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Abstract

The spectra of 5-, 7- and 11-rotational Steiner triple systems are
determined. In the process, existence for a number of generalized
Skolem sequences is settled.

1 Introduction

A Steiner triple system of order v, denoted by S(v), is an ordered pair
(V,T), where V is a v-set and 7 a collection of 3-subsets of V, called
triples, such that each pair of elements of V is contained in exactly one
triple in 7. It is well-known that an S(v) exists if and only if v = 1,3
(mod 6). An automorphism of an S(v) (V,T) is a permutation on V' which
preserves 7.

A k-rotational permulation of order v is one which consists of a single
fixed point and precisely & cycles of length (v — 1)/k. An S(v) (V,T) is
called k-rotational if it admits a k-rotational automorphism. The existence
problem for a k-rotational S(v) was first studied by Phelps and Rosa in
[6] and it was completely solved there for £ = 1,2,6. Then the problem
was settled for £ = 3,4 by Cho [2]. The existence conditions of a reverse
S(v), namely an S(v) admitting a k-rotational automorphism with k = (v—
1)/2, was obtained in [7], [4], [10]. Recently, this problem was investigated
by Colbourn and Jiang [3] and recursive constructions were developed to
successfully determine the spectrum of a k-rotational S(v) for any positive
integer k. The recursion is on k, and its successful application depends on
a complete solution for £k = 1,2,3,4,5,7 and 11. Hence the existence for
k-rotational systems with £ = 5,7 and 11 is of interest. We completely
settle these cases here.
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Before we proceed to our main results on & = 5,7,11, we first look at
the conditions that a k-rotational S(v), where 1 < k < (v — 1)/2, has to
satisfy. It is proved in [6] that v = 3 (mod 6) if k = 1. In general, the
requirement on an order of an S(v) and that on an order of a k-rotational
S(v) imply, separately, v = 1,3 (mod 6) and v = 1 (mod k).

Now suppose 7 is a k-rotational automorphism of an S(v) with (v—~1)/k
being even. Then 7% is also an automorphism of S(v). It is clear that

7% consists of a single fixed point and (v — 1)/2 cycles of length 2 and
therefore S(v) is reverse. But a reverse S(v) exists if and only if v =
1,3,9,19 (mod 24) [10}. So v # 7,13,15,21 (mod 24).

In summary we obtain

Lemma 1.1 Let v, k be positive integers such that 1 < k < (v—1)/2. Then
a k-rotational S(v) ezists only if

v=1,3 (mod 6),
v =3 (mod 6) ifk=1, (1)
v=1 (mod k),

v#T7,13,15,21 (mod 24) if (v—1)/k is even.

The sufficiency of these conditions was established for k = 1,2,3,4,6 in
[6], [2], and for & = (v — 1)/2 in [7], [4], [10]. In particular, we mention
these results for £ = 1,2, 3:

A 1-rotational S(v) exists if and only if v = 3,9 (mod 24).

A 2-rotational S(v) exists if and only if v =1,3,7,9,15,19 (mod 24).

A 3-rotational S(v) exists if and only if v = 1,19 (mod 24).

In this paper, we prove sufficiency for £ = 5,7,11. To be precise, we
establish

Theorem 1.2 A 5-rotational S(v) ezists if and only if v = 1,51*,81*,91
(mod 120). A 7-rotational S(v) ezists if and only if v = 1,43,57*,99*
(mod 168). An 11-rotational S(v) ezisis if and only if v =1,67,177*,243*
(mod 264).

The congruence classes marked with * satisfy v = 3,9 (mod 24). Now
if a permutation 7 of order v is 1-rotational then 7* is k-rotational for an
integer k& with k|(v — 1). Moreover, an S(v) with 7 as an automorphism
certainly also has 7* as an automorphism. Therefore the existence of a
5-, 7- or 1l-rotational S(v) with v in these congruence classes is a direct
consequence of that of a 1-rotational S(v). The remainder of this paper
is for establishing the existence of S(v) for v in the remaining congruence
classes, following some preliminary results on Skolem sequences in Section
2.
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Throughout, [i,j] denotes the set of integers £ such that i < £ < j;
Z,, denotes the residue class group of integers modulo n. We take V =
{0} U(Zn x {1,2,...,k}) to be the ground set of a k-rotational S(v) to be
constructed, where oo € Z, x {1,2,...,k}, n = (v —1)/k and for brevity
we denote by z; an element (z,7) € Z, x {1,2,...,k}. We then take

7= (00)(011;...(n=1)1)...(Oklp...(n— 1))

to be the k-rotational automorphism of S(v). The constructions we give
are by difference methods. (Difference methods have been used extensively
in previous work on k-rotational Steiner triple systems; see [2], [6] for more
details.)

2 Skolem Sequences

In this section, we construct some Skolem sequences which are to be used
in the constructions of the later sections. (For background on Skolem se-
quences the reader is referred to [1], [8]). We adopt the notation of extended
near-Skolem sequences appearing in [1] and give the following definition.

Definition 2.1 Let k be a positive integer, M C [1,k], N C [1,2(k—|M|)+
|N|]. Then an N-eztended M -near-Skolem sequence of order k, denoted by
(M,N)— ENSy, is a partition of [1,2(k — |M|)+ [N]|]\ N into a sequence
of k — |M| ordered pairs (a,,b,) (r € [1,k]\ M) such that b, — a. = for
each r.

