A NOTE ON THE P_3 -SEQUENCEABILITY OF FINITE GROUPS

STEFAN HEISS

ABSTRACT. Applying Glauberman's Z^* -theorem, it is shown that every finite group G is strongly P_3 -sequenceable, i.e. there exists a sequencing (x_1,\ldots,x_N) of the elements of $G\setminus\{1\}$, such that all products $x_ix_{i+1}x_{i+2}$ $(1\leq i\leq N-2),\,x_{N-1}x_Nx_1$ and $x_Nx_1x_2$ are nontrivially rewritable. This was conjectured by J.Nielsen in [N].

Let G be a finite group, |G| = N+1. J. Nielsen [N] defined G to be strongly P_n -sequenceable if there exists a sequencing (x_1, \ldots, x_N) of all the elements of $G^* = G \setminus \{1\}$, such that for all i the product $x_i x_{i+1} \cdots x_{i+n-1}$ (indices modulo N) is rewritable, i.e. there is a permutation $\sigma \neq 1$ of the indices $\{i, i+1, \ldots, i+n-1\}$ with $x_i x_{i+1} \cdots x_{i+n-1} = x_{\sigma(i)} x_{\sigma(i+1)} \cdots x_{\sigma(i+n-1)}$. Obviously, strong P_n -sequenceability implies strong P_{n+1} -sequenceability.

In the paper of Nielsen [N] it is shown that every finite group is strongly P_5 -sequenceable and it is conjectured that every finite group is strongly P_3 -sequenceable. Meanwhile P. Longobardi and M. Maj [LM] showed that every group is P_4 -sequenceable and that every countably infinite group is P_3 -sequenceable. The aim of this note is to supply a proof of Nielsen's conjecture.

Theorem. Every finite group G is strongly P_3 -sequenceable.

As in [N] we will build up our sequencing for G^* from subsequences obtained from a suitable partition of G^* .

First of all we collect all non-involutions of G^* in pairs $\{g,g^{-1}\}$. Next, if an involution x is a non-trivial power of some element in G, choose any such element, say g, and extend the set $\{g,g^{-1}\}$ by x. Observe that x is the unique involution of $\langle g \rangle$. Hence, if $\mathcal{I} = \{x \in G^* \mid x^2 = 1, x \neq g^k \text{ for all } g \in G \setminus \{x\}, k > 1\}$, we may partition the set $G^* \setminus \mathcal{I}$ into subsets X_i $(1 \leq i \leq n_1)$ with $|X_i| \in \{2,3\}$, such that [g,h] = 1 whenever $g,h \in X_i$. The crucial step in the proof of the theorem is to partition the involutions in \mathcal{I} . For this purpose, we distinguish between those involutions in \mathcal{I} which are weakly closed in their centralizer and those which are not. Hence let

$$\mathcal{I}_1 = \{x \in \mathcal{I} \mid C_G(x) \cap x^G \neq \{x\}\}, \qquad \mathcal{I}_2 = \mathcal{I} \setminus \mathcal{I}_1.$$

Lemma. \mathcal{I}_1 is the disjoint union of subsets Y_i $(1 \leq i \leq n_2)$ with $|Y_i| \in$ $\{2,3\}$, such that there exists $y_i \in Y_i$ with $[y_i,Y_i]=1$ for every $i \leq n_2$.

Proof. Obviously \mathcal{I}_1 is a union of conjugacy classes of G, and it suffices to find a partition of any such conjugacy class x^G according to the Lemma. Consider x^G as the set of vertices of a graph \mathcal{G} , where $y, z \in x^G$ are joined by an edge iff [y, z] = 1. (For the terminolog used in connection with graphs see any book on graph theory or combinatorics, e.g. [C].) As G acts transitively on the vertices of \mathcal{G} , \mathcal{G} is a regular graph of degree ≥ 1 . Hence the lemma follows from the following claim.

(*) A finite regular graph $\mathcal G$ of degree $d\geq 1$ with vertices $V=V(\mathcal G)$ and edges $E(\mathcal{G})$ admits a decomposition of the set of vertices $V = \bigcup_{i=1}^{l} Y_i$, such that $Y_i \in E(\mathcal{G})$ or Y_i is a set of order 3, $Y_i = \{x_i, y_i, z_i\}$, with $\{x_i, y_i\}, \{y_i, z_i\} \in E(\mathcal{G}) \ (1 \le i \le l).$

Proof of (*): Take a disjoint copy $\tilde{V} = {\tilde{v} \mid v \in V}$ of V and define a bipartite graph \mathcal{G}_b with $V(\mathcal{G}_b) = V \cup \tilde{V}$ and $E(\mathcal{G}_b) = \{\{v, \tilde{w}\} \mid \{v, w\} \in V\}$ $E(\mathcal{G})$. Obviously, \mathcal{G}_b is a regular bipartite graph of degree d and therefore, by a theorem of König [K], it possesses a complete matching M. But now the set of edges $\{\{v,w\} \mid \{v,\tilde{w}\} \in M\} \subseteq E(\mathcal{G})$ gives a decomposition of V into cycles in \mathcal{G} . (Here, a 2-cycle is simply an edge of \mathcal{G} .) Finally, any such cycle can be partitioned into paths of length two and three and the vertices of these paths form sets Y_i , as asserted in (*).

