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Abstract

The counting of partitions of a natural number, when they have to
safisfy certain restrictions, is done traditionally by using generating
functions. We develop a polynomial time algorithm for counting the
weighted ideals of partially ordered sets of dimension 2. This allows
the use of the same algorithm for counting partitions under all sorts
of different constraints. In contrast with this, the method is very
flexible, and can be used for an extremely large variety of different

partitions.

1 Introduction

The problem of counting partitions of a natural number n has received
a lot of attention, going back all the way to Euler [3]. A comprehensive
treatment can be found in Andrews [1]. Traditionally, counting various
types of partitions of n is done through the use of their generating functions.
For some special cases more efficient recursions have been found, exploiting
the relationship between different generating functions [2]. In this paper
we discuss a new, efficient method for counting partitions, which is based
on counting the ”ideals” of certain partial orders. This represents a very
flexible tool, and enables us to use the same program and algorithm for
counting an extremely large variety of different kinds of partitions.
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search Council of Canada under Grant No. OG0001798.
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Figure 1:

Ferrers diagrams are well known representations for the partitions of
numbers: If the natural number n is partitioned into n = gy + g2 +... + gx,
with g; > g2 > ... 2 gk > 0 integer, then the partition g = (g1, 92,-..,9k)
can be represented by a row of g, dots, followed by a row of g, dots,
and so on. For example, the partition (5,3,2) corresponds to the Ferrers
diagram shown in Figure 1. Since we will want to refer to specific dots in
a diagram, we embed it into the set Square (or Sq) = NxN, where N
= {0,1,2,...}, and will refer to the individual dots by their ”coordinates”,
using the horizontal coordinate as the first one. (The numbers shown in
Figure 1 represent the horizontal and vertical coordinates of the points,
respectively.) Define the partial ordering < on Sq by (a,d) < (c,d) if and
only if a < c and b < d as numbers. Thus (Sq, <) is a partially ordered
set (poset), where moving to the right or down means moving to greater
elements.

If (P,<p )is a poset then I C P is an order ideal (or ideal in short)
ifbe I and a <p b imply a € I. It can be easily seen that the Ferrers
diagrams are in a one-to-one correspondence with the ideals of the poset
(Sq,=<). A linear ezxtension of a poset (P,<p) is a linear (total) order
L with a <p b implying a < b for a,b € P. Every poset P can be
defined as the intersection of its linear extensions (as binary relations).
The minimum number of linear extensions defining P in this way is the
dimension of P, denoted by dimP. It is well known that dimP = k if and
only if P can be embedded into the k-dimensional Euclidean space R*, with
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a < bfor a,b € P exactly if a is less than or equal to b in every coordinate
in R*. Based on this, we clearly have dim(Sq, <) = 2.

We will be particularly interested in subsets of (Sq, <). The first family
of these subsets is Sq, = {(,7) € Sq, i +j < n — 1}. It follows from the
definition of dimension that if dimP = k and P’ is a subposet of P then
dimP' < k. Thus we have dimSq,, < 2 for every n, and the same is true
for any other subposet of Sq. A defining pair of linear extensions for Sq,,
is

Ly = (0,0),(1,0), .., (= 1,0), ..., (0,5), (1,4), ooy (R = 1 = 7, )., (0, — 1),
La = (0,0), (0, 1), .., 0,2 = 1), ..., (5,0, (4, 1), sy (72 = 1 = §), oo, (. — 1, 0).

Let us consider a poset P = ({v1,V2,...,9m}, <p), and define
a¢(P)=|{I:1IC Pideal, |I|=t}| fort=0,1,2,..,m.

The ideals of P form a lattice J(P), whose rank-generating function is
defined by f(P,z) = Y ;o a:(P)z* [6]. Since the Ferrers diagrams for
a given n correspond to the ideals of cardinality n of the poset (Sq,,, <),
counting the partitions of n is equivalent to obtaining the coefficient of z"
in the polynomial f(Sq,,z). In fact, the first n + 1 terms of f(Sq,,,z) are
identical to the the first n 4 1 terms of the well known generating function
for partitions, F(z) = [Joo, (1 —2*)~! .

2 Ideals in weighted 2-dimensional posets
and partitions

Let us assume now that each element vy in the poset P has a nonnegative
integer weight w(vi). For any subset (ideal) I C P define its weight by
w(l) = 3, c;w(vr), and define the weighted rank-generating function of
P by fu(P,x) = Y40 Y11=k z¥() | Note that if w(vi) = 1 for v € P,
then this definition reduces to that of the original rank-generating function
of P. Computing f,(P,z), or even f(P,z), is a difficult (#P-complete)
problem for general posets (5], and so it would require excessive computer
time for large posets.

Consider now a poset P with dimP = 2 and assume, without loss of
generality, that the elements of P have been numbered so that one of its
defining linear extensions is L, = vy, V2, ...,y . Define the principal ideals
of P by It = {v; : v; <p vx} and their "complements” by I, = {v; : i <
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k, v; £p v} for k = 1,2,...,m. The following theorem presents a recursion
for the weighted rank-generating function of 2-dimensional posets. This
will lead to a polynomial time computation of f,,(P,z) if dimP = 2.

Theorem 1 If P is a 2-dimensional poset with ground set {v,,va, ...,Um } and
Ly =wv,v9,...,v, is a defining linear extension for P, then

fu(Pz) =1+ fju +Y fulljz) 2] gon), (1)

k=1 jlk

where j||k is short notation for j < k and v; £p v , and

Crj={vi:vi € I, v; <p v;} for jllk, k=1,2,..,m.