This notation generalizes many of the previously established Skolem se-
quences. For example, an (A, k)-system [9] (or a pure Skolem sequence of
order k) is an (¢, ) — EN Sk, a (B, k)—system [5] (or a hooked Skolem se-
quence of order k) an (@, {2k})— EN Sk, an (F, k)-system [6] a ({1}, {2k})—
EN Sy when k is odd or a ({2}, {2k}) — EN Sy, when k is even, an m-near
Skolem sequence of order k [8] an ({m}, ¢) — ENS;, and a hooked m-near
Skolem sequence of order k [8] an ({m}, {2k — 2}) — ENS;. For clarity
we first list the relevant Skolem sequences in Table 1. Then we prove the
existence conditions in Theorem 2.2 - Theorem 2.9. The necessity of these
conditions can be easily obtained by observing that

1
Z ar = 5( Z r— Z T)
re(1,k\M refl,2(k—IMDHININN - re[Li\M
is an integer.

Theorem 2.2 A ({4},{k})— ENS; exists if and only if k = 0,3 (mod 4),
k#3.
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Table 1: N-extended M-near Skolem sequences

M, [1,k]\ M, Existence Name
N 1,2(k-|[M))+|NJ]\ N | (mod 4)

3 1,8, k=01 (A, F)-
¢ 1,2k] [9] system
3, 1%, F=23 (B, F):-
{2k} [1,2k + 1]\ {2k} [5) system

{1}, % odd; | J[1, 28]\ {1}, k 0dd;

{2}, k even, {[1, 2k) \ {2}, k even, k#2 (F k)-

{2k} [1,4k — 1]\ {2k} [6) system
{m}, [1,k]\ {m]}, t;g: ;: z :3;1’ m-near,
¢ [1,2k — 2] (8] order k
(m) 1,41\ {m), k=01 m even | momenr
{2k - 2} 1,2k — 1]\ {2k - 2} (8] order k
{4}, 1, k)\ {4}, k=0,3
{k} 1,2k — 1]\ {k} k#3
{5}, 1LEJ\ {5}, k=12
{k} 1,2k - 1]\ {k} k#1,2
{9}, L k]\ {9}, k=1,2
{k} 1,2k — 1]\ {k} k>9
{2,4}, 1kJ\ {2,4}, k=0,1
é 1,2k — 4] k#1
3.5, 1,5\ {3,5), E=0,1
é 1,2k — 4] k#1,4
2,37, 1,E\12,3], k=23
é 1,2k — 4) k#2
{2,5}, 1,k]\ {2,5}, k=23
é 1,2k — 4] k#2,3
{2,3}, 1,k]\ {2,3}, k=0,3
{k} 1,2k — 3]\ {k}
3,57, T,E\ {3, 5], k=12
{k) 1,2k — 3]\ {&) E£12
{2,3}: l:k]\{2v3}v k= 1,2
{k, 2k — 3} 1,2k — 2]\ {k,2k— 3} | k£1,2
3.4,7], LEN(G,4,7], k=12
{k-2, 2k-5) [1,2k — 4]\ {k-2, 2k-5} | k> 9




Proof. For the sufficiency we take the pairs as follows:
k=4:(1,2),(5,7), (3, 6);
k=0 (mod 4), k = 4s where s > 2:
(r,d4s—1-r) re(l,s-1],
(s-1+7r35—-2—7r) refl,s—2](s>3),
(4s+7r,85—2-7r) r€(l,25s—4] (s> 3),
(3s—2,35—-1), (6s—1,6s+1), (65,85—1), (25—1,65—3), (45—1,85—2),

(25 — 2,65 - 2);
k=3 (mod 4), k =4s+ 3 where s > 1:
(r,4s+3-r) refl,s—1](s>2),

(s+14r3s+4-7r) re]l,s],

(45+3+r85+5—-r) re[l,2s-2] (s> 2),

(s,s+1), (6s+3,65+5), (6s+2,85+5), (25+2,65+4), (25+3,65+6).
=]

Theorem 2.3 Let m = 5,9. Then an ({m},{k}) — ENSy ezists if and
only ifk =1,2 (mod 4), and k # 1,2 whenm =5, and k #1,2,5,6 when
m=9.

Proof. For the sufficiency we take the following pairs.
Suppose m = 5:
k=5:(1,2),(7,9), (3, 6), (4, 8);
k=6:(2,3),(7,9), (8, 11), (1, 5), (4, 10);
k=9: (5, 6), (13, 15), (14, 17), (3, 7), (10, 16), (1, 8), (4, 12), (2, 11);
k=10: (2, 3), (5, 7), (15, 18), (12, 16), (11, 17), (1, 8), (6, 14), (4, 13), (9,

Suppose m = 9:
k=9: (2 3), (13, 15), (4, 7), (12, 16), (5, 10), (11, 17), (1, 8), (6, 14);
k=10:
(104+7r20—7) rell,4),
(3,4),(6,9),(2,7), (1, 8), (5, 15);
k=13:
(13+r,25—7r) re[l,4],
(2, 3), (9, 11), (4, 7), (5, 10), (18, 25), (1, 12), (8, 20), (6, 19);
k=14:
(14+7,26—7r) rell,4)],
(2, 3), (8, 10), (4, 7), (6, 11), (20, 27), (1, 12), (9, 21), (13, 26), (5, 19);
—%Z,.l’l—r) re(1,3),
(174+7r33-r) rell,6],
(12, 13), (4, 6), (8, 11), (5, 10), (26, 33), (9, 25), (7, 24);
=18:
(r,17-7r) re(l,3],
(18+r,34—r) rell,s],
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(4, 5), (11, 13), (6, 9), (7, 12), (27, 34), (10, 26), (8, 25), (17, 35).
Suppose £k =1 (mod 4), k =45+ 1 where s >3 when m=5,0r s> 5
when m = 9:
(r,4s+1-71) rell,s—1),
re[l,s—3)(s>4), when m=235;
(s—1+73s5—7) {rE%l,s—S%%sZﬁ%, when m = 9,
(4s+1+4r8+1—-r) re(l,2s-2].
The sequence is completed by adding
(3s,35+1), (25—3,25—-1), (25— 2,25+ 1), (65,85 +1), (25+2,65+2),
(2s,6s5 + 1), when m = 5; or, by adding
(3s,3s+1), (25—5,25-3), (25—2,2s+1), (25—1,25+4), (25—4,25+3),
(6s,85+ 1), (25 + 2,65+ 2), (25,65 + 1), when m = 9.
Suppose k£ =2 (mod 4), k =4s+ 2 where s >3 whenm=5,0ors>5
when m = 9:
(r,ds+1-r) refl,s—1],
re(l,s—3](s>4), when m=25;
(S+1+7',3S+2—7') {T€E1,3_5}E"326;s when m =9,
(4s+2+r8+2—-r) refl,2s-2).
The sequence is completed by adding
(s,s+1),(25,25+2),(25+1,25+4), (6s+2,85+3), (25 + 3,65 + 3),
(4s+ 1,85+ 2), (25 — 1,65 + 1), when m = 5; or, by adding
(s,s+1),(25—-2,25), (25+ 2,25+ 5), (25 + 1,25+ 6), (25 — 3,25 + 4),
(6s+2,85+3),(25+3,65+3), (4s+1,85+2),(25s—1,6s5+1), when m = 9.
o