Proof of the theorem:

Case I $\mathcal{I}_2 = \emptyset$ We have $G^* = (\dot{\bigcup}_{i=1}^{n_1} X_i) \dot{\cup} (\dot{\bigcup}_{i=1}^{n_2} Y_i)$ and concatenating sequences for the Provided that the subsequence X_i 's and Y_i 's gives a sequencing s for G^* . Provided that the subsequence for any Y_i with $|Y_i| = 3$, say (x, y, z) is chosen in such an order that [x, y] =[y,z] = 1, every product of three consecutive elements of the resulting sequence s is easily seen to be rewritable.

case_II $\mathcal{I}_2 \neq \emptyset$

If $Z(G) \neq 1$, than G is easily seen to be strongly P_3 -sequenceable [N, Proposition 1]. Hence we may assume Z(G) = 1. Let O(G) denote the largest normal 2'-subgroup of G. We now employ Glauberman's Z^* -theorem [G1] to conclude that for every $x \in \mathcal{I}_2$ we have $xO(G) \in Z(G/O(G))$. As $x \in \mathcal{I}_2$ is not a non-trivial power of any element in G, we infer that $C_G(x)$ is a 2-group. In particular $C_G(x) \cap O(G) = 1$ and x acts fixed-point-freely on O(G). It follows that O(G) is abelian and x inverts every element of O(G)[Go, 10.1.4]. Hence $x^{O(G)} = xO(G)$ and $x^G = xO(G)$ as well.

As $|G| = |C_G(x)||x^G|$ we have $G = O(G)C_G(x)$. Now, $G/O(G) \cong C_G(x)$ acts faithfully on O(G): otherwise $1 \neq C_{C_G(x)}(O(G)) \cap Z(C_G(x))$ (as $C_G(x)$ is a 2-group) in contradiction to our assumption Z(G) = 1. If y is any element in \mathcal{I}_2 , then y inverts every element of O(G) as well, and we have $xy \in C_G(O(G)) \leq O(G)$, i.e. $y \in xO(G) = x^G$.

Hence $\mathcal{I}_2=x^{\overline{G}}$. Now consider any sequencing $s=(x_1,\ldots,x_m)$ for the elements of \mathcal{I}_2 . The product of any three consecutive elements of this sequence is an involution (element of xO(G)) and therefore rewritable: $x_ix_{i+1}x_{i+2}=x_{i+2}x_{i+1}x_i$. As $G^*=(\bigcup_{i=1}^{n_1}X_i)\cup(\bigcup_{i=1}^{n_2}Y_i)\cup\mathcal{I}_2$ we may get a sequencing for G^* by concatenating s with sequences for the X_i 's and Y_i 's. If the subsequences for the Y_i 's with $|Y_i|=3$ are chosen as in case I, then every product of three consecutive elements of the resulting sequence is rewritable if $x_0x_1x_2$ and $x_{m-1}x_mx_{m+1}$ are rewritable, where x_0 is the last element of the subsequence s^- preceeding s and x_{m+1} is the first element of the subsequence s^+ following s. As $x_1x_2, x_{m-1}x_m \in O(G)$ and O(G) is abelian, this can easily be accomplished if there are two sets $X_{i_1}, X_{i_2}(1 \leq i_1 < i_2 \leq n_1)$ with $X_{i_1} \cap O(G) \neq \emptyset \neq X_{i_2} \cap O(G)$. If there are no two such sets, |O(G)|=3. Now, the faithfull action of G/O(G) on O(G) forces G to be isomorphic to S_3 and $G^*=X_1\cup \mathcal{I}_2$ is strongly P_3 -sequenceable in this case as well.

REFERENCES

- [C] P.J.Cameron, Combinatorics, Cambridge Univ. Press, Cambridge, 1994.
- [G] G.Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420.
- [Go] D.Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [K] D.König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Mathematische Annalen 77 (1916), 453-465.
- [LM] P.Longobardi, M.Maj, Some remarks on P_n-sequenceable groups, Arch. Math. 60 (1993), 15-19.
- [N] J.Nielsen, Rewritable sequencings of groups, Ars Combinatoria 36 (1993), 207-214.

MARTIN-LUTHER-UNIVERSITÄT HALLE-WITTENBERG FACHBEREICH MATHEMATIK UND INFORMATIK INSTITUT FÜR ALGEBRA UND GEOMETRIE 06099 HALLE