
B € pf, we see that o(B) = B for all B € p; and hence o(j) = j, so the
claim is proved.

If F is any forest, let F';. denote the set of non-leaf vertices in F. By a
coloring of F we shall mean an assignment of an element a, € {0,...,p—1}
to each vertex v € F,. (We note that this would usually be called a p-
coloring of F';). By a random coloring of F we shall mean a coloring of F
which is chosen probabilistically so that the a,’s are chosen independently,
each according to the uniform probability distribution on {0,...,p — 1}.
We shall call a coloring of F' admissible iff each maximal path in F (from
the root to a leaf of one of the maximal subtrees of F) contains a non-leaf
vertex v € F with a, # 0.

Proposition 2. If h, is the number of derangements in H,, and f, = TT}}?.T’
then f,, equals the probability that a random coloring of B is admissible,
and we have f, = [[ino g where n = Y1 dip* is the base p expansion of
n and ¢; = fy: is the probability that a random coloring of T; is admissible.

Proof: Writing o € H, in the form 0 = [[gcp, 0 with each ap €
{0,...,p — 1}, we see that elements of H, correspond to colorings of B,
and the above shows that derangements in H,, correspond to admissible
colorings of B. Choosing a coloring of B randomly corresponds to choosing
o € H, randomly, with all |H,| = p° elements being equally likely. Thus,
fn equals the probability that a random coloring of B is admissible. The
maximal subtrees of B include d; trees isomorphic with T; for 0 < i < m,
and they are colored randomly and independently in a random coloring of
B. The proposition follows. o

Proposition 3. We have go =0 and ¢; = (1 — %) +% x gf_, fori>1.

Proof: It is clear that g9 = 0 since Tp has no non-leaf vertices. Now assume
i > 1. A coloring of T} is admissible iff either the value assigned to the root
is # O (probability = 1 — 1) or else this value is = 0 (probability = 1) but
all p of the subtrees of Tf whose roots are the children of the root of T}
have admissible colorings (each probability = g;_1). These subtrees are all
isomorphic with 7;_; and they are colored randomly and independently in
a random coloring of T3, so the proposition follows. a

The sequence {f,}32,

Using propositions 2 and 3, it is straightforward to compute f,, for any
n > 1. To better understand how the f,’s are distributed, however, it is
necessary to further investigate the g¢;’s.

Lemma 4. The sequence {g;}$2, is strictly increasing and has lim; o0 q; =
1, and the product ]'[;':1 ¢; = 0 is divergent.
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Proof: We have qo = 0 and ¢; = g(g;—1) for ¢ > 1, where g(z) = (1 —
;) + -a:? The properties of g we will use are that it is twice differentiable
on the closed unit interval (all z such that 0 < z < 1); ¢'(z) > 0 for
0 < z < 1; there is some ¢ > 0 such that 0 < g”(z) < cwhen 0 < z < 1;
and g(1) = ¢’(1) = 1. Our proof is general and would apply if g were
replaced by any function having these properties.

From these properties it follows that z < g(z) < z + §(z — 1)? for
0 <z < 1. So {g}2, is strictly increasing and bounded above by 1,
the lim; .00 ¢; = L exists and 0 < L < 1, and g(L) = limj0 9(q:) =
lim; 00 ¢i41 = L which forces L = 1.

Next let r; = 1 — g; for i > 1. We will complete the proof by using the
well known fact that [0, ¢ = O iff E,_N': = o0 [2]. From the above
we have 1 —g(:v) >1-z—£&(z—1)%for 0 < z <1, which 1mphw that
Titl >r.—-r for: > 1. Chooseany0<A<1andlet 3'__(_5‘ for

i(ln ¢

i > 2. Applying the mean value theorem to f(z) = —(—5; on the interval

z(ln =
i <z <i+1, we can see that if 7 is sufficiently large then s;+1 < s: — 532
Now both {r;} and {s;} are decreasing and converge to 0. If we discard a
finite number of terms from each and re-index both to begin with i =1,
we may assume that s; < r; and that for all ¢ > 1 we have ry,8; < ¢ 1 and
8i41 < 8; — $52. We may then show by induction that s; < r; for all ¢ i >1.
For the inductive step, using the fact tha.t h(z) = z — $2? is increasing
where 0 < z < 1, we obtain ;1 < 8; — §57 <ri11. Now )5, = co by the
integral test, a.nd hence )" r; = oo by the comparison test. o

Proposition 5. The sequence {f,}52, is dense in the closed unit interval.

Proof: Suppose 0 < a < 1. It will suffice to find an increasing sequence
{nx}2., of natural numbers with limi—co fn, = .

Let t; be the smallest natural number with ¢;, > a. Assuming¢; < --- <
tx have been chosen and ¢;, X ... X g, > «, let x4 be the smallest natural
number with ¢x4; > ¢ and ¢, X ... X gq¢,,, > a. This is possible because
lim;,00¢; = 1.

We claim next that [T g:. = a. It is clear that [~ g, = B exists
and B > «, since the finite subproducts are decreasing and all are > c.
So assume that 8 > a. The {tx}2; will include every natural number ¢
with ¢, > g, i.e. all sufficiently large natural numbers, and it will follow by
Proposition 4 that ;> ; ¢, =0, a contradiction. So 8 = a.

Now for each k > 1 let n, = Z:;l p%. Then f,, = Hf=1 g:, by Proposi-
tion 2, and hence limg 0 fa, = . a

Finally, we show that while {f,}2.; has no limit, it is Cesdro convergent
to 0.
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Proposition 6. If gy denotes the average of the first N of the f,’s, then
limy_oo gv = 0.

Proof: For convenience we let fo = 1, which is appropriate since the only
permutation of the empty set is the function which is the empty set of
ordered pairs. Since thlS permutatlon has no fixed points, we have hy =
|Ho| = 1. We let gn = Zn—o fn- Once we prove that limy_,00 gy =0,

1t W111 follow that the same would have been true had we defined gy to be
N zn—l f n-

Assume p™ < N < p™tl. Then we have Z"_o fn < Z”m“‘l fa =

n=0
f:;l_l gox...xgk (where the d;’s depend on n eachd; € {0,..., p—l},
and n = 2.-0 d-P ') = Zdo o ydm=0 ‘Io . Hi_o(Z” =0% ) =

Mo -t—q*;- The recurrence in Proposition 3 imph% that 1—¢f = p( 1—q,+1),
© T fn < TIZo P = p™41(1 = Gnia). We also bave 3 < 3,

so that gy = & En—o n < P(1 — gm+1). Since lim;,o; ¢; = 1 by Lemma
4, it follows that limy_,.o gy = 0. O
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