Theorem 2.4 Let M = {2,4} or {3,5}. Then there is an (M,¢$) — ENSi
if and only if k = 0,1 (mod 4), and k # 1 when M = {2,4}, and k # 1,4
when M = {3,5}.

Proof. For the sufficiency we take the following pairs.
Suppose M = {2,4}:
k=4:(2,3),(1,4)
k=5:(3,4),(25)(1,6).
Suppose M = {3,5}:
k=5:(2,3), (4, 6), (1, 5);
k=8:(7,8), (1, 3), (6, 10), (5, 11), (2, 9), (4, 12);
k=9: (2 3), (6, 8), (9, 13), (5, 11), (7, 14), (4, 12), (1, 10).
Suppose k¥ = 0 (mod 4), k = 4s with s > 2 when M = {2,4}, s > 3
when M = {3,5}:



rell,s—2](s>3), when M = {24}
rel,s—2), when M = {3,5},
refl,s—2)(s>3), when M ={2,4};
refl,s—3)(s>4), when M ={3,5},
re(l,2s—4] (s >3), when M = {2,4};
re[l1,2s—4], when M = {3,5}.
The sequence is completed by adding

(8s —1,3s), (65 — 3,6s), (25 — 2,45 — 1), (25,65 — 2), (25 — 3,65 — 4),
(25 — 1,65~ 1), when M = {2,4}; or, by adding

(83s—1,3s), (6s—2,6s), (2s—3,25+1), (25 —2,45—-1), (25— 1,65 3),
(25,65 — 1), (25 — 4,65 — 4), when M = {3,5}.

Suppose k£ =1 (mod 4), k = 4s+ 1 with s > 2 when M = {2,4},5 >3
when M = {3,5}:

(r,ds—1-r)

(r\ds—1-r)
(5—24r35—-1-71)

(4s—14+785-3—r)

re€[l,s—2](s>3), when M ={2,4};
re(l,s -2, when M = {3,5},
re(l,s—2](s>3), when M = {2,4};
r€[l,s—3] (s >4), when M ={3,5},
r€(l,2s~3]), when M = {2,4};
€[1,2s-3], when M = {3,5}.

The sequence is completed by adding

(8s—1,3s), (6s—2,65+1), (25—2,45—1), (25,65 —1), (25—3,65—3),
(2s — 1,6s), when M = {2,4}; or, by adding

(3s—1,3s), (6s—1,6s5+1), (2s—3,25+1), (25—2,45—1),(2s—1,65— 2)
(2s,6s), (25 — 4,65 — 3), when M = {3,5}.

Theorem 2.5 Let M = {2,3} or {2,5}. Then there is an (M,¢)— ENS;
if and only if k = 2,3 (mod 4), and k # 2 when M = {2,3}, and k # 2,3
when M = {2,5}.

(s—2+473~-1-7)

(4s—14+7r8s—1-7)

Proof. For the sufficiency we take the following pairs.

Suppose M = {2,3}:
k=3: (1, 2);
k= 6: (4, 5), (2, 6), (3, 8), (1, 7);
k=17:(6,7),(1,5), (3, 8), (4, 10), (2, 9).

Suppose M = {2,5}:
k=6: (5, 6), (l, 4), (3, 7), (2, 8);
k=1:(3,4), (5 8), (6, 10), (1, 7), (2, 9).

Suppose k = 2 (mod 4), k = 45 + 2 with s > 2 for M = {2,3} and
M = {2,5}:

(r,d4s+1—7r) refl,s—2](s>3),

re(l,s—1], when M = {2,3};
r€fl,s—2](s>3), when M = {2,5},
r€[l,2s—2], when M = {2,3};
r€[1,2s—3], when M = {2,5}.

(s—2+473+1-7)

(4s+1478+1-7r)
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The sequence is completed by adding

(3s+1,35+2), (25—2,45+1), (25+ 1,65+ 1), (25— 1,65), (25,65 +2),
when M = {2, 3}; or, by adding

(35+1,35+2), (6s—1,65+2), (25—3,25+1), (25—2,45+1), (2s,6s),
(25 + 2,65+ 3), (25 — 1,65 + 1), when M = {2,5}.

Suppose k = 3 (mod 4), k = 45 4+ 3 with s > 2 for M = {2,3} and
M = {2,5}:

(r,ds+1-7r) re(l,s=2](s>3),

rel,s—1], when M = {2,3};
r€[l,s—2](s>3), when M ={2,5},
re[l,2s—1], when M = {2,3};
re[l1,2s—2], when M = {2,5}.
The sequence is completed by adding

(35+1,35+2), (25—2,4s+1), (25,65+1), (25+1,65+3), (25s—1,65+2),
when M = {2,3}; or, by adding

(3s+1,35+2), (65,65+3), (2s—3,25+1), (25—2,4541), (25,65 +1),
(25 + 2,65+ 4), (25 — 1,65 + 2), when M = {2,5}. m]

(s—2+4+73+1-7)

(4s+14+r85+3—-r1)

Theorem 2.6 A ({2,3}, {k})—EN Sk ezists if and only ifk = 0,3 (mod 4).

