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ABSTRACT. Let G be a connected claw-free graph, M(G) the
set of all vertices of G that have a connected neighborhood, and
{(M(G)) the induced subgraph of G on M(G). We prove that

(i) if M(G) dominates G and {M(G)) is connected, then G
is vertex pancyclic orderable,

(ii) if M(G) dominates G, (M(G)) is connected, and G \
M(G) is triangle-free, then G is fully 2-chord extendible,

(iii) if M(G) dominates G and the number of components
of {M(G)) does not exceed the connectivity of G, then G is
hamiltonian.

1 Introduction

We consider only finite undirected graphs without loops and multiple edges.
For terminology and notation not defined here we refer to [2]. We say that
a graph G is claw-free if it does not contain a copy of the claw K; 3 as
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an induced subgraph. For § C V(G), we denote by N(S) the set of all
vertices z € V(G) \ S having at least one neighbor in S and by (S) the
induced subgraph on S. Let M(G) = {z € V(G)|{N(z)) is connected}. If
M(G) = V(G) then we say that G is locally connected.

A graph G is hamiltonian if it contains a cycle of length |V(G)|. If G
contains cycles of all lengths £ for 3 < ¢ < |V(G)|, then we say that G is
pancyclic, and G is vertez pancyclic if every vertex of G is contained in cycles
of all lengths ¢ for 3 < £ < [V(G)|. We say that G has a pancyclic ordering
if the vertices of G can be ordered such that, for any 3, 3 < j < |V(G)|, the
graph induced by the first j vertices is hamiltonian. A graph G is vertez
pancyclic orderable if for every z € V(G) there is a pancyclic ordering of
V(G) such that z is the first vertex of the ordering.

Clearly, every vertex pancyclic orderable graph is vertex pancyclic. An
easy example of a vertex pancyclic claw-free graph that is not vertex pan-
cyclic orderable can be obtained by joining two copies of a complete graph
by a perfect matching.

A cycle C C G is extendable if there is a cycle C' C G (called the
extension of C) such that V(C) c V(C') and |V(C')| = |V(C)| + 1. If
every nonhamiltonian cycle C C G is extendible, then G is said to be cycle
extendible. We say that G is fully cycle extendable if G is cycle extendible
and each of its vertices is on a triangle.

If C C G is a cycle, then every edge zy ¢ E(C) with z,y € V(C) is
called a chord of C. A cycle C’ C G is a k-chord extensionof a cycle C C G
(k being an integer) if C' is an extension of G and E(C”) contains at most
k chords of C, and G is k-chord extendable if every nonhamiltonian cycle
of G has a k-chord extension. Finally, G is fully k-chord extendable if G is
k-chord extendible and fully cycle extendible.

Oberly and Sumner [6] proved that every connected locally connected
claw-free graph with |V(G)| > 3 is hamiltonian. Clark [3] strengthened
this result showing that, under the same conditions, G is vertex pancyclic
and Hendry [5] observed that these assumptions imply that G is fully cycle
extendible. Zhang [7] showed that if every vertex cut set of a claw-free graph
G contains a vertex with a connected neighborhood, then G is pancyclic.
Ainouche, Broersma and Veldman [1] observed that these assumptions im-
ply that G is vertex pancyclic. In the present paper we proceed further
with these considerations. Namely, we show that under the assumptions of
(1], a claw-free graph G is vertex pancyclic orderable. We find conditions
for G to be fully 2-chord extendible and we find weaker conditions than
those in [1] which still imply hamiltonicity.
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2 Results

Proposition 1. Let G be a claw-free graph and C C G a cycle. Suppose
there is a vertex v € V(C) such that N(v) \ V(C) # 0 and (N(v)) is
connected. Then there is a cycle C' C G such that V(C’) Cc V(C)U N(v)
and C’ is a 2-chord extension of C.

