On Distance Two Labellings of Graphs

Daphne D.-F. Liu*

Department of Mathematics and Computer Science
California State University
Los Angeles, USA
email: dliu@calstatela.edu

Roger K. Yeh!

Department of Applied Mathematics
Feng Chia University
Taiwan
email: rkyeh@math.fcu.edu.tw

ABSTRACT. A distance two labelling (or coloring) is a vertex
labelling with constraints on vertices within distance two, while
the regular vertex coloring only has constraints on adjacent
vertices (i.e. distance one). In this article, we consider three
different types of distance two labellings. For each type, the
minimum span which is the minimum range of colors used, will
be explored. Upper and lower bounds are obtained. Graphs
that attain those bounds will be demonstrated. The relations
among the minimum spans of these three types are studied.

1 Introduction

Distance two labellings arose from the channel assignment problem (also
known as T-colorings) in which channels are assigned to a number of lo-
cations while the interference among close locations is avoided (cf. [3] [7]
(8] [9]). Here, we consider the assignments that also avoid the interference
among second-close (distance two) locations. A distance two labelling is a
vertex labelling (using nonnegative integers) with constraints on the ver-
tices within distance two. The distance between two vertices z and y in a
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graph G, denoted by dg(z,y), is defined by the length of a shortest path
from z to y in G. Therefore, z and y have distance two (i.e. dg(z,y) =2)
if £ and y are not adjacent, and there is a path £ —u—y for some vertex u in
G. Given two positive integers m and n, m > n, a distance two labelling,
namely L(m,n)-labelling, of a simple graph G = (V,E) is a function f
defined on the vertex set of G, f: V — Z+ U {0} such that

|f(u) = f(v)| = m whenever {u,v} € E(G),
and
|f(u) — f(v)| > n whenever dg(u,v) = 2.

A consecutive L(m,n)-labelling is an L(m, n)-labelling such that the colors
used are consecutive. Three types of distance two labellings to be consid-
ered in this article are L(1,1)-labelling, L(2, 1)-labelling, and consecutive
(no-hole) L(2,1)-labelling. Griggs and Yeh [4] first studied the L(2d, d)-
labelling for any d > 0. They proved this labelling can be reduced to
L(2,1)-labellings. Sakai [10] obtained some results for consecutive L(2,1)-
labelling.

Since we are interested in the efficient use of colors, we define the span
of a labelling f (also called the labelling number) as the difference of the
largest and smallest colors used. The L(m,n)-number of G is the smallest
number k such that G has an L(m, n)-labelling with no label greater than k.
Note that the L(m, n)-number is also the minimum span among all possible
L(m,n)-labellings of G. The L(1,1)-number is denoted by Ag(G) or simply
Ao when G is understood, and the L(2,1)-number is denoted by A. The
consecutive L(m,n)-number of G is the minimum span among all possible
consecutive L(m,n)-labellings of G if there exists one. If G does not have
any consecutive L(m,n)-labelling, then the number is co. The consecutive
L(2,1)-number of G is denoted by A(G).

Section 2 will focus on the L(1, 1)-labelling and the number Ao(G). Bounds
on A(G) in terms of A(G), which is the maximum degree of G, are ob-
tained. The exact values of )\ for trees and cycles are demonstrated. Sec-
tion 3 will study the relationships between Ao(G) and A(G). We will show
that for any graph G, Ao < A < 2)\¢. Furthermore, graphs that attain
both equalities will be shown separately. Section 4 studies the consecu-
tive L(2, 1)-labelling. The condition for the existence of such a labelling is
obtained by using the Hamilton paths. The relations between these three
numbers A9, A\; and \; will be explored. Especially, diameter two graphs
and n-cube graphs will be focused on.

2 L(1,1)-labelling and Xg

Given a graph G, it is not hard to learn the existence of a L(1, 1)-labelling of
G by labelling each vertex by a different color. We are interested in finding
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the minimum span in an L(1, 1)-labelling, that is the L(1, 1)-number Aq.
This section will first show the lower and upper bounds of A\g in terms of A,
the maximum degree of G. Then the exact values of Ay for cycles and trees
will be demonstrated. Denote K, the complete graph (also called a cligue)
with = vertices. It easily follows that Ao(Ky) = n — 1. If G is a diameter
two graph (i.e. any pair of vertices have distance less than or equal to 2),
then X\p(G) = |V(G)| — 1 since every two vertices are within distance two,
they must receive different labels, and we can label all the vertices from 0
through |V(G)| - 1.