Proof. For the sufficiency we take the pairs as follows:
k=3:(1,2);
k=4:(2,3),(1,5)
k=1:(2,3),(5,9), (6, 11), (4, 10), (1, 8);
k=8: (11, 12), (2, 6), (4, 9), (1, 7), (3, 10), (5, 13);
k=0 (mod 4), k = 45 where s > 3:
(r,4s— 1) r€(l,s),
(s+2+47r3s-r) r€(l,s-3](s>4),
(4s+1+4r8—-2~r) re(l,2s—4],
(s+1,5+2),(4s+1,65—1), (25 + 1,65 —2), (25 + 2,65+ 1), (25, 65);
k=3 (mod 4), k =45+ 3 where s > 2:
(r,4s+3—71) r€(l,2s-1],
(4s+4+r8+4—r) re(l,s—2](s>3),
(5s+2+r,7s+4—7r) rell,s—1],
(7Ts+4,7s+5), (25+2,4s+4), (25+3,65+3), (25,65+2), (25+1,65+4).
a

Theorem 2.7 A ({3,5}, {k})—ENS} ezists if and only ifk = 1,2 (mod 4),
k#1,2.

Proof. For the sufficiency we take the pairs as follows:
k=5:(1,2),(4,6), (3,7);

k=6:(3,4),(7,9), (1, 5), (2, 8);

k=1 (mod 4), k =4s+1 where s > 2:
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(r,4s+1-r) re[l,s—2](s>3),

(s+7r3+3-r) rel,s-2](s>3),

(4s+2+r8—r) re(l,2s-3],

(s—1,s), (25 + 2,25+ 4), (25 — 1,45+ 2), (25 + 3,65 + 1), (2s,65),
(2s+ 1,65+ 2);
k=2 (mod 4), k =45+ 2 where s > 2:

(r,ds+1-7r) re(l,s—2](s>3),

(s—=2+nr3s+1—-1) rell,s—2](s>3),

(4s+2+4r8+2—r) rel,2s-2],

(3s+1,35+2), (25-3,2s-1), (25—-2,4s+1), (25+1, 65+1), (25+2, 6543),
(25,65 + 2). o

Theorem 2.8 A ({2,3},{k,2k — 3}) — ENSi exists if and only if k =
1,2 (mod 4), k #1,2.

Proof. For the sufficiency we take the pairs as follows:
k=5 (2 3), 4 8), (1, 6);
k=6:(2,3),(48), (5 10), (1, 7);
k=1 (mod 4), k =4s+ 1 where s > 2:
(r,4s =) rell,s-1],
(s+1+mr3s+1—7r) re(l,s—2)(s>3),
(4s+1+7r8—-2—-r) rell,2s—4] (s>3),
(s,s+1), (6s—2,85—2), (25+2,65—1), (25+1,6s), (45, 8s), (25,65+1);
k=2 (mod 4), k =4s + 2 where s > 2:
(r,d4s+1—71) refl,s—2](s>3),
(s+7r3s+3-7) rel,s-1],
(4s+3+r,8+1—r) rell,2s-3,
(s—1,s), (25,45 +3), (25 + 3,65+ 1), (25 4+ 2,65 +2), (45 + 1, 83+2),
(2s+ 1,65+ 3).

Theorem 2.9 A ({3,4,7},{k — 2,2k — 5}) — ENS ezists if and only if
=1,2 (mod 4), £ #£1,2,5,6.

Proof. For the sufficiency we take the pairs as follows:
k=9: (9, 10)) (1, 3): (6’ 11), (2, 8), (4) 12), (5, 14);
k= 10: (4, 5), (11, 13), (9, 14), (1, 7), (2, 10), (3, 12), (6, 16);
k=1 (mod 4), k = 4s+ 1 where s > 3:

(r,4s—2-r) re[l,s— 2],

(s—2+41r35—-2-r) refl,s-3](s>4),

(4s+7r,85-3-7r) r€[l1,25—6) (s > 4),

(35—2,3s—1), (6s—1,65+1), (6s—3, 65+2), (25—2,45-2), (25—1,65—4),

(45,85 —2), (25 — 4,65 — 5), (25,6s), (25 — 3,65 — 2);
k=2 (mod 4), k =4s + 2 where s > 3:



(r,4s — 1) refl,s-2],

(s+735+2-71) re(l,s—2],

(4s+2+78—-1—7) re[l,2s—-6](s>4),

(s—1,s),(6s—1,6s+1), (6s—3,65+2), (25,45 +2), (25 + 1,65 — 2),
(45+1,8s), (25+ 3,65+ 3), (25 — 1,6s), (25 + 2,65 + 4). m]

3 5-rotational S(v) for v =1,91 (mod 120)

When difference methods are employed, constructing a k-rotational S(v)

onV = {0} U(Z, x {1,2,...,k}) with
T = (00)(0111 ...(n— 1)1)(0k1k ...(n-— l)k)

as an automorphism requires a partition of all the pure differences of types
zii (1 £ i £ k) and mixed differences of types z;; (1 < i # j < k) into
base triples. When k is small the number of the types of these differences
is small. Therefore the partition may be rather easily obtained by exhaus-
tively looking at all the differences.

Lemma 3.1 There is a 5-rotational S(v) whenever v =1,91 (mod 120).

Proof. Case 1. v=1 (mod 120),v =120t + 1: n=24¢,¢t > 1.
V = {00} U(Z24t x {1,2,3,4,5}).
T = (00)(0111 .o (24t - 1)]) .o .(0515 . (24t - 1)5)
Skolem sequences:

(ar,b,) (r € [1,4)\ {2,3}), a ({2, 3}, {4t}) — ENSy,

(cr,dy) (r €[1,12t - 1]), a (B, 12t — 1)-system.
Construction: This construction, as well as that in Case 2, is based on the
partition of the edge set of a complete graph K5 on {1,2,3,4,5} into two
triangles (1,2,4), (1,3,5) and a 4-circuit (2, 3,4,5). The base triples in this
case are listed as follows:

1. {o0,0;,(12t);} i€ [1,5];
2. {01,(8t)1,(16t)1}, {01,71,(b, +4t)1} =€ 1,4\ {2,3);

