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ABSTRACT. Competition graphs were first introduced by Joel
Cohen in the study of food webs and have since been exten-
sively studied. Graphs which are the competition graph of a
strongly connected or Hamiltonian digraph are of particular in-
terest in applications to communication networks. It has been
previously established that every graph without isolated ver-
tices (except K3) which is the competition graph of a loopless
digraph is also the competition graph of a strongly connected
digraph. We establish an analogous result for one generaliza-
tion of competition graphs, the p-competition graph. Further-
more, we establish some large classes of graphs, including trees,
as the p-competition graph of a loopless Hamiltonian digraph
and show that interval graphs on n > 4 vertices are the 2-
competition graphs of loopless Hamiltonian digraphs.
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1 Introduction

Competition graphs were first introduced in 1968 by Cohen (3] in connec-
tion to the study of food webs and have since found many applications.
One such example is the assignment of frequencies to transmitters in ra-
dio communication networks. Since it is desirable that a message initiated
somewhere in the network be able to reach all stations, typically the di-
graphs for these networks are strongly connected. Which graphs are the
competition graphs of strongly connected digraphs? Answers to this ques-
tion are provided by Fraughnaugh et al. [4]. The area of competition graphs
has been extensively researched, for example by Brigham and Dutton [1,
2], Lundgren and Maybee [7], Raychaudhuri and Roberts (8], and Roberts
and Steif [9] and has generated related topics such as niche graphs, tol-
erance competition graphs and p-competition graphs. The p-competition
graph was first introduced by Kim, McKee, McMorris, and Roberts [6].
This paper generalizes the work of Fraughnaugh et al. [4] in considering
the question which graphs are the p-competition graphs of loopless strongly
connected and Hamiltonian digraphs?

For definitions not given here, the reader is referred to Golumbic [5]. We
use V(G) and E(G) to denote the vertex set and edge set of a graph G
respectively. We use V(D) and A(D) to denote the vertex set and arc set
of a digraph D respectively. We let Inp(z) denote the inset of a vertex z
in a digraph D and #(G) denote the set of isolated vertices in a graph G.

2 Preliminaries

The p-competition graph of a digraph D, denoted Cy(D), is a graph on
the same vertex set with vertices =z and y adjacent in Cp(D) if and only
if there are k > p vertices, vy, ..., vk, such that (z,v;), (y,v;) are arcs in
D for all i. If p = 1, then Cy(D) is called the competition graph of D. A
p-edge clique cover (p-ECC) of a graph G is a family of subsets of V(G),
{S1,...,Sk} (repetitions allowed) such that {z,y} € E(G) if and only if =
and y appear together in at least p of the sets. Observe that if G = Cp(D),
then {Inp(z) | z € V(D)} is a p-ECC for G. When p = 1, a p-ECC is
called an edge cligue cover. One should be careful to make the following
distinction between a 1-ECC’and a p-ECC for p > 2. While in a 1-ECC the
sets are necessarily cliques in the graph, for p > 2, the sets in a p-ECC are
not necessarily cliques. Every intersection of p sets in the family is either
a clique or the empty set (see Figure 1).

We let 6%,(G) denote the minimum cardinality of a p-ECC for the graph
G. Kim, et al. [6] proved that if G has n vertices and 6;(G) <n -p+1,
then G is the p-competition graph of an arbitrary digraph (possibly with
loops). The same authors also proved that a graph G with n vertices is a
p-competition graph of an arbitrary digraph if and only if ©%(G) < n. This
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generalizes a result by Brigham and Dutton [1], who originally established
the result for p = 1.

2 3 7 9

Figure 1.
The family of sets {1, 2,3,4}, {1,2}, {2,3}, {83,4}, {1,4}
is a 2-ECC for the graph on the left. The family of sets
{6,7,8}, {6,8,9}, {8,9,10} is a 1-ECC for the graph on the right.

3 The p-Competition Graphs of Strongly Connected Digraphs

If ©%(G) < n, is G necessarily the p-competition graph of a loopless
strongly connected digraph? The following result of Fraughnaugh, et al.[4]
tells us the answer is no.