Given a graph G, construct a new graph G2 from G by adding new edges
{u, v} if » and v are not adjacent, but have distance two in G. That is,

V(G?) = V(G), E(G?) = E(G)U E', where E' = {{u,v}: da(u,v) = 2}.

Denote x(G) the chromatic number of G which is the minimum number
of colors used in a proper-coloring (adjacent vertices receive different colors)
of G. One can learn that any vertex-coloring f is a proper coloring of G2
if and only if f is an L(1,1)-labelling of G. Therefore, Ao(G) = x(G?) — 1.
We have the difference 1 here because the chromatic number deals with
the “number” of colors used, while the L(1,1)-labelling number deals with
the “span” (range of the colors used.) Before showing the bounds on g,
we need to quote the Brooks’ theorem on the chromatic number and the
maximum degree.

Brooks’ Theorem. [1, pp. 118 and 122]. If G is simple and has maximum
degree A, then x(G) < A + 1. Furthermore, if G is not an odd cycle or a
complete graph, then x(G) < A.

Theorem 2.1. For any connected graph G with maximum degree A,
A <) <A

Proof: Suppose v € V(G) has degree A, then any two vertices adjacent to
v have distance two, so they need different colors. Since v is adjacent to all
these vertices, v requires another color. Therefore, A < A\o(G).

By the construction of G2, the maximum degree of G? is less than or
equals to A2, According to the Brooks’ theorem, x(G2) < A% 4+ 1. There-
fore, Xo(G) < A2 m]

Notice that the upper bound in the theorem above is attainable. For
example, the Petersen graph drawn in Figure 1 has A = 3, G2 = Ko, so
20(G) =x(G?) =9 =A%

It can be verified that for any G containing P», a path with 3 vertices,
G? must contain K3. Hence, if G is neither P, nor K3, then G2 is not an
odd cycle. (Note for these degenerate cases that A\o(P2) =2 < A2 —1 and
Ao(K3) =2 < A? —1.) Thus we have the following result.

Theorem 2.2. If G is not a diameter two graph, then Ao(G) < A% —1.
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Proof: Since the diameter of G is not two, G? is not a complete graph.
By the discussion above, G2 is not an odd cycle. According to Brooks’
theorem, A\o(G) = x(G?) -1 < AZ - 1. m]

With the following two results, we show the exact values of Ay for cycles
and trees correspondingly. For a < b, denote [a,b] as the set of integers
{a,a+1,a+2,...,b}.

Theorem 2.8. Let C,, be a cycle of length n, n > 3. Then
2, ifn=0 (mod 3)
)‘O(Cn)= 4, ifn=5
3, otherwise.

Proof: Suppose V(Cy) = {v1,v2,...,vsn}, we consider the following three
cases:
(1) n=0 (mod 3).
Define f on V(G) as follows:

0, ifi=1 (mod 3)
flvi)=4(1, ifi=2 (mod 3)
2 ifi=3 (mod 3).

It is easy to learn that f is an L(1,1)-labelling, hence \o(C) < 2.
By definitions, for any n, n > 3, we must use at least 2 colors to label
V(Cy). Thus M(Cy) =2.

(2) n=1 (mod 3).
Define f as follows:

, ifi=1

ifi=2 (mod 3)

, ifi=0 (mod 3)

2, ifi=1 (mod 3),: > 1.

flw) =

- o W

It is not difficult to verify that f is an L(1, 1)-labelling, so X(Cr) = 3.
(3) n=2 (mod 3).
If n = 5 then obviously X\p(Cy) = 4. Suppose n > 5, define f as
follows.
ifi=1,4
ifi=2o0ri=0 (mod 3) but i # 3
ifi=3o0ri=1 (mod 3) but i # 1,4
if i =2 (mod 3) but 7 # 2.

-

flw) =

-

N = WO

-
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By a similar argument as in (2), we have A\o(Cy,) = 3. o
Theorem 2.4. Let T be a tree with maximum degree A. Then Ao(T) = A.