{02, T2, (dr + 2)3}’ {03, L (d" + 3)4}’ {04, T4, (df + 1)5}r
{0s, 75, (dr — 1)2},

where, for all, r € [1,12¢ — 1};
{04,71,(2r = 1)} re[1,12¢]\ {12t - 2},
{04,71,(2r)2} re[12t+ 1,24t - 1],

{0s,71,(2r - 1)3} re[l,12¢]\ {12t — 1},
{05, 1, (27‘)3} re [12t + 1,24t — l];
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{01)317(12t)2}; {011211(12t)3}) {01)(12t_2)1>04}a
5. {01!(l2t_ 1)1’05}7 {02123)54}’ {03y14)05};
{04, 15,02}, {05, (—3)2, (—3)s}-

Case 2. v =91 (mod 120),v =120t +91: n =24¢{+18,¢ > 0.
V = {0} U(Z24t+18 x {1,2,3,4,5}).
7= (00)(0111...(24t +17)1)...(0s1s...(24L + 17)5).
Skolem sequences:
(ar, b)) (r€ (1,4t + 3]\ {2,3}), a ({2,3}, {4t + 3}) — EN Sasq3,
(cr,dr) (r €[1,12¢ + 8)]), an (A, 12 + 8)-system.
Construction: The base triples are listed as follows:

1. {o0,0; (12t +9);} i€[l,5);

{01, (8t + 6)1,(16t + 12)1},
{01, 71, (br +4t+3)1} r€[1,4t+ 3]\ {2,3};

{02) 7'2, (dr + 3)3}! {031 7'3, (dr + 2)4}) {047 7'4, (dr + 2)5})
{05;"5,(dr - 1)2})
where, for all, r € [1, 12t + 8];

{04,71,(2r = 1)2} re[1,12¢49]\ {12t + 7},
4. {04,71,(2r)2} r € [12t + 10,24t 4 17],
. {05arlr(2r_ 1)3} re [1’12t+9]\{12t+8}s
{0s,71,(2r)3} r € [12t + 10,24t + 17);

{01,31, (12t + 9)2},  {01,21, (12t +9)a}, {01, (12t + 7)1, 04},
5. {01,(12t+8)1,05}, {02,33,54}, {03, 14,35},
{041 15:02}) {05)(_2)2’03}'

4 T-rotational S(v) for v = 1,43 (mod 168)

Applying difference methods, we can also establish
Lemma 4.1 There is a 7-rotational S(v) whenever v = 1,43 (mod 168).

Proof. Case 1. v =1 (mod 168), v = 168t +1: n = 24¢,¢ > 1.
V= {00} U(Z24t X {1,2, .. .,7}).
T= (00)(01 1; .. (24t - 1)1) .. .(0717 .. .(24i - 1)7)
Skolem sequences:
(ar,br) (r € [1,4¢)\ {4}), 2 ({4}, {4t}) — EN S,
(cr,dr) (r € [1,48)\ {2}), 2 ({2}, {8t — 2}) — EN S4 (a hooked 2-near
Skolem sequence of order 4t),
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(er, Jr) (r € [1,48]\ {4}), a ({4}, {8t — 2}) — ENSy (a hooked 4-near
Skolem sequence of order 4t),

(grrhr) (1’ € [l)‘“ + 1] \ {2’4})» a ({2’4}=¢}) - ENS41+1’

(pr.4-) (r € [1,40\{2}), a ({2}, {4t})~ EN Sa; (an (F, 2t)-system) when
t>2.
Construction: This construction, as well as those in Case 2, is based on the
partition of the edge set of a complete graph K7 on {1,2,...,7} into the 7
triangles (1,2,4), (2,3,5), (3,4,6), (4,5,7), (5,6,1), (6,7,2), (7,1,3). The
base triples in this case are listed as follows:

1. {00,0,',(12!),'} i€[1,7];

2. {01,(8t)1,(16t)1}, {0s,(8t)s, (16¢)s},

{01,7‘],(b,-+4t)1} T€[1,4t]\{4},
{02, 72, (dr + 4t)2} r € [1,4¢\ {2},
{03) 3, (f" + 4‘)3} re [1?4t] \ {4})
{04,r4,(h,.+4t+1)4} re [1’4t+1]\{274}’
{05,T5,(h,~-}-4t+1)5} 1‘6[1,4t+1]\{2,4},
{07; 7, (dr + 4t)7} TE [la 4t] \ {2})

and, whent =1,

{06,16,76}, {0s,36,136}, {06,4s,9},
or, when t > 2,

{OG,rGa(qr+4t)5} re [1»‘“]\{2};

{01,m2,(2r +1)a} re[1,12¢ - 1]\ {2},
{01,72,(2r)4} r € [12¢ + 1,24¢],
{02,1'3,(27'+ 1)5} re [1$12t_ 1]\{2})
{02, r3, (27‘)5} re [12t +1, 24t],
{03, T4, (21‘ + l)s} reE [1, 12¢ — 1] \ {2},
{03, 74, (27)6} r € [12t + 1, 24¢),
3 {04: Ts, (21" + 1)7} r€ [01 12t - l]v

© {04, rs, (2r)7} re [l2t +1,24¢ — 1],
{05,7’6,(21’—2)1} r e [4, 12t+2]\{5},
{0s,76,(2r — 3)1} re€[12t + 4,24t 1, 3],
{071 T2, (21‘ + 1)6} re [1' 12t - l] \ {2}’
{07, T2, (21‘)6} re [12t + 1,24t],
{01’ 7, (21‘)3} re [1) 12¢ - 1] \ {2})
{01,77,(2r — 1)3} re[12t+1,24¢];
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{05)41’81}1

{02,22, 36}, {07,22, (12t)5},
{03, (12t — 2)3,(12t)a}, {03,4s,56},

4. {0y,14,54}, {02, 14,34},
{02) 15955}) {031 15!35}1
{Oﬁa 26: 31})

{01,27, (12t)7}, {07,27,23};

5. {01’(12t)2)03}1 {01122)43};
6. {04,(12t)5,36}, {0s,07,5¢}, {04,07,16}.

