Local connectivity and cycle extension in claw-free graphs R.J. Faudree Department of Mathematical Sciences Memphis State University Memphis, TN 38152 U.S.A. Zdeněk Ryjáček Department of Mathematics University of West Bohemia 30614 Pilsen Czech Republic Ingo Schiermeyer Lehrstuhl C für Mathematik Technische Hochschule Aachen D-52056 Aachen Germany ABSTRACT. Let G be a connected claw-free graph, M(G) the set of all vertices of G that have a connected neighborhood, and $\langle M(G) \rangle$ the induced subgraph of G on M(G). We prove that - (i) if M(G) dominates G and $\langle M(G) \rangle$ is connected, then G is vertex pancyclic orderable, - (ii) if M(G) dominates G, $\langle M(G) \rangle$ is connected, and $G \setminus M(G)$ is triangle-free, then G is fully 2-chord extendible, - (iii) if M(G) dominates G and the number of components of $\langle M(G) \rangle$ does not exceed the connectivity of G, then G is hamiltonian. ## 1 Introduction We consider only finite undirected graphs without loops and multiple edges. For terminology and notation not defined here we refer to [2]. We say that a graph G is *claw-free* if it does not contain a copy of the claw $K_{1,3}$ as an induced subgraph. For $S \subset V(G)$, we denote by N(S) the set of all vertices $x \in V(G) \setminus S$ having at least one neighbor in S and by $\langle S \rangle$ the induced subgraph on S. Let $M(G) = \{x \in V(G) | \langle N(x) \rangle$ is connected}. If M(G) = V(G) then we say that G is locally connected. A graph G is hamiltonian if it contains a cycle of length |V(G)|. If G contains cycles of all lengths ℓ for $3 \le \ell \le |V(G)|$, then we say that G is pancyclic, and G is vertex pancyclic if every vertex of G is contained in cycles of all lengths ℓ for $3 \le \ell \le |V(G)|$. We say that G has a pancyclic ordering if the vertices of G can be ordered such that, for any j, $3 \le j \le |V(G)|$, the graph induced by the first j vertices is hamiltonian. A graph G is vertex pancyclic orderable if for every $x \in V(G)$ there is a pancyclic ordering of V(G) such that x is the first vertex of the ordering. Clearly, every vertex pancyclic orderable graph is vertex pancyclic. An easy example of a vertex pancyclic claw-free graph that is not vertex pancyclic orderable can be obtained by joining two copies of a complete graph by a perfect matching. A cycle $C \subset G$ is extendable if there is a cycle $C' \subset G$ (called the extension of C) such that $V(C) \subset V(C')$ and |V(C')| = |V(C)| + 1. If every nonhamiltonian cycle $C \subset G$ is extendible, then G is said to be cycle extendible. We say that G is fully cycle extendable if G is cycle extendible and each of its vertices is on a triangle. If $C \subset G$ is a cycle, then every edge $xy \notin E(C)$ with $x,y \in V(C)$ is called a *chord* of C. A cycle $C' \subset G$ is a *k-chord extension* of a cycle $C \subset G$ (*k* being an integer) if C' is an extension of G and E(C') contains at most K chords of K, and K is K-chord extendable if every nonhamiltonian cycle of K has a K-chord extension. Finally, K is fully K-chord extendable if K is K-chord extendible and fully cycle extendible. Oberly and Sumner [6] proved that every connected locally connected claw-free graph with $|V(G)| \geq 3$ is hamiltonian. Clark [3] strengthened this result showing that, under the same