Proof: By Theorem 2.1, Ao(T") > A. Next we obtain the upper bound by a
first-fit (greedy) labelling. First, order V(T') so that V(T') = {v1,v2,...,v,.},
where, for all ¢ > 1, v; is attached just once to {v,vs,...,v;—1}. This can
be done since T is a tree. Now we describe an L(1,1)-labelling of T: la-
bel v; as 0; then successively label v, vs, ..., v, by the smallest available
number in [0, A]. Since each v;, 2 < i < n, is adjacent to only one v, J <1t
and is distance two away from at most A — 1 v;’s with j < 4, there are at
most A labels that cannot be used for ;. Hence at least one label in [0, A]
is available to v; when its turn comes to be labeled. Thus the labelling
number is at most A, and the theorem follows. (]

3 Relations between )\ and A

In the previous section, we learned the bounds of Xo(G) in terms of A(G).
This section will first demonstrate upper and lower bounds of A(G) in terms
of Ao(G). We will show for any graph G,

Ao <A< 2.

Two classes of graphs that attain the lower bounds are discovered. With
regard to d-regular graphs (all vertices have the same degree d), a family of
graphs that attain the upper bound will be demonstrated.

Theorem 3.1. For any graph G, A\ < A < 2)o.

Proof: According to the definition, an L(2, 1)-labelling is also an L(1,1)-
labelling for the same graph G, thus Ao(G) < A(G).

To show the upper bound of A(G), let f be an L(1,1)-labelling of G.
Define g = 2f, i.e, g(v) = 2f(v) for any v € G. Define |f(G)| =
max{f(v): v € V(G)}. Hence ||g(G)]| = 2l £(G)]

We claim that g is an L(2, 1)-labelling of G. Since f is an L(1, 1)-labelling,
if {u,v} € E(G), then |g(u) — g(v)| = |2f () - 2f(v)| = 2|f (u) — f()| > 2.
Suppose dg(u,v) = 2, then |g(u) — g(v)| = 2|(u) — f(v)| >2>1. Thusg
is an L(2, 1)-labelling. Therefore A < [|g(G)|| = 2||f(G)||- Since this is true
for any L(1,1)-labelling, X < 2. (]

With the following two theorems, we show classes of graphs G such that
A0(G) = M\(G). A graph G is an incidence graph of a projective plane II(n)
of order n, if G = (4, B, E) is a bipartite graph such that

1. |A|=|B|=n?*+n+1,

2. each a € A corresponds to a point p, in II(n) and each b € B corre-
sponds to a line ¢ in II(n), and

17



3. E={{a,b}: a € A,b€ B such that p, € & in II(n)}.

By the definition of II(n), we know that such G is (n + 1)-regular, for
every z,y € A, dg(z,y) = 2, and for every u,v € B, dg(u,v) = 2. Also, if
a € A, b € B such that a is not adjacent to b, then dg(a, b) = 3. Therefore,
we have the following result.

Theorem 3.2. If G is an incidence graph of a protective plane of order n,
then A(G) = Xo(G) = n? +n = A? — A, where A = n + 1 the maximum
degree of G.

Proof: Let G = (A, B, E), by Theorem 8.1 in [4], A(G) = n? + n. Hence
it is sufficient to show that A\o(G) = n? + n.

Let A = {ao,a1,...,ac}and B = {bo,by,...,b:} where t = n% + n. Since
|A| = t+1 and dg(as, ;) = 2, for every a;, a; in A, for any L(1,1)-labelling
f of G, we have ||(A)|| > t. Thus A(G) > ¢.

Define a labelling f by f(a;) = 1, for every a; in A, i =0,1,...,t. Let
G’ = K11.441\ G, t.e., a; and b; are adjacent in G if and only if a; and
b; are not adjacent in G’. Since G is A-regular, G’ is (t — A)-regular.
Therefore there is a matching M in G’ by Hall’s theorem.

Let b; be adjacent to m(b;), ¢ = 0,...,t, in M where {m(b;): i =

ot} = {ai: 1 =0,...,t}. Define f(b;) = f(m(b;)), for each i. Since
m(b;) is adjacent to b; in G’, m(b;) is not adjacent to b; in G, for each i, so
we have just used {0,1,2,...,t} to label the graph G. Therefore ||(G)|| = t
This implies Ao(G) < t. The result then follows.