Case 2. v =43 (mod 168), v = 168t +43: n =24t 4 6,¢t > 0.
V= {00} U(Z24¢+5 X {1, 2, ey 7})
= (00)(0111 .. (24t + 5)1) .. .(0717 .. (24t + 5)7)
Skolem sequences:
(ar,br) (r€ 1,48+ 1]\ {9}) (¢ 2 2), a ({9}, {4t + 1}) = ENSar,
(crrdy) (r € [1,4t+ 1]\ {3}) (t > 1), 2 ({3},4) — ENS4s41 (a 3-near
Skolem sequence of order 4t + 1),

(er’fr) (7' € [la4t + 2]\ {213}) (t 2 1)1 a ({2)3}: ¢) - ENS4¢+2’
(9r,hr) (r € (1,4t + 1]\ {5}) (t 2 1), a ({5}, {4t + 1}) — EN Sa1,
Constructions: First suppose ¢ > 1. The base triples of a required S(168¢+

43) are listed as follows:

1. {o0,0; (12t +3);} i€(1,7];

2. {01,(8t+2)1,(16t+4)1}, {06, (8¢ + 2)s, (16t + 4)s},

{02,7‘2, (dr +4t+ 1)2} LS [1)4t + 1] \ {3}’

{03,73,(dr + 4t +1)3} re[l,4t+1]\ {3},

{04,r4s(fr +4t+2)4} re [1)4t+2]\{2v3})

{0s,75,(fr +4t+2)s} re[l,4+2]\{2,3},

{06, 76, (hr +4t +1)s} r€[1,4t+1]\ {5},

{07,77,(dr + 42+ 1)7} re€[1,4t+1]\ {3},
and, when t = 1,

{01,11,71}, {01,21,13:}, {01,31,81}, {01,41,16,},
or, when ¢ > 2,

{01,71,(b- + 4t + 1)1} re[l,4t+1]\{9);
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{01) T2, (21’ + 1)4}
{04, 72,(27)4}
{0z, 73, (2r + 1)s5}
{02, 73, (27)s}
{033 T4, (27’ + 1)6}
{03,74,(27)s}
{04) Ts, (21‘ + 1)7}
{04, 75, (27)7}
{05a T6, (27‘ + l)l}
{05,7'6, (27')1}
{02, 76, (2r + 1)7}
{02) Ts, (27‘)7}
{07,71,(2r + 1)3}
{07, r, (21‘)3}

{05) (24t + 2)1)51})

{02, (12t + 2),, (12t + 3)6},
{03, (l2t + 2)3, (12t +3)4},

{01304;34})
{02, 05,35},
{06,56,31},

{07, (12t + 2)7, (12t + 3},

5. {01,(12¢ + 3)2,03},

6. {04, (12t +5)s,06},

For ¢t = 0, a 7-rotational STS(43) is given by the following base triples:

1. {o0,0;,3;}

re (0,12t +2]\ {1},

r € [12t + 4,24t + 5),

re (0,12t +2)\ {1},

r € [12t + 4,24t + 5],

r e (0,12t + 2]\ {1},

r € [12t + 4,24t + 5],

r€ (2,12t +4],

r € [12t + 6,24t + 6] | U{1},
r € [24t + 4,24t + 6] U[1, 12¢] \ {2},
r e [12t + 2,24t + 3],
re[0,12t + 2]\ {1},

r € [12t + 4,24t + 5],

r€ (0,12t +2]\ {1},

r € [12t + 4,24t + 5];

{02)32, 37}:
{03, 33, 36},
{021 041 24})
{03)05125}3

{07,37,33};
{01,12,23};
{0s,26,27}, {04,26,47}.

i€ [1,7);

2. {01,21,41}, {0s,26,46};

{01, 72, (2r + 1)a}
{02,73,(2r + 1)s5}
{04,73,(2r + 1)6}
{04, 75, (2r)7}

{0s,76, (27 + 1)1}
{06, 77, (2r + 1)2}
{071 T1, (27’ + 1)3}

{01,42,24},

{02, 43,25},
{04,53,46},

{04, s, (27‘ - 1)7}
{05) 6, (27‘)1}
{06; 47) 22})
{07,51,43};
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{0s,04, 1,},

{06,02,42}, {07,02,52},

{04,33, 43}, {03, 23’06},
4. {01,44,04}, {02,54,04},

{02,45,05}, {03,5s,05},

{Oﬁv 163 l]};

{07,17,4;}, {07,27,23};

5. {01,32,03}, {01,52,43};
6' {04)35)06}) {05; 061 57}) {04)26) 57}~

5 1l-rotational S(v) for v = 1,67 (mod 264)

As the number k of cycles in a rotational automorphism increases, the
structure of rotational Steiner triple systems becomes more and more com-
plicated. This causes real difficulty for constructing such a system using
difference methods. There is almost no way to handle the large number of
the possible pure and mixed differences when k becomes large. However, as
the entire structure becomes complicated, the dependency of a part of the
structure on another is also weakened. This makes it possible to deal with
the structure part by part. For example, such a system may be more easily
obtained if some subsystems can be embedded. This is essentially the idea
for the recursive constructions appearing in [3]. Although these recursive
constructions are still not applicable to the case k¥ = 11, a modification
turns out to be successful, as we see next.

Lemma 5.1 Let n = 6s with s > 1. Then there is a set A of (base) lriples
over Z, x{1,2,3,4} which covers each of the mized differences exactly once.

Proof. Take A = A, |JAz|JAslJ A4, where A; are as follows:

Ar 2 {01,72,(2r)3} r€[0,3s—1];
Az: {02,73,(2r+ 1)4} r€[35,65—1];
Asz: {03,74,(2r— 11} re€l,3s];

A4 H {04,7‘1,(21’)2} rE [33,63— 1]

a
Lemma 5.2 Let n = 65 with s > 1. Then there is a sel B of (base) triples

over Zy, x{1,2,3,4} such that B covers each of the mized differences ezxactly
once, excepl for
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3214, £(65 — 1)14, 424, £(65 — 1)24, 2034, +234
which are nol covered by B.