conditions, G is vertex pancyclic and Hendry [5] observed that these assumptions imply that G is fully cycle extendible. Zhang [7] showed that if every vertex cut set of a claw-free graph G contains a vertex with a connected neighborhood, then G is pancyclic. Ainouche, Broersma and Veldman [1] observed that these assumptions imply that G is vertex pancyclic. In the present paper we proceed further with these considerations. Namely, we show that under the assumptions of [1], a claw-free graph G is vertex pancyclic orderable. We find conditions for G to be fully 2-chord extendible and we find weaker conditions than those in [1] which still imply hamiltonicity. ### 2 Results **Proposition 1.** Let G be a claw-free graph and $C \subset G$ a cycle. Suppose there is a vertex $v \in V(C)$ such that $N(v) \setminus V(C) \neq \emptyset$ and $\langle N(v) \rangle$ is connected. Then there is a cycle $C' \subset G$ such that $V(C') \subset V(C) \cup N(v)$ and C' is a 2-chord extension of C. **Proof:** Throughout the proof, whenever vertices of a claw are listed, its center is always the first vertex of the list. Let the cycle $C \subset G$ and the vertex $v \in V(C)$ satisfy the assumptions of Proposition 1 and suppose that there is no such cycle C'. For any fixed orientation of C and for any $u_1, u_2 \in V(C)$ denote by u_1Cu_2 the consecutive vertices on C from u_1 to u_2 in the direction specified by the orientation of C. The same vertices, in reverse order, will be denoted by $u_2 \subset U_1$. For any $u \in V(C)$ denote by u^- and u^+ the predecessor and successor of u on C, respectively. Choose a vertex $x \in N(v) \setminus V(C)$. As obviously $xv^- \notin E(G)$, $xv^+ \notin E(G)$, and $\langle v, x, v^+, v^- \rangle$ cannot be a claw, we have $v^-v^+ \in E(G)$. Since $\langle N(v) \rangle$ is connected, there is a path P in $\langle N(v) \rangle$ joining x to at least one of v^- , v^+ . Suppose that x and P are chosen such that P is shortest possible. Let the orientation of C be chosen such that P is an x, v^+ -path and let $x = x_0, x_1, \ldots, x_\ell = v^+$ be the vertices of P. Since P is a shortest path, necessarily $x_i x_j \notin E(G)$ for $|i-j| \geq 2$. Hence we have $\ell \leq 3$ (since otherwise $\langle v, x, x_2, x_4 \rangle$ is a claw). As $xv^+ \notin E(G)$, we have $2 \leq \ell \leq 3$. By the choice of x and P, $x_i \in V(C)$ for $1 \leq i \leq \ell$. Since obviously $xx_1^- \notin E(G)$ and $xx_1^+ \notin E(G)$, from $\langle x_1, x_1^-, x_1^+, x_2 \rangle$ we have $x_1^-x_1^+ \in E(G)$. Suppose first that $\ell=2$. If x_1 and v^+ are consecutive on C, then the cycle $xx_1Cv^-v^+vx$ is a 1-chord extension of C. Thus $x_1^- \neq v^+$, but then the cycle $xx_1v^+Cx_1^-x_1^+Cvx$ is a 2-chord extension of C. Hence we have $\ell=3$. We consider $\langle v, x, x_2, v^- \rangle$. Obviously $xv^- \notin E(G)$ and since, by the choice of P, also $xx_2 \notin E(G)$, we have $x_2v^- \in E(G)$. Thus, by symmetry, we can assume without loss of generality that $x_2 \in v^+Cx_1^-$. Since $xx_1^+ \notin E(G)$ and $xx_2 \notin E(G)$, from $\langle x_1, x, x_2, x_1^+ \rangle$ we have $x_2x_1^+ \in E(G)$. We show that x_2 cannot be consecutive on C with any of x_1, x_1^- and v^+ . Indeed, if x_2 and x_1 are consecutive on C (i.e., $x_2 = x_1^-$), then the cycle $xvCx_2v^- \overleftarrow{C}x_1x$ is a 