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ABSTRACT. Results concerning the enumeration and classifica-
tion of 7x 7 Latin squares are used to enumerate and classify all
non-isomorphic Youden squares of order 6 x 7. We show that
the number of non-isomorphic Youden squares obtainable from
a species of Latin square §, depends on the number of distinct
adjugate sets and the order of the automorphism group of 8.
Further, we use the results obtained for 6 x 7 Youden squares
as a basis for the enumeration and classification of 6 x 7 DYRs.

1 Introduction

A k x n Latin rectangle | (k < n), is a k x n rectangular array in which
each of the symbols I;,1,...,1, occurs exactly once in each row and at
most once in each column. It follows that each row of [ is a permutation
of order n. There is a large literature devoted to the enumeration of Latin
rectangles. The impetus behind much of this work is due to the importance
of Latin rectangles for enumerating Latin squares [3]. However, there are
enumerations of Latin rectangles that are motivated by their usefulness as
experimental designs.

Latin rectangles of order k x n that have each pair of symbols occurring
together within columns of I a constant (A) number of times are valuable as
experimental designs and are “balanced” in the sense of a BIBD. Preece [9]
enumerated and classified such balanced Latin rectangles for various values
of k and n. In this paper we use the known enumerations of 7 x 7 Latin
squares to enumerate and classify (n — 1) X n Latin rectangles possessing
“balance”. Further, we use our results concerning such Latin rectangles
to help enumerate and classify a form of experimental design that has a
second set of n — 1 symbols superimposed on a balanced Latin rectangle of
order 6 x 7.
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2 Definitions

Many of the following definitions were first given in [8, 9, 10] for Latin
squares, Youden squares and double Youden rectangles respectively.

2.1 Latin squares

A Latin square § is a Latin rectangle with k = n and § is said to be reduced if
in the first row and first column, its symbols occur in natural order. Norton
(8] defined an intercalate to be a 2 x 2 Latin square embedded in a larger
square. The rows columns and symbols of § are said to be the constraints
of the square. If R, C, L represent the rows, columns and symbols of 8,
then all permutations of R, C and L each having a serial order generate a
group O, where © = S3.

Let © = {6rcL = I,0rLc, OcRL, 9cLR, OLRCOLCR); then V 8 € O, §0 = 6%,
where §* is a Latin square of the same order as 6 and 6" is said to be an adju-
gate of 8. We can obtain six adjugates of § including the trivial-adjugate 67.
Given an adjugate % we can obtain an adjugate set A7 containing §; by per-
muting the rows r1,7s,...,7, € R, permuting the columns, ¢;,¢s,...,¢, €
C, and permuting the symbols, l3,ls,...,l, € L, or any combination of
such permutations. Thus, with a single Latin square we can obtain six
adjugate sets — {A}, Ak AERL ACLrs ALro Alcr} Let Sfrc be the
adjugate when Oryc is applied to §,...,6{cr be the adjugate of 6§ when
OLcr is applied to §; then A* = {63, 6RLC,5CRL,6CLR, 6frcy Ocr) is said
to be an adjugacy set of § where 67 € A}, 61 c € Ajrcs---»0Lcr € Aicr:
Suppose that 67 and &}, are two Latm squares and let A7 and A} be the
adjugate sets of o7 and 6, respectively; then A7 and A will be said to be
distinct if and only if A @ € ©: 620 =6},

2.2 Youden squares

Deleting a row from a Latin square leaves a Latin rectangle in which (a)
every symbol occurs exactly once in each row and (b) the columns form a
symmetric balanced incomplete design (SBIBD). Latin rectangles satisfying
conditions (a) and (b) are known as Youden squares. A Youden square y
of order (n — 1) x n will be said to originate from a Latin square § of order
n if and only if a row may be added to y to form §. A Youden square y
is said to be in standard form if symbol j is absent from column 5 and if
column 1 has symbol i + 1 inrow i (i =1,2,...,n —1). A Youden square
has the same constraints as §, but y has |R| = |C| — 1 = |L| — 1, whereas
6 has |R| = |C| = |L|. Let ¥ represent the operation of interchanging the
constraints C and L of y; then y¥ = y* and y* is said to be the dual of y.
If y¥ = 3, then y is said to be self-dual.
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2.3 Double Youden rectangles

A double Youden rectangle (DYR) of size k x n was defined by Bailey [1]
to be an arrangement of kv ordered pairs z,y in k rows and n columns
(k < n) such that

(i) each value z is drawn from a set S of n elements;
(ii) each value y is drawn from a set T of k elements;

(iii) each element from S occurs exactly once in each row and no more
than once per column;

(iv) each element from T occurs exactly once in each column and either b
or b+ 1 times in each row, where b is the integral part of v/k;

(v) each element from S is paired exactly once with each element from
T;

(vi) each pair of elements from S occurs together in exactly A columns,
where A = k (k — 1)/(n — 1), i.e. the sets of elements of S in the
columns are the blocks of a symmetric balanced incomplete block
design (SBIBD or a symmetric 2-design) with parameter (n, k, \);

(vii) if b occurrences of each element from T are removed from each row,
leaving a = n—bk elements from T in each row, then (a) the remaining
sets of elements of T in the rows are the blocks of a SBIBD with
parameters {k, a, x} where p = a (a —1)/(k —1), or else (b) a = 1.
DYRs discussed in this paper are of size (n —1) xn. Thus b= 1 in
(iv) and the SBIBD in (vi) is trivial, with each block having every
symbol except one, and in (vii) @ = 1. Removing the elements of T
from a DYR leaves a Youden square. To emphasize the relationship
between a DYR w and y we will say that a DYR of order (n—1) xn
is built on a Youden square of order (n — 1) x n. If the sets of rows
and columns of a DYR are denoted by P and Q respectively, then P,
@, S and T are the four constraints of w.