Proof. Let A = A, [JA2|JA3|J A4 be the set of the triples constructed in
Lemma 5.1. Destroy the triples {02, (65s—1)3, (6s—1)4} in A2, {03,24,3,} in
As, {04, (65—2)1, (65—4)2} in A4. Reconstruct the triple {01, (65—2)2, (65—
3)3} and adjoin it to A,. To be precise, take B = By |JB2 Bz J Bs, where

By = A |J{{01, (65 — 2)2, (65 — 3)3}};
B = A2\ {{02,(65 — 1)3,(65 — 1)4}};
Bs = A3\ {{03,24,3:1}};

Ba = Aa\ {{04, (65 — 2)1,(65 — 4)2}}.

o

Lemma 5.3 There is a set C of (base) triples over Zs x {1,2,3,4} such
that C covers each of the mized differences ezactly once, excepl for

+314, £414, E 124, £424, £234, F434
which are not covered by C.
Proof. Take C = Cy |JC2|JC3|JCs, where C; are as follows:

Cr: {02,31,03}, {02,41,23}, {02,51,43}, {02,1i,3s};
cZ : {03> 341 12}) {03’54)52};
Ca: {01,03,04}, {01,1s,24};
c4 : {04) 12r11}1 {04a32151}-

a
Lemma 5.4 There is an 11-rotational S(v) whenever v = 1,67 (mod 264).

Proof. Case 1. v =1 (mod 264),v =264t +1: n=24¢, ¢t > 1.
V= {OO}U(224f X {1,2,,11})
T = (OO)(O]I] (24t - 1)1) . .(01111] (24t— l)“).
Skolem sequences:

(ar,b,) (r € [1,4t + 1]\ {3,5}), a ({3,5},¢) — ENSat41,

(er,dr) (r € [1,48]1\{3}), a ({3}, ¢) — EN Sy (a 3-near Skolem sequence
of order 4t),

(e,,f,-) (1’ € [l,4l] \ {2) 3})’ a ({213}) {4t}) - ENS'“’

(g"))h'f‘) (1‘ € [1’4t] \ {2}) (t 2 2); a ({2}1{‘“}) - ENS‘H (an (Fs 2t)'
system).
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Construction: Our construction employs the blocks of a {3,4} — GDD
of type 332!, obtained by deleting one point from a T'D(4,3). Suppose
(W,G,D)issuch a GDD on W ={1,2,...,11} with

G ={{1,2,3},{4,5,6},{7,8,9},{10,11}}.

Without loss of generality, assume that {1,4,7},{2,5,8},{3,6,9} are the
three blocks of size 3 in D. The base triples of an 11-rotational S(v) in this
case are listed as follows:

1. base triples of a 3-rotational S(3 x 24t + 1) on V; = {00} | J(Z24r x
{4,5,6}), with 7|y, as the automorphism,

base triples of a 2-rotational S(2 x 24t + 1) on Vi = {00} J(Z24¢ X
{10, 11}), with =|y, as the automorphism;

2. a copy of A = A |JA2UA3slJ A4 as constructed in Lemma 5.1,
taking s = 4¢, on Za4 x D, for each block D € D of size 4;

3. {o0,0;,(12t):} i€ [1,3U07,9);

4. {03: (8t)3) (16t)3}) {07’ (St)'?: (16t)7}, {08: (St)& (16t)8},

{01,71,(br + 4t + 1)1} re€[l,4t+ 1)\ {3,5},
{02,72, (dr +4t)2} r€[1,4t]\ {3},
{03)7'3’(fr +4t)3} LS [lr4t]\{2!3})
{07, 77, (fr +4t)7} r€ (1,4t \{2,3},
{09, 79, (br +4t+1)s} re€[l,4t+ 1]\ {3,5},

and, when ¢t = 1,

{0s, 15,73}, {0s,3s,133}, {0s,4s,9s},
or, when ¢t > 2,

{0s, 73, (hr + 4t)s} € [1,4t)\ {2};

{01,73,(2r+ 1)2} re[0,12¢t—1]\ {1},
{04, 73,(2r)2} re[12t+1,24t - 1),
{0g,77,(2r+1)s} re[0,12¢t-1]\ {1},
{09, 77, (27)s} re (12t + 1,24t - 1),
{04,77,(2r+ 1)1} re0,12¢t—1]\ {2},
{04,77,(2r)1} re[12t + 1,24t — 1),
{02,75,(2r + 1)3} re€[0,12¢ = 1]\ {1},
{02,7s, (2r)s} r € [12t + 1,24t — 1],
{06,73,(2r + 1)9} r€[0,12¢ —1]\ {2},
{06, 73,(27)9} re (12t 41,24t - 1];
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{01a3l,32}) {04)()1,51}’ {02)(l2t - 1)21(12t)5})
{02,3z,3s}, {01, 13,(12t)3}, {0s,23,22},

6. {0s,23,(12t)3}, {03,33,3s}, {07,37,31},
{04)27;(12t)7}a {07: 27:28}> {09, 17;(12t)7}v
{05)08;28}) {051 09)59}y {09)39738}-

Case 2. v =67 (mod 264), v =264t +67: n =24t +6,t > 0.
V= {00} U(Z24t+6 X {1, 2,..., 11})
T = (oo)(Olll .. (24t -+ 5)1) .. .(0111]1 .. (24t + 5)11).
Skolem sequences:

(a"’b") (7‘ € [1)4t + 1] \ {2’3}) (t 2> 1)’ a ({2)3}){4t + 118t - 1}) -
ENSuy1,

(cr,dr) (r€[1,4t+ 1]\ {5}) (t > 1), a ({5},{4t+ 1}) — ENSs41,

(e fr) (r € [1L,46+ 21\ {3,4,7)) (¢ > 2), a ({3,4,7), {48,680 — 1}) -
ENS414,

(gr: hr) (1‘ € [1)4t + 2] \ {2’3}) (t > 1)’ a ({2!3})¢) - ENS‘?H-Z:

(prrar) (r € [1,4¢+ 1]\ {3,5}) (¢ > 1), & ({3,5), {4t + 1}) — ENSaeq1,

(ur) wr) (1' € [1;4t + 2] \ {2s 5}) (t 2 1)’ a ({2a 5}1 ¢) - ENS41+2:

(zr,yr) (r € [1,12¢ 4+ 2]) (t > 0), an (4, {24t + 4}) — ENS12t42 (a
(B, 12t + 2)-system).
Constructions: The constructions are still based on the structure of a
{3,4} — GDD of type 332! as in the above case. Since there is no 2-
rotational subsystem which can be embedded in the system in this case,
the constructions are a bit more complicated. Suppose (W,G,D)isa GDD
of this type as in Case 1 on W = {1,2,...,11} with G the same as there,
having {1,4,7},{2,5,8},{3,6,9} to be the three blocks of size 3 in D. Fur-
thermore, we assume that Dy = {1, 6, 8,10} is one of the blocks in D of size
4. We first construct the following base triples, for each ¢ > 0:

1. base triples of a 3-rotational S(3x(24t+6)+1) on Vi = {00} [ J(Z241+6X
{4,5,6}), with =]y, as the automorphism;

2. a copy of A = A;|JA2|JAs|JAs as constructed in Lemma 5.1,
taking s = 4t + 1, on Zage46 X D, for each block D # Dy, D € D of
size 4;

3. {o0,0: (12t +3)} € [1,3]Ul7,11);

4. {011,711,(yr)10} re€[l,12t+2).

Now suppose ¢ > 1 first. The set of the base triples of an 11-rotational
S(v) in this case consists of the above triples in 1 through 4 and those
in the following 5 through 8:
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5.

{0;, (8t +2);, (16t + 4);} i€ {1,2,3,8},

{01, 71, (br + 4t + 1)1} re(l, 4+ 1]\ {2,3},
{021r2a(d7‘ +4t+ 1)2} re [l’4t+l]\{5}v

{07, 77, (hy + 4t + 2)7} r€[l1,4t+ 2]\ {2,3},
{0s,7s, (gr +4t + 1)} re[1,4t+ 1)\ {3,5},
{09, 79, (wr +4t +2)9} 7€ (1,4t +2]\{2,5},
{010,710, (hr + 4t +2)10} r€[1,4t4+ 2]\ {2,3},

and, when t =1,
{03,15,123}, {03,23,83}, {0s,53, 143},
or, when t > 2,
{03,73,(fr +4t+2)3} re[l,4t+2]\{3,4,7}

a copy of B = By |J B2 |J B3 By as constructed in Lemma 5.2, taking
s =4t + 1, on Zaas46 X Do such that B misses exactly the differences

+210,8, (24t + 5)10,3, £463, £(24t + 5)63, 1013, £213

by identifying the subscripts of 10, 6, 1, 8 here with those of 1, 2, 3,
4 in Lemma 5.2, separately;

{02,7,(2r + 1)3} re[0,12t+2]\ {3},
{02,m1,(2r)s} r € [12t + 4,24t + 5],
{0g, 79, (2r + 1)7} re€[0,12¢ +2]\ {1},
{0s, 79, (27)7} r € [12t + 4,24t + 5),
{01,77,(2r + 1)4} re[0,12t+2]\ {1},
{01, 77,(2r)a} r € [12t + 4,24t + 5],
{02,73,(2r + 1)s} re[0,12¢+2]\ {2},
{02, 73, (27)s} r € [12t + 4,24t + 5],
{0g,73,(2r + 1)6} r€[0,12¢t+ 2]\ {2},
{09, 73, (2r)6} r € [12t + 4,24t + 5];

{02,3],(12t+3)1}, {0],31,34},
{01,(12t+2)1,(12t+3)7}, {01’21a28})

{02)52)55}$

{01)03:43}) {02’03173}1

{03)33336}) {09;23;(12t+3)3})
{07)27524}) {08)07337})
{02a28)(12t+3)8}) {08138:35}v
{06)(24t+5)8’48}) {08)(12t+ 2)8)(12t+ 3)9}’
{09, 59;56}) {09a29127})

{010, 310, 28}, {011, (24t + 4)10, 010}

219



Secondly suppose ¢t = 0. The set of the base triples of an 11-rotational
S(67) is given by the triples in the above 1 through 4 and the following

9 through 13:

9. {07,27,47};
10. a copy of the triples C = C; |JC2|JC3|JC4 as constructed in Lemma
5.3 on Zg x Dg such that C misses exactly the differences
+310,3, £410,8, £ 168, 463, £218, £413
by identifying the subscripts of 10, 6, 1, 8 here with those of 1, 2, 3,
4 in Lemma 5.3, separately;
{01)02103}) {le 12)23})
{01122) 13}, {01a52)33})
{07,0s,00}, {07,1s,26},
{07:28)49}1 {071 487 19}1
1 {04,07,01}, {04,17,21},
" {04,27,41}, {04,37, 11},
{0s,0s,02}, {0s,1s,22},
{05) 28v42}: {05v38, 12}:
{069 09)03}) {05: 19123})
{063 29)43}) {06)49) 13})
{01,14,53},  {04,31,51},
{01,32,42},  {0s,32,52},
{021 23y33}) {06733:53})
12. {04,47,57},
{03,23,52},  {0s,4s,5s},
{09)191 53}: {07:39;59})
{010, 110,43}, {011,410, 010};
13 {07,31,538}, {07,51,3s},
’ {06v 18’59}; {06;48, 39}

6 Concluding Remarks

The results obtained in Sections 3, 4 and 5 established the existence of
a 5-, 7- and ll-rotational S(v) for the nontrivial cases and then proved
the validity of Theorem 1.2. The constructions given here are technically
detailed, and do not appear to lead to a general technique for settling
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existence of k-rotational Steiner triple systems with arbitrary £. However,
while the specific cases of k = 5,7 and 11 are quite involved, their solution
turns out to provide the necessary “building blocks” for some recursive
constructions [3] which are successful in determining existence in general.
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