1-chord extension of C, if x_2 and x_1^- are consecutive on C (i.e., $x_2^+ = x_1^-$), then the cycle $xvCx_2v^- \overleftarrow{C}x_1^+x_1^-x_1x$ is a 2-chord extension of C and if x_2 and v^+ are consecutive on C (i.e., $x_2^- = v^+$), then the cycle $xvv^+v^- \overleftarrow{C}x_1^+x_2^-Cx_1x$ is a 2-chord extension of C. We now consider $\langle x_2, x_2^+, x_1^+, v^+ \rangle$. Obviously $x_1^+v^+ \notin E(G)$ (otherwise $xv\overline{C} x_1^+v^+Cx_1x$ is a 1-chord extension of C). If $x_2^+v^+ \in E(G)$, then the cycle $xx_1\overline{C} x_2^+v^+Cx_2x_1^+Cvx$ is a 2-chord extension of C and if $x_2^+x_1^+ \in E(G)$, then the cycle $xvCx_2v^{-}Cx_1^+x_2^+Cx_1x$ is a 2-chord extension of C. Hence $\langle x_2, x_2^+, x_1^+, v^+ \rangle$ is an induced claw. This contradiction proves Proposition 1. An immediate consequence of Proposition 1 is the following corollary. Corollary 2. Let G be a claw-free graph, $C \subset G$ a cycle, and $v \in V(C)$ a vertex of C such that $N(v) \setminus V(C) \neq \emptyset$ and $\langle N(v) \rangle$ is connected. Then, there is a sequence of cycles C_1, \ldots, C_t such that $C_1 = C, C_{i+1}$ is a 2-chord extension of C_i , $1 \leq i \leq t-1$, and $V(C_t) = V(C) \cup N(v)$. **Theorem 3.** Let G be a claw-free graph on $n \ge 3$ vertices and put $M(G) = \{x \in V(G) | \langle N(x) \rangle \text{ is connected} \}.$ - (i) If M(G) is a dominating set of G and $\langle M(G) \rangle$ is connected, then G is vertex pancyclic orderable. - (ii) If, moreover, G \ M(G) is triangle-free, then G is fully 2-chord extendible. ### **Proof:** (i) Let $x \in V(G)$ and suppose first that x has degree 1 in G. Let y be the neighbor of x. Then $x \in M(G)$ and, as $|V(G)| \ge 3$, $y \notin M(G)$. Since M(G) is dominating, there is $z \in M(G)$, $z \ne x$. But then every x, z-path in G contains y which contradicts the fact that $\langle M(G) \rangle$ is connected. Hence, we have $\delta(G) \ge 2$. Consequently, every $x \in M(G)$ is on a triangle. Let now $x \notin M(G)$. Since M(G) is dominating, there is $y \in M(G)$ such that $xy \in E(G)$. Since $\delta(G) \geq 2$, there is $z \in V(G)$ such that $z \neq x$ and $\{x, z\} \subset N(y)$. As $\langle N(y) \rangle$ is connected, there is a triangle containing both x and y. Thus, for every $x \in V(G)$ there is a triangle $C \subset G$ such that $x \in V(G)$ and $V(C) \cap M(G) \neq \emptyset$. The rest of the proof follows immediately from Corollary 2. (ii) It remains to prove that every nonhamiltonian cycle $C \subset G$ is 2-chord extendible. If $V(C) \cap M(G) \neq \emptyset$, then C is 2-chord extendible by Corollary 2. Thus suppose that $V(C) \subset V(G) \setminus M(G)$. Let $x \in V(C)$. Denote by x', x'' the vertices consecutive to x on C and choose a vertex $y \in M(G)$ such that $xy \in E(G)$ (which exists since M(G) is dominating). Consider $\langle x, x', x'', y \rangle$. Since $G \setminus M(G)$ is triangle-free, we have $x'x'' \notin E(G)$. This implies that $yx' \in E(G)$ or $yx'' \in E(G)$, but in both of these cases we obtain a cycle C' which is a 0-chord extension of C. ## Remarks: - 1. It is easy to observe that G satisfies the assumptions of Theorem 3(i) if and only if every cutset of G contains a vertex $x \in M(G)$. Indeed, if there is a cutset S with $S \cap M(G) = \emptyset$, then either $\langle M(G) \rangle$ is