Proposition 3.1. For p = 1, G # K, is the p-competition graph of a
loopless strongly connected digraph if and only if ©%(G) + i(G) < n.
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Figure 2.
G is the 1-competition graph of a loopless digraph, but not one that is
strongly connected. G is the 2-competition graph of a loopless strongly
connected digraph. The digraph is not strongly connected but G is its
2-competition graph. Adding the arc (9,8) makes the digraph strongly
connected, but does not change its 2-competition graph.

Recall that if a digraph is strongly connected, then every vertex has an
incoming and an outgoing arc. Consider the graph in Figure 2. A 1-ECC
for this graph has at least 9 sets. Thus every vertex in the digraph must
have at least two incoming arcs, one for each endpoint of an edge in the
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graph. The isolated vertex is not in a minimum 1-ECC but must have
an outgoing arc in order that D be strongly connected. This outgoing arc
creates a competition between the isolated vertex and some other vertex
in the graph, a contradiction. This graph is the 2-competition graph of a
loopless strongly connected digraph (see the digraph in Figure 2). Notice
that by adding 9 to the inset of 8 makes the digraph strongly connected,
but 9 competes at most once with any other vertex.

Theorem 3.2. Let p > 2 and G be a graph which is the p-competition
graph of some loopless digraph. Then G is the p-competition graph of some
strongly connected loopless digraph.

Proof: Observe that if G has |V(G)| isolated vertices then let D be a
directed cycle on |V(G)] vertices and C,(D) = G for D strongly connected.
Therefore we may assume G has at least one edge.

Let D be a loopless digraph with fewest number of strongly connected
components such that Cp(D) = G. Let Dy, Dy, ..., Di be the topological
ordered strongly connected components of D. Recall that an ordering of
the strongly connected components of D, Dy, Ds,..., Dy is topological if
and only if whenever z € D; and y € D; exist such that there is an arc
from z to y, then i < j (see Golumbic [5] for a proof that such a topological
ordering exists).

If Dy = Dy we are done so assume k > 2. Since G has at least one edge,
we can assume that D; contains a vertex z with at least one outgoing arc
(if Dy does not contain such a vertex then Da, ..., Dk, D; is a topological
ordering of the strongly connected components). We then have three cases.

Case 1: D; = {z}. Then In(z) = @ and Out(z) # 0. Let y be a
vertex such that there is an arc from z to y. Let D, denote the strongly
connected component containing y. Create D’ by adding the arc (y,z) to
D. The set of vertices competing with z at least p times is unchanged.
Since y is the only vertex with an arc to z, the set of vertices competing
with y is unchanged. Thus C,(D) = G implies Cp(D’) = G and D’ has
fewer strongly connected components than D, a contradiction.

Case 2: |Dy| > 2 and there exists y € Dy, z € D, such that there is no
arc from z to y. Suppose |Dg| < p. If there exists g ¢ Di such that (q,y) €
A, create I by adding (y, q) to D. Since D is loopless, y competes at most
(p — 1) times with any vertex (namely at most (p — 2) times for a vertex
in Dg, and once for g). Therefore the set of vertices competing with y at
least p times is unchanged. Then Cp(D) = G implies Cp(D’) = G. Letting
D, denote the strongly connected component containing g, we observe that
Dy U D, is strongly connected in IV, i.e., D' has fewer strongly connected
components than D, a contradiction.

Thus all arcs incoming at y originate in Dj. Create D’ by adding (z,y)
and (y, z) to D. Then the set of vertices competing with z at least p times

164



in D has not changed since at most (p — 1) vertices have arcs to y (namely
at most (p — 2) vertices in D, and z). The set of vertices competing with y
at least p times in D has not changed since y has at most (p — 1) outgoing
arcs (namely to at most (p — 2) vertices in Dx and z). Thus Cp(D) = G
implies Cp(D’) = G and D, U Dy is strongly connected in D, i.e., D’ has
fewer strongly connected components than D, a contradiction.