Next we define another class of graphs from projective planes as well.
Denoting a Galois plane (over the coordinate field GF(n)) by PGa(n) (cf.
[2][6]), we construct a class of graphs H by the following: V(H) is the set
of points of PG3(n) and E(H ) is formed by joining the points (z, y, 2z) and
(z',y’,2') for which zz’ + yy’ + z2’ = 0, i.e., for which (z’,3',2') lies on
the line [z,y,2]. We call such a graph H the polarity graph of PGa(n).
Then by the properties of PGa(n), we know that |V(H)| = n? +n + 1,
A(H) = n+ 1, the minimum degree §(G) = n and the diameter is 2 (cf
[2]). We have the following result.

Theorem 3.3. If H is the polarity graph of the Galois plane PGa(n),
then A\(H) = Xo(H) =n? +n =A% - A.

Proof: It is known [4] that A\(H) = n?+n = AZ—A. Since H is a diameter
two graph, \o(H) = |[V(H)| — 1 =n? +n. o

We now turn to the upper bound of A(G), A(G) < 2X(G). A family
of regular graphs G will be shown that A(G) = 2)(G). Before presenting
this, we introduce the following simple result.

Proposition 3.4. If G is a connected d-regular graph with n vertices,
then M\o(G) = 2 if and only if d =2 and n is a multiple of 3.
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Proof: («) If d = 2 and n = 0 (mod 3), then G is a cycle; by Theorem
23, =2

(=) Suppose A\g(G) = 2; by Theorem 2.1, d = A(G) < 2. Ifd < 1,
then G = P, or P, in which cases A\g(FPp) = 0 and A\o(P;) = 1, respectively.
Hence d = 2, so G is a cycle; by Theorem 2.3, » must be a multiple of 3
which finishes the proof. ]

Theorem 3.5. If G is a A-regular bipartite graph with 2(A + 1) vertices
and A > 2, then X\o(G) = A and A(G) = 2A.

Proof: Let G = (A,B,FE) and H = Kat1,a+1 \ G, then H is a matching
with |[H| = A+1 edges. Let E(H) = {(ao, bo), (a1,b1), ..., (aa,ba)} where
a; € A and b; € B for each 7. We then label a; and b; with 7. It is easy
to see that this labelling is an L(1,1)-labelling of G, so Xo(G) < A. By
Theorem 2.1, we have Ao(G) = A.

Now, we claim that A(G) = 2A by induction on A. The indexes of a;
and b; defined above will be kept in the proof.

Initial step: A = 2. Then G is a cycle of length 6, Cs. By a previous
result in [3], we have A\(Cg) = 4.

Inductive step: For any 0 < i < A with A > 3, define the reduced
graph G; by deleting vertices a; and b; and the edges adjacent to them
from G, then the reduced graph is a (A — 1)-regular bipartite graph. By
the inductive hypothesis, A(G;) = 2A — 2 for any i.

Suppose A(G) < 2A, then let f be an L(2,1)-labelling such that f has
span less then 2A, that is,

F1 V(@) —{0,1,2,3,...,2A —1}.

According to the definition of an L(2,1)-labelling, only a; and b; can
possibly use the same color, and f(a:) # f(a;), f(b:) # f(b;), if i # 7.
Without loss of generality, we may assume f(ag) = 0. If f(bo) = 1, fle,
is an L(2,1)-labelling and then A(Go) < 2A — 3, a contradiction. Hence,
f(bo) # 1. Furthermore, we then know that f(b;) # 1 for all 4. If f(a;) #1
for all 7 # 0, we again have the contradiction A\(Gp) < 2A — 3. Thus,
without loss of generality, assume f(a;) = 1. Continuing this process, we
finally have f(a;) = ¢ for all <. This implies for each %, f(b;) > A + 2, and
no b; and b; can receive the same label. Therefore, we need A + 1 new
colors starting from A + 2 to color all the vertices in B, a contradiction,
since |[0,2A — 1]\ [0, A + 1]| < A + 1. Therefore, A(G) = 2A. o

4 Consecutive L(2,1)-labelling

This section studies the consecutive L(2,1)-labelling and the consecutive
L(2,1)-number A (G). We will first characterize the existence of a consec-
utive L(2,1)-labelling by using the concept of Hamilton paths. Then the
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relations among Ao, A and ). will be discussed. The values of A.(G) for
a group of graphs G will be calculated. Notice that if G has a consecu-
tive L(2, 1)-labelling, then A; < |V(G)| — 1 and vice versa. Denote G the
complement graph of G.