disconnected or M(G) is not dominating; conversely, if $x \notin M(G)$ and $N(x) \cap M(G) = \emptyset$, then N(x) is a cutset and if M_1 is one of the components of $\langle M(G) \rangle$, then also $N(V(M_1))$ is a cutset with $N(V(M_1)) \cap M(G) = \emptyset$. Thus, the assumptions of Theorem 3(i) are equivalent to those of [7] and [1], but they are easier to verify. - Moreover, from the proof of Theorem 3(i) we easily see that, under the same assumptions, for each $x \in V(G)$, G has a pancyclic ordering such that x is the first vertex and every extension is a 2-chord extension. - 2. Let $k \geq 3$ be an integer and let G be a graph on n = 3k vertices which is obtained by joining every vertex of a copy of K_k to two different vertices of a copy of K_{2k} , where the pairs in the copy of K_{2k} are chosen to be disjoint. Then G is vertex pancyclic orderable but is not fully cycle extendible since every cycle of length k in the copy of K_k is nonextendable. Thus, the assumption that $G \setminus M(G)$ is triangle-free is essential in Theorem 3(ii). In the case when $\langle M(G) \rangle$ is disconnected we can prove the following. **Theorem 4.** Let G be a claw-free graph of connectivity $\kappa(G) \geq 2$ and $M(G) = \{x \in V(G) | \langle N(x) \rangle \text{ is connected} \}$. Suppose that M(G) is a dominating set of G and $\langle M(G) \rangle$ has r components. If $r \leq \kappa(G)$, then G is hamiltonian. **Proof:** Let H_1, \ldots, H_r be the components of $\langle M(G) \rangle$ and for every i, $1 \leq i \leq r$, choose a vertex $a_i \in V(H_i)$. We use the following theorem by Dirac (see, e.g. [4]). **Theorem.** If G is a graph of connectivity $\kappa(G) \geq 2$ and $\{x_1, \ldots, x_k\} \subset V(G)$ is a set of $k \leq \kappa(G)$ vertices, then there is a cycle $C \subset V(G)$ such that $\{x_1, \ldots, x_k\} \subset V(C)$. By this theorem, there is a cycle $C \subset G$ containing all vertices a_1, \ldots, a_r . By Corollary 2, C can be extended to a hamiltonian cycle of G. #### Remarks: 1. Let H_1 , H_2 , H_3 be locally connected claw-free graphs on at least 3 vertices and $a_i, b_i \in V(H_i)$ such that $\langle N(a_i) \rangle$ and $\langle N(b_i) \rangle$ are complete graphs (i=1,2,3). Construct a graph G by adding the edges $a_i a_j$ and $b_i b_j$ for i,j=1,2,3, $i \neq j$. Then G is a claw-free graph with connectivity $\kappa(G)=2$, M(G) is dominating, $\langle M(G) \rangle$ has 3 components, and G is not hamiltonian. 2. The graph in Figure 1 shows that the assumptions of Theorem 4 do not imply pancyclicity. Figure 1 #### References - [1] A. Ainouche, H.J. Broersma, H.J. Veldman, Remarks on hamiltonian properties of claw-free graphs, *Ars Combinatoria* 29C (1990), 110-121. - [2] J.A. Bondy, U.S.R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976. - [3] L. Clark, Hamiltonian properties of connected locally connected graphs, Congr. Numer. 32 (1981), 199-204. - [4] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, *Math. Nachrichten* **22** (1960), 61–85. - [5] G.R.T. Hendry, Extending cycles in graphs, *Discrete Mathematics* 85 (1990), 59-72. - [6] D.J. Oberly, D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is hamiltonian, J. Graph Theory 3 (1979), 351-356. - [7] C.Q. Zhang, Cycles of give length in some $K_{1,3}$ -free graphs, Discrete Mathematics 78 (1989), 307-371.