Thus |Dx| > p. Since |Dy| > 2, In(z) # @ and since 2 < p < |Dyl,
In(y) # 0. Create D’ from D by switching the insets of z and y and
leaving all other arcs the same. No competitions have changed therefore
Cp(D) = G implies Cp(D’) = G. Since |Dy| > 2 and |Dg| > 2, D, U Dy is
strongly connected in IV, i.e., D’ has fewer strongly connected components
than D, a contradiction.

Case 3: |D;| > 2 and for all z € D; and all y € Dy, there is an arc from
z to y. Suppose |Dg| < p. Create D’ by adding arc (y,z) to D. Then the
set of vertices competing with y at least p times has not changed since y
has arcs to at most (p — 1) vertices (namely at most (p — 2) in Dy and z).
Since the set of vertices competing with z at least p times has not changed,
Cp(D) = G implies Cp(D’) = G. Since D; U D is strongly connected in
D', D’ has fewer strong components than D, a contradiction.

Thus |Dx| > p. Since every vertex in D; has an arc to every vertex
in Dy, D is a clique in G. Thus we can remove arcs between vertices
strictly in D; and the p-competition graph is unchanged. Pick an arbitrary
vertex z € D;. Create D’ by deleting all arcs incoming at = and adding
arc (y,z) to D. The set of vertices competing with y at least p times is
unchanged since y is the only vertex with an arc to z. Thus C,(D) = G
implies Cp(D') = G. Since |Dy| > 2 and |Dg| > 2, D; U Dy is strongly
connected in IV, i.e., D’ has fewer strongly connected components than D,
a contradiction.

Since in each case the contradiction implies D has fewer than k strongly
connected components where k > 2, we must have k = 1, i.e., D is strongly
connected. Therefore every graph which is the p-competition graph of a
loopless digraph is the p-competition graph of a strongly connected loopless
digraph. (m}

4 Hamiltonian Digraphs: Constructions

The following constructions will be useful in characterizing several large
classes of graphs as the p-competition graphs of loopless Hamiltonian di-
graphs.

Lemma 4.1. Let G be a connected graph such that G is the p-competition
graph of a loopless Hamiltonian digraph. Adding a pendant vertex z to G
results in a graph G’ which is also the p-competition graph of a loopless
Hamiltonian digraph.
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Proof: Let D be a loopless Hamiltonian digraph such that Cp(D) = G.
Let vy,vs,...,v, denote a Hamiltonian cycle in D. Create D’ from D
as follows. Add vertex z. Let v; denote the vertex adjacent to z in
G'. Let Inp/(z) = Inp(vi—1). Let Inp/(vi—1) = {z,v;}. Observe that
v1,%2,...,Vi—2,T, Vi—1,V, .. ., U is 2 Hamiltonian cycle in D’. Since G is
connected v; has outgoing arcs to at least p other vertices of D. Let = have
an outgoing arc to p — 1 of these vertices. Then C,(D’) = G', where D' is
Hamiltonian. O

Corollary 4.2. Let T be a tree. If T has a subtree which is the p-
competition graph of a loopless Hamiltonian digraph then T is the p-
competition graph of a loopless Hamiltonian digraph.

Proof: This follows from Lemma 4.1, since we may add pendant vertices
successively to the subtree, obtaining T'. ]

Lemma 4.3. Let T be a tree which is the p-competition graph of a loopless
Hamiltonian digraph D. Adding a pendant vertex z to a vertex of degree
d > 2 results in a tree T’ that is the (p+ 1)-competition graph of a loopless
Hamiltonian digraph.