Proposition 4.1. There is a Hanlilton path in G¢ if and only if A;(G) <
[V(G)| -1 < o0.

Proof: (=) Suppose there is a Hamilton path P = {v,v1,...,%n-1} in
G° (n = |V(G)|). Then we can label v; as i for each i. It is easy to check
this labelling is a consecutive L(2, 1)-labelling of G. Hence A.(G) < n—1=
[V(G)| -1 < 0.

(<) Suppose A(G) = m < co. Let {v},},...,v% } be the set of ver-
tices with label ¢, 0 < i < m. Then v},%g,...,v3,v{,...,v} ,..., v, 9%,
cees Vb, 5V, .., v form a Hamilton path in G°. o

If f is a consecutive L(2,1)-labelling of G, then f is also an L(2,1)-
labelling of G. If G does not have any consecutive L(2,1)-labelling, then
Ae(G) = 0. Therefore, for any graph G, we have

A(G) £ A(G).

Considering the cases for which A = )., we have the following result.
Theorem 4.2. Given a graph G, if Ao = A, then A = A..

Proof: Suppose A = k < A, and let f be an L(2,1)-labelling obtaining
the optimal span k. Without loss of generality, we may assume

f:V = [0,k

Because k < A, f is not a consecutive coloring. Hence, there exists a
number m, 0 < m < k, such that there is no v € V with f(v) = m. Define
a coloring g: V — [0,k — 1] by,

_ @), iff)<m,
“w_{ﬂw—LiU@me

One can learn that g is an L(1,1)-labelling. This implies Ao < k= A, a
contradiction. Therefore, A = .. (]

According to the theorem above, graphs in theorems 3.2 and 3.3 satisfy
the equality A = .. Applying previous results of A on paths P,, cycles Cy,
and trees T, in [4] and [10], we have the following proposition that provides
another three classes of graphs such that A = A.. Inspection of Theorems
2.3 and 2.4 shows that these are also examples indicating that the converse
of Theorem 4.2 is not always true.

20



Proposition 4.3.
(8) A(Pg) = Ae(Ps) =3, and A(Pp) = A(P,) =4 if n > 5.
(b) MCr)=Ac(Cr)=4,if n=50rn>7.
(€) MT)=2e(T)=A+10r A+2,if T is not K; . o

We have learned that if G is a diameter two graph, Ao = [V|—1 < A.. If
in addition G has a consecutive L(2, 1)-labelling, then A, = |V| — 1. Thus,
by Proposition 4.1, we have the following result for diameter two graphs.

Corollary 4.4. Let G be a diameter two graph. The following are equiv-
alent:

(a) G has a consecutive L(2,1)-labelling.
(b) There is a Hamilton path in G©.
() A=A=|V|-1 O

Notice that there are no consecutive L(2, 1)-labellings for complete graphs
with more than one vertex. For diameter two graphs, refereeing to Figure
1, the Petersen graph is an example to the corollary above which has A\, =
[V]—1. (The vertices 0,1,2,...,9 form a Hamilton path in G¢. Notice that
these labels also form a valid consecutive L(2, 1)-labelling.)

Now we consider the n-cube graph Q,, which has 2" vertices where each
vertex v can be written as v = (v, vg,. .., v, ), where each v; is either 0 or
1, and where edges join vertices v, w when there exists a unique i such that
v; # w;. It has been proved [4] that A(Qn) < 2n+1, for all n > 3 by defining
the labelling f on V(Qn) by f(v) = 3;. ,.—1(i + 1) (mod (2n + 2)), where
all labels are chosen from [0, 2 + 1). Furthermore, by checking the labels
used, we find that this labelling in fact is a consecutive L(2, 1)-labelling as
well. Therefore, we have

Theorem 4.5. A\.(Q,) < 2n+1, for all n > 3. O

Notice that the inequality is not tight for some n. For example, Sakai
[10] showed that A.(Qs) = 7 whereas Ao(Q3) = 7. It would be interesting
to determine when equality holds.
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Figure 1. The Petersen Graph
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