Proof: Partition the set of ideals by their highest numbered element. If I
is an ideal with vy its highest numbered element, then the principal ideal I}
must be contained in I and I — I is an ideal in the subposet I;. Thus every
¢ element ideal I of P, with weight w(I), is in a one-to-one correspondence
with a g — |I;| element ideal of I, with weight w(I) — w([x). Therefore,

m
fuPz) =1+ fullx,z) 24, (2)
k:
Let
Crj = {vi : vi € Ix,i < j,v;i £p v;} for k= 1,2,...,m and j||k.
Apply (2) to the posets I to yield

full,@) =14 Y fu(Cj,z) £, (3)

ilik
The repeated application of recursion (2)— to the new ”complements” Ck;,
the new ”complements” within these and so on— would eventually yield
fw(P,z), but this is not an efficient procedure for general posets P. On
the other hand, we show that when dim P = 2, then each subposet C’kj is
identical to a complement set considered in the first application of recursion

).

We claim that dimP = 2 and j||k imply Cy; = I; : If v; € Cy;, then
it can be easily seen that v; € I;. Conversely, if v; € I;, then i < j and
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v; £p vj , i.e., vj <g, v; if Ly is the second defining linear extension for P.
Furthermore, j||k implies j < k and v; £p vk , i.e., v < L, Uj too, so that
U <r, ¥; also holds, implying v; € Ix, and therefore v; € Cy;.

Replacing f,,(Cyj,z) with f,(J;,z) in (3), and substituting into (2)
completes the proof. O

Corollary 2 There is an algorithm with O(m?) time and O(m?) space
complezity to compute f,,(P,z) for a 2-dimensional poset P on m elements.

Proof: We observe that, in the 2-dimensional case, to compute f, (I, z)
one needs only the previously computed functions f,,(I;,z) (for j||k) if the
summation in (1) is done in the order £ = 1,2,...,m. Thus, computing
fw(I—k,(B) for one k requires the addition of at most ¥k < m previously
computed polynomials of degree at most m, and so it needs at most O(m?)
time. We have to repeat this for k£ = 1,2,...,m, so the whole computation
of fu(P,z) can be done in O(m3) time. We need to store the coefficients
of at most m polynomials of degree at most m during this process, so the
claimed space complexity follows too. O

As an example, consider the posets 3Sq, = {(i,j) € Sq, i > j, i <
n — 1} with the following weights:

1 if i=j
w(i,j)=< 3 if (i +7) isodd
5 if i#j, (i+])iseven

Figure 2 shows Sq, with these weights and Table 1 shows the calcu-
lations for fw(-lz-Sq4,a:), which is the sum of the polynomials in the last
column plus 1.

Propp [4] has studied a variety of 2-dimensional posets in which the
ideals correspond to various restricted partitions, and identified the gen-
erating function for many of them. Recursion (1) represents a polynomial
time counting method for all of these cases. In addition to these, Theorem 1
gives us a powerful tool to count efficiently a very large variety of restricted
partitions, including many cases where the generating function may not be
known in the form of an identity. Here we mention only a few applications.

It can be easily seen that the coefficient of =™ in f,,(1Sqy,,z) counts
the number of partitions of 7 in which each part is equal to 1 or 4 (mod 8),
and each part is distinct.
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Figure 2: The weighted poset %Sq4

Propp [4] has defined the poset %Tilt, whose diagram corresponded
to partitions of n in which no part may occur more than twice. Let us
consider the poset 1Sq,,xk in which each row of the poset §Sq,, is repeated
k tlmw and each element has the same weights as before. It is clear that
dim 1Sq,xk =2 . Thus, 2Sq,,x.'s: allows us to count efficiently the Ferrers
dlagrams in generalizations of 1 3 Tilt where the number of repetitions is
limited by k instead of 2. Furthermore, the use of nonunit weights leads to
incorporating the additional restriction for the modularity of parts. Thus
the coefficient of z® in fu( 3Sq,xk,z) counts the partitions of n in which
each part is equal to 1 or 4 (mod 8), and no part may occur more than k
times.

Since every subset of a 2-dimensional poset is 2-dimensional again, we
can also count the Ferrers diagrams with arbitrery geometric boundaries.
For example, we can prescribe minimum and maximum values that each
part has to fall between. Our method could also be used for counting the
partitions (Ferrers diagrams) in all the problems mentioned as open by
Propp [4] at the end of his article, since omitting an arbitrary subset of
elements from a 2- dimensional poset does not increase its dimension. It
seems quite likely that the method could be useful for counting partitions
with many new types of restrictions too. Although it is possible to design
alternative recursive procedures for counting partitions with a certain fized
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(4,9) | k | w(ly) Iy Jw(lk,T) Jw(Ir, z)z¥Ux)

0,0 1] 1 ) 1 T

(1,0) | 2| 4 ¢ 1 !

(1,1)| 3| 5 ¢ 1 z®

(2,0) | 4 9 {va} l+z z% + 10

(2,1) | 5| 13 ) 1 z!3

(2,2)| 6 | 14 o 1 14

(3,00 | 7| 12 | {vs,vs5,06} | L +z+2*+2% | 2124 213 4 216 4 217

31| 8| 21 {ve} l+z ! + 22

3,2) 9| 25 ¢ 1 z?8

(3,3) | 10| 26 é 1 726
Table 1:

set of restrictions, each new set of constraints would require developing
a new recursion. A major advantage of our method is that, by simply
changing the input poset, the same algorithm can be used to count a large
variety of partitions with all sorts of different constraints.

In conclusion, we note that the rank-generating functions computed
above could be viewed as series of functions approximating the classical
generating function for the partitions studied. This is particularly inter-
esting for those cases where the generating function has no easy-to-handle
closed form, because our method represents an effective (polynomial time)
way to compute its power series representation up to the first n terms, for
any n. In fact, one could argue that finding the generating function in
this form, as opposed to an identity, is more useful for counting restricted
partitions.
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