Proof: Let D be a loopless Hamiltonian digraph such that C(D) = T.
Let vy,vs,...,v, denote a Hamiltonian cycle in D. Create D’ from D as
follows. Add z to D. Let Inp/(z) = V. Let v; denote the vertex adjacent
to z in T". Let v; and v, denote two vertices adjacent to v; in T and
T'. Since v; and v; are adjacent in T, v; and v; have arcs to at least p
common vertices. Let z have an arc to these vertices. Since v; and v are
adjacent in T, v; and v, have arcs to at least p common vertices, at least
one of which, vy, has no arc from vj, since T is a tree. Let = have an
arc to this vertex. Then no previous competitions have changed since all
vertices have arcs to z, while z and v; compete at least (p+1) times. Then
V1,%2, ..+ Um—1,T,Vm, - -+, Un, 1 is a Hamiltonian cycle in D’. Therefore
Cy(D') =T, where D’ is Hamiltonian. m]

A branch of a tree is a path of the tree with the vertex at one end adjacent
to an internal vertex (or a vertex with at least three neighbors including
the vertex of the branch). A maximal branch has the further property that
the other end vertex is a pendant vertex.

Lemma 4.4. Let T be a tree which is the p-competition graph of a loopless
Hamiltonian digraph. Let T’ be a tree produced from T by adding a branch
of 1 new vertices (I > 2). Then T" is the k-competition graph of a loopless
Hamiltonian digraph for p < k<p+1-1.

Proof: The proof is by induction on I. If I = 2, observe T” is a p-
competition graph of a loopless Hamiltonian digraph by Corollary 4.2. To
show T” is a (p + 1)-competition graph of a loopless Hamiltonian digraph,
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add the first vertex of the branch as indicated in Lemma 4.3 creating a tree
which is the (p + 1)-competition graph of a loopless Hamiltonian digraph.
Then by Corollary 4.2, T” is the (p + 1)-competition graph of a loopless
Hamiltonian digraph.

Assume the statement is true for the addition of a branch on I < n new
vertices and consider the addition of a branch on | = n new vertices. By
the induction hypothesis, the addition of the first (I — 1) vertices produces
a tree that is the k-competition graph of a loopless Hamiltonian digraph
for p < k < p+1—2. Then by Corollary 4.2, T is the k-competition graph
of a loopless Hamiltonian digraph for p < k < p+ ! — 2. It remains to be
shown that 7” is a (p + ! — 1)-competition graph of a loopless Hamiltonian
digraph.

Let vy,v9,...,v denote the consecutively labeled vertices of the branch
such that v; is adjacent to an internal vertex, vg, of T'. Let D be a loopless
Hamiltonian digraph such that Cp(D) = T. Create D’ from D as follows.
Direct an arc from all vertices of T to vy,...,v,—;. Observe this preserves
all adjacencies from Cp(T) in Cpt1—1(T").

Since vg is an internal vertex, there exists vertices ¢ and » adjacent to vg
in T. Let S denote a set of p 4+ 1 vertices, p of which ¢ and vy have arcs
directed toward in D and 1 of which » and vy have an arc directed toward,
but ¢ does not. Direct an arc from all vertices in the branch to all vertices
of S.

Fori=1,...,l—1, direct an arc from v; to all vertices v, (k=0,1,...,1I)
except v; and v;_;. Direct an arc from v; to all vertices v, (k=0,1,...,l—
3). Observe that nonconsecutively labeled vertices of the branch, »; and
vk, compete at most (p+ 1) + ({ + 1 —4) times in D’ (namely for (p + 1)
vertices of S and all vertices of the branch except v;, vi—1, v and vi—_,).
Consecutively labeled vertices of the branch, v; and v;41, compete at least
(p+1)+ (I +1 —3) times (namely for (p+ 1) vertices of S and all vertices
of the branch except v;_;, v; and v;41). Observe that v; and vy compete
at least (p+ 1) + (I — 2) times, while for all other vertices »; of the branch,
v; and vp compete at most (p + 1) — (I — 3) times (since v has no arc to v
and v; has no arc to v;_2).