Proof: Throughout the proof, whenever vertices of a claw are listed, its
center is always the first vertex of the list. Let the cycle C C G and the
vertex v € V(C) satisfy the assumptions of Proposition 1 and suppose
that there is no such cycle C’. For any fixed orientation of C' and for any
uy,up € V(C) denote by u;Cus the consecutive vertices on C from u; to
ug in the direction specified by the orlentatlon of C. The same vertices, in
reverse order, will be denoted by us Cu1 For any u € V(C) denote by u~
and ut the predecessor and successor of u on C, respectively.

Choose a vertex £ € N(v) \ V(C). As obviously zv~ ¢ E(G), zvt ¢
E(G), and (v,z,v%,v™) cannot be a claw, we have v~ vt € E(G). Since
(N(v)) is connected, there is a path P in (N (v)) joining z to at least one of
v~, vt. Suppose that z and P are chosen such that P is shortest possible.
Let the orientation of C be chosen such that P is an z,vt-path and let
T = %9,%1,...,T¢ = v be the vertices of P. Since P is a shortest path,
necessarily z;z; ¢ FE(G) for |i—j| > 2. Hence we have ¢ < 3 (since otherwise
(v,z,x9,24) is & claw). As zvt ¢ E(G), we have 2 < £ < 3. By the choice
of x and P, z; € V(C) for 1 < i < £. Since obv10usly zz] ¢ E(G) and
zz§ ¢ E(G), from {z;,z7,z},z) we have z7z} € E(G).

Suppose first that £ = 2. If z; and v* are consecutive on C, then the
cycle zz;Cv~vtwvz is a 1-chord extension of C. Thus z] # v*, but then
the cycle zz vt Cz]z{ Cuz is a 2-chord extension of C. Hence we have
£=3.

We consider (v,z,z2,v~). Obviously zv~ ¢ E(G) and since, by the
choice of P, also zz2 ¢ E(G), we have z2v~ € E(G). Thus, by symmetry,
we can assume without loss of generality that z3 € v*Czy .

Since zz} ¢ E(G) and zz, ¢ E(G), from (z;,z,z3,z}) we have z2z] €
E(G). We show that z3 cannot be consecutive on C with any of z;, z] and
vt. Indeed if zo and z, are consecutive on C (i.e., z; = z7 ), then the cycle

zvCzov™ Ca:lx is a 1-chord extension of C, if 3 8 and z] are consecutive

on C (ie., § = z7), then the cycle zvCzov™ T zfz z 1z is a 2-chord
extension of C and if z, and v* are consecutive on C (i.e., z; = vt), then

the cycle zvv+v’5z1 z2Czx is a 2-chord extension of C.

We now consider (z2,z3,z},v%). Obviously zfv+ ¢ E(G) (otherwise
zwC 220 Tu*tCzyz is a 1-chord extension of C). If 3 v"' € E(G) then the cy-
cle zx; c z3 v+C:z:2:c Cuz is a 2-chord extension of C and if 3 :cl € E(G),
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then the cycle xvigv“az"a:‘*'Czlx is a 2-chord extension of C. Hence
Y 1%2

(z2,z3,z},vt) is an induced claw. This contradiction proves Proposition

1. O

An immediate consequence of Proposition 1 is the following corollary.

Corollary 2. Let G be a claw-free graph, C C G a cycle, and v € V(C)
a vertex of C such that N(v)\ V(C) # 0 and (N(v)) is connected. Then,
there is a sequence of cycles C4,. .., C, such that Cy = C, C;4, is a 2-chord
extension of C;,;1 <i<t-1, and V(C;) =V (C)U N(v).

Theorem 3. Let G be a claw-free graph on n > 3 vertices and put M(G) =
{z € V(G)|(N(z)) is connected}.

(i) If M(G) is a dominating set of G and (M(G)) is connected, then G
is vertex pancyclic orderable.

(ii) If, moreover, G \ M(G) is triangle-free, then G is fully 2-chord ex-
tendible.

Proof:

(i) Let z € V(G) and suppose first that z has degree 1 in G. Let y be
the neighbor of x. Then z € M(G) and, as |[V(G)| > 3, y ¢ M(G).
Since M(G) is dominating, there is z € M(G), z # z. But then every
z,z-path in G contains y which contradicts the fact that (M(G)) is
connected. Hence, we have §(G) > 2. Consequently, every z € M(G)
is on a triangle.