Now consider an arbitrary vertex v € T other than vo and a vertex v; of
the branch. Since T is a tree, v can have at most p arcs to vertices of S,
while v; has arcs to [ — 2 vertices in the set {vp,...,v_1}. Therefore v and
v; compete at most p + l — 2 times. Thus C,4;_1(D’) = T’. Furthermore
if 1, %9, ...,z, denotes a Hamiltonian cycle in D and z; is any vertex of
S, then zq,z9,...,2;—1,v1,2,. .., Ti, Tit1, .+, Tn,Z1 is & Hamiltonian
cycle in D’, completing the proof. o

The next lemma allows us to join two p-competition graphs of loopless
Hamiltonian digraphs.
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Lemma 4.5. Let p > 2. If Gy and G2 are the p-competition graphs of
loopless Hamiltonian digraphs, then G1 U G5 is the p-competition graph of
a loopless Hamiltonian digraph.

Proof: Let D, and D, be loopless Hamiltonian digraphs such that Cp(D;)=
Gy and Cp(D2) = Ga. Let vy,vs,...,v,, and z,,Z3,...,Tn, denote a
Hamiltonian cycle in each digraph respectively. Let v; be an arbitrary ver-
tex in D; and z; an arbitrary vertex in D,. Create digraph D from D; and
D, as follows. Let Inp(v;) be the inset of z; in Dj; similarly, let Inp(z;) be
the inset of v; in D;. Then CP(D) =G1 UG, and vy, vy, ...,%_1, %1, Tit1,
cr s Tngy Ty oo oy Tim1, Vi Vig1y - -« y Uny ,, V1 IS @ Hamiltonian cyclein D. O

5 Utilizing the Constructions

Before we can utilize the constructions of the previous section, we must
establish a few examples of graphs as the p-competition graphs of loopless
Hamiltonian digraphs.

Lemma 5.1. Let p > 2. If G is a cycle on n > p+ 3 vertices, then G is
the p-competition graph of a loopless Hamiltonian digraph.

Proof: Let vy,vs,...,v, denote the consecutively labeled vertices of G.
Create digraph D as follows. Let

Inp(v;) = {¥it1mod ns Vit+2mod ny - - » Vikp+1 mod n} -

Then v; and v;41 mod n compete p times, namely for v;12mod ny - - - Vitpmod n
and Y;p41mod n- Consider nonconsecutive vertices v; and vx. There are 4
vertices for which v; and v do not compete, namely v;, Uk, %i+1mod n and
Uk4+1mod n- Lhus v; and vx compete for at most p — 1 vertices. Therefore
Cp(D) = G and vy, ¥p,¥n—1,...,%2,v; is a Hamiltonian cycle in D. (]

Lemma 5.2. The complete graph K, on n > p+ 2 vertices is the p-
competition graph of a loopless Hamiltonian digraph.

Proof: Let V = {v;,vs,...,v,} be the vertices of K,,. Create D as follows.
Let Inp(v;) = V — {v;}. Then Cp(D) = G and that vy,v2,...,v,,v; is a
Hamiltonian cycle in D. (]

Lemma 5.3. The complete graph minus one edge on n > 2p + 1 vertices
is the p-competition graph of a loopless Hamiltonian digraph.

Proof: Let G be the complete graph minus one edge for n > 2p+ 1. Label
the vertices of G, vy, v, - . ., v, such that (v;,v,,) is the missing edge. Create
D ss follows. For 1 < i < [2], let Inp(v;) = V — {vg, v1}. For [3] <i < n,
let Inp(v;) = V(G) — {vi, vn}. Let InD(v[’ﬂ) =V(G)- {vl-%-l} if n is odd,

and V(G) - {vl-ﬂ ,v1} if n is even.
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Then all pairs compete at least [5‘2—] — 1 > p times except for vy and v,
which compete at most once and

vl’v[ﬂ“’v[ﬂ”’ e ,v,‘,vl-ﬂ,v[ﬂ_l,vl—ﬂ_z, ceey U1
is a Hamiltonian cycle in D. O

Lemma 5.4. If G is a path on n > p + 3 vertices, then G is the p-
competition graph of a loopless Hamiltonian digraph.

Proof: We need only verify this result for n = p + 3 by Corollary 4.2. Let
vy, %2, .. ., Uy be the consecutively labeled vertices of G. Create D as follows:
for i # p+1, let Inp(v;) = V(G) — {vi) Vi+1mod n}; let Inp(vp41) = V(G) -
{%,Yi+1mod n)Vi+2mod n}. Observe that vy, vs,...,v,,v; is a Hamilto-
nian cycle in D. Then v; and v;4; compete at least p times, namely for

Vi+2mod n» Vi+3mod ns « - + » Vi4(p+1) mod n- Since v; does not have an arc to
V4 OT Vi4+1mod n, the nonconsecutive vertices compete at most p — 1 times,
i.e., Cp(D) = G where D is Hamiltonian. n]

We now establish a result for two special classes of trees. A caterpillaris
a tree such that the removal of all pendant vertices results in a path (the

spine).
Theorem 5.5. If G is a caterpillar on n > p + 3 vertices, then G is the
p-competition graph of a loopless Hamiltonian digraph.

Proof: We need only verify this result for n = p + 3 by Corollary 4.2. Let
v1,v2, ...,V denote the consecutively labeled vertices of the spine of G.
Observe g > 3. Since a path on 3 vertices is the competition graph of a
loopless Hamiltonian digraph D, if ¢ = 3 create D’ by successively adding
all but one of the remaining pendant vertices as in Lemma 4.3. Then add
the final pendant vertex as in Lemma 4.1. Then D’ is Hamiltonian and
Cp(D') = G. If ¢ > 3, then the spine of G is the r-competition graph of a
loopless Hamiltonian digraph D by Lemma 5.4, where r = g —3. Create D’
by successively adding the remaining pendant vertices to D’ as in Lemma
4.3. Then D’is Hamiltonian and Cp(D’) = G. m]

Theorem 5.6. Let p > 2. If T is a tree on n > 2p vertices, then T is the
p-competition graph of a loopless Hamiltonian digraph.

Proof: By Corollary 4.2 we need only consider the case n = 2p. The case
p = 2 can be verified by examination of all possible trees so p > 2. Let g be
the length of the longest path P in T'. If ¢ > p+ 3, T is the p-competition
graph of a loopless Hamiltonian digraph by Lemma 5.4 and Corollary 4.2.
If ¢ < 4, T is a caterpillar and we are done by Theorem 5.5.

Saving the case ¢ = 5, consider the case that ¢ > 6. Then n = 2p >
2p — g + 6. Thus, if we can show that a tree on 2p — ¢ + 6 vertices is
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the p-competition graph of a loopless Hamiltonian digraph, we are done by
Corollary 4.2. Assume T is such a tree with maximum path P.

By Lemma 5.4, P is the (¢ — 3)-competition graph of a loopless Hamilto-
nian digraph. Construct a sequence of subtrees Ty, T3, . .., Tx where Tj is a
path, Ty is T and T; is constructed from T;_; by the addition of a maximal
branch. Let n; be the number of vertices added to T;_; to get T;. Lemmas
4.1, 4.3 and 4.4 guarantee that T; is a (g — 3+ Y",_, k1)-competition graph
where k; = max{n; — 1,1}. The worst case occurs when each additional
branch adds two new vertices. In this case, T is a (g — 3 + 7)-competition
graph, where j is half the number of vertices added to Tg. Since there are
q vertices in Tp, we add 2p — ¢+ 6 — ¢ = 2(p — (g — 3)) vertices to obtain
T, and conclude T is a (g — 3) + (p — (g — 3)) = p competition graph.

If ¢ = 5, T must have a maximal branch with one vertex; otherwise all
branches of T are of length 2, i.e.,, T has an odd number of vertices, a
contradiction since n = 2p. Remove this branch. The resulting tree has
2p—1 = 2p—2—q+6 vertices and is therefore, by the previous case, a (p—1)-
competition graph of a loopless Hamiltonian digraph. Using Lemma 4.3 we
conclude T is the p-competition graph of a loopless Hamiltonian digraph. O

Corollary 5.7. Let p > 2. If G is a forest and all maximal subtrees of
G have n > 2p vertices, then G is the p-competition graph of a loopless
Hamiltonian digraph.