Let now z ¢ M(G). Since M(G) is dominating, there is y € M(G)
such that zy € E(G). Since §(G) > 2, there is z € V(G) such that
z# z and {z,z} C N(y). As (N(y)) is connected, there is a triangle
containing both z and y.

Thus, for every z € V(G) there is a triangle C C G such that
z € V(G) and V(C) N M(G) # 0. The rest of the proof follows
immediately from Corollary 2.

(ii) It remains to prove that every nonhamiltonian cycle C C G is 2-chord
extendible. If V(C) N M(G) # 9, then C is 2-chord extendible by
Corollary 2. Thus suppose that V(C) C V(G)\M(G). Let z € V(C).
Denote by z/, =’ the vertices consecutive to  on C and choose a
vertex y € M(G) such that xy € E(G) (which exists since M(G) is
dominating). Consider (z,z’,z”,y). Since G \ M(G) is triangle-free,
we have z'z” ¢ E(G). This implies that yz’ € E(G) or yz” € E(G),
but in both of these cases we obtain a cycle C’ which is a 0-chord
extension of C. (]
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Remarks:

1. It is easy to observe that G satisfies the assumptions of Theorem 3(i)
if and only if every cutset of G contains a vertex z € M(G). Indeed,
if there is a cutset S with S N M(G) = 0, then either (M(G)) is
disconnected or M(G) is not dominating; conversely, if = ¢ M(G)
and N(z) N M(G) = @, then N(z) is a cutset and if M, is one of
the components of (M(G)), then also N(V(M,)) is a cutset with
N(V(M;)) N M(G) = 0. Thus, the assumptions of Theorem 3(i) are
equivalent to those of [7] and [1], but they are easier to verify.

Moreover, from the proof of Theorem 3(i) we easily see that, under the
same assumptions, for each £ € V(G), G has a pancyclic ordering such
that z is the first vertex and every extension is a 2-chord extension.

2. Let k > 3 be an integer and let G be a graph on n = 3k vertices which
is obtained by joining every vertex of a copy of K to two different
vertices of a copy of Ksi, where the pairs in the copy of Ky are
chosen to be disjoint. Then G is vertex pancyclic orderable but is not
fully cycle extendible since every cycle of length k in the copy of K is
nonextendable. Thus, the assumption that G \ M(G) is triangle-free
is essential in Theorem 3(ii).

In the case when (M(G)) is disconnected we can prove the following.

Theorem 4. Let G be a claw-free graph of connectivity x(G) > 2 and
M(G) = {z € V(G)|(N(z)) is connected}. Suppose that M(G) is a dom-
inating set of G and (M(G)) has r components. If r < k(G), then G is
hamiltonian.

Proof: Let Hi,...,H, be the components of (M(G)) and for every i,
1 < i < r, choose a vertex a; € V(H;). We use the following theorem by
Dirac (see, e.g. [4]).

Theorem. If G is a graph of connectivity x(G) > 2 and {z,,...,zx} C
V(G) is a set of k < &(G) vertices, then there is a cycle C C V(G) such
that {zi,...,zx} C V(C).

By this theorem, there is a cycle C C G containing all vertices ay, ..., a,.
By Corollary 2, C can be extended to a hamiltonian cycle of G. m]

Remarks:

1. Let H,, Ha, Hj be locally connected claw-free graphs on at least 3
vertices and a;,b; € V(H;) such that (N(a;)) and (N(b;)) are com-
plete graphs (i = 1,2,3). Construct a graph G by adding the edges
a;a; and byb; for i,5 = 1,2,3, i # j. Then G is a claw-free graph with
connectivity x(G) = 2, M(G) is dominating, {M(G)) has 3 compo-
nents, and G is not hamiltonian.
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2. The graph in Figure 1 shows that the assumptions of Theorem 4 do
not imply pancyclicity.

Figure 1
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