Proof: This follows from Theorem 5.6 and Lemma 4.5.

6 Classes of 2-Competition Graphs

Using Lemmas 5.2 and 5.3 of the previous section, we prove a result for
chordal (hence interval) graphs.

Lemma 6.1. If G is chordal on n > 5 vertices and not complete, then G
is the 2-competition graph of a loopless Hamiltonian digraph D, in which
every maximal clique of G is contained in at least one inset of D.

2 3 2 y 3
5 5
1 f 1 2
Figure 3.

An example of a chordal graph, G, on five vertices and loopless
Hamiltonian digraph D such that C,(D) = G. Note that the insets
of the vertices in the digraph form a 2-ECC for the graph.
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Proof: (by induction on n) If n = 5, we verify the result by considering all
possible graphs (see Figure 3). Assume the statement is true for chordal
graphs which are not complete on n = k > 5 vertices and let G be such
a chordal graph on n = k + 1 vertices. Let = be a simplicial vertex in
G (a vertex is simplicial if its neighborhood induces a complete subgraph;
every chordal graph has at least two simplicial vertices [5]). Consider G’ =
G - {z}.

Case 1: G’ is complete. Suppose there is exactly one vertex in G’ that is
not adjacent to z in G. Then G is K,, minus one edge and by Lemma 5.3, is
the 2-competition graph of a loopless Hamiltonian digraph. Suppose there
are at least two vertices, z; and z; of G’ that are not adjacent to z in G.
Let C be the maximal clique in G containing z. Create D as follows. Let
In(z) = V(D) — {z}. Let In(z;) = In(z;) = C. For all zo, zo # z, o # i,
Zo # x;, let In(zg) = V(D) — {xo,z}. Then G is the 2-competition graph of
D. Since the digraph D — {z;, z;} has all possible arcs, z has an arc to z;,
z; has an arc to some vertex zo of V(G) — {z, z:,z;}, zo has an arc to z;,
and z; has an arc to some vertex z of V(G) — {z, 2, z;,z0}, we conclude
that D is Hamiltonian. Furthermore C C In(z;) and V(G’) C In(z), so
every maximal clique is contained in at least one inset of D.

Case 2: G’ is not complete. By induction hypothesis, G’ is the 2-
competition graph of a loopless Hamiltonian digraph D’ such that ev-
ery maximal clique of G’ is contained in at least one inset of D’. Let
T1,Z3,...,Tn—1 denote the Hamiltonian cycle of D’. Let C be the max-
imal clique containing z in G. Let C' = C N V(G’). By the inductive
hypothesis there is a vertex z; such that C’ is contained in In(z;) in D'.
Create digraph D as follows. Add arc (z,z;) to D’. Observe that since D’
is loopless, z; is not adjacent to = in G.

Suppose there is a vertex z; # z; that is not adjacent to z in G. Then
let Inp(z) = Inps(z;) and Inp/(z;) = C. Observe that z competes with
the other vertices of C in D at z; and z;, while z competes at most once
with any other vertex in D, namely at z;. Since no other competitions
have changed, C(D) = G and zy,...,%i-1,%,Zi, ..., Tn-1 is a Hamiltonian
cycle in D.

Suppose z; is the only vertex that is not adjacent to z in G. Then
G’ — {z;} is a clique and G — {z;} is a clique. Since this implies z; is
simplicial in G and G — z; is complete, we are in case one, completing the
proof. o

From Lemma 6.1 and Lemma 5.2 we have the following results.

Theorem 6.2. If G is a chordal graph on n > 5 vertices, then G is the
2-competition graph of a loopless Hamiltonian digraph.

Corollary 6.3. If G is interval on n > 5 vertices, then G is the 2-
competition graph of a loopless Hamiltonian digraph.
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