Let v represent the operation of interchanging the roles of the constraints
S and Q, let ¢ represent the operation of interchanging the roles of con-
straints P and T and let (v¢), (= (¢v)) represent the operation of v followed
by that of ¢. Then the adjugates w*, *w and *w* of w can be obtained by
operating on w, where v(w) = w*, ¢(w) = *w, and vé(w) = *w*.

2.4 Automorphisms, isomorphisms, transformation sets and species
of Latin squares, Youden squares and DYRs

Let A be a set of Latin squares, Y be a set of Youden squares and Q be a set
of DYRs where A, Y and § are finite and where 6;,8; € A, 31,2 € Y, and
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w1, ws € Q. Let Iy = (my, 7, 71) be a triple where 7, is a permutation of the
rows of 8, 7, is a permutation of the columns of §, and m; is a permutation
of the symbols of §. Similarly let IIg = (m,, 7, m) be a permutation of
the rows, columns and symbols respectively of y and I, = (wp, Tg, s, ¢)
be a permutation of the elements of P, Q, S and T respectively. If there
exists Iy : 6, — 02, then §, and &, are said to be isomorphic and I, is
said to be an isomorphism from 6, to §;. Similarly, y; and y, are said to
be isomorphic if A g: y1 — y2 and w; and wo are said to be isomorphic if
310,: wy — we. The set A is said to be a transformation set if and only if
Y 61,80 € A3 1,: 61 — &; similarly Y is said to be a transformation set if
and only ifV y1,y2 € Y 315: y1 — y2, and Q is said to be a transformation
set if and only if V wy,ws € @ 311, : wy — wa. Thus two adjugates, whether
Latin squares, Youden squares or DYRs may or may not be isomorphic to
one another. The set A is said to be a species if and only if V 81,62 € A
IM,:6, - 6, and V §; € A, § € 6,60 = §*, where 6* € A. The set
Y is said to be a speciesV y1,y2 € Y ifdIg:yy - 2 andVy; €Y,
y¥ = y*, where y* € Y. The set Q is said to be a species if and only if
Vwy,wy € NI, wy = wr and Vw; € Q, wf,w!,w] € 5. Hence a species
of Latin squares can contain 1, 2, 3 or 6 transformation sets, a species
of Youden squares can contain 1 or 2 transformation sets and a species
of DYRs can contain 1, 2 or 4 transformation sets. For Latin squares the
terms isotropy class and main class are often used instead of transformation
set and species respectively (3, 5]. However, as this paper concerns Youden
squares and DYRs we would be wise to adhere to the terms already used
for the enumeration and classification of Youden squares [9] and DYRs [2,
10].

If there exists I, : 6; — 6; then I, is said to be an automorphism of §;.
Similarly, Ilg is an automorphism of y; if there exists Ilg: y; — y; and IL, is
an automorphism of w if 3II,: w; — w;. An automorphism I, or IIg will
be said to be trivial if and only if #, = 7 = m = I and IL, will be said to
be trivial if mp = wq = 1 = m = I. The collection of all automorphisms of
design form a group under composition called the full automorphism group.
We will denote the full automorphism group of §, ¥ and w by G(6), H(y)
and J(w) respectively. A full automorphism group is said to be trivial if it
has order 1.

3 The 7 x 7 Latin squares

In a reduced Latin square, any permutation of all the symbols Iy, l3,...,l,
other than !; may be made, and the rows and columns (excluding the first)
then rearranged to give another reduced Latin square. Such a transforma-
tion is said to be an intramutation. The basic approach used by Norton
[8] was to make a preliminary classification of Latin squares of order 7 ac-
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cording to the nature of their leading diagonal, the ‘type’ of diagonal being
invariant under intramutation. As two Latin squares related by intramu-
tation are different if their diagonals differ, attention was confined to those
intramutations that do not affect the diagonal, for these alone can leave the
square unaltered. Using the process of intramutation, he classified species
of 7 x 7 Latin squares according to the number of intercalates, the number
of transformation sets and the number of distinct adjugate sets contained in
each. To obtain the number of distinct adjugate sets in each species, he used
the notion of an intercalate to show that a species could contain 1, 2, 3 or
6 distinct adjugate sets. For example, suppose § has constraints columns
and symbols equivalent then C = L => Ajpc = Alcr) A&r = A&rL
and Agqp, = ARyc and the species containing § contains 3 distinct adju-
gate sets. For a detailed discussion of how to test for equivalence between
constraints see [8]. It is sufficient for the purpose of enumerating all non-
isomorphic 6 x 7 Youden squares that we utilize the information given in
(8]-

Norton obtained 146 species of 7x7 Latin squares and a total of 16,927,968
reduced squares. However, Sade [11] found a species that was overlooked
by Norton, and concluded that with this additional square included the list
of 146 species given by Norton is complete and that there are 16,942,080
standard 7 x 7 Latin squares. Therefore there are 147 species of 7 x 7 Latin
squares and these 147 species form the starting point in our enumeration
and classification of all non-isomorphic Youden squares of order 6 x 7.

4 Theoretical basis for the enumeration and classification of 6 x 7
Youden squares

Our approach to enumerate the non-isomorphic 6 x 7 Youden squares con-
sists of two main steps:

(i) Obtain the number of non-isomorphic 6 x 7 Youden squares from each
of the 147 squares.

(ii) Sum over all 147 species to obtain the total number of non-isomorphic
Youden squares. To carry out step (i), we use the number of distinct
adjugate sets and tic automorphism group of each square.

Let 6; ; represent the 7 x 7 Latin square of species ¢ containing j distinct
adjugate sets as given in [8]. By omitting any one of the 7 rows from &; ; we
can obtain 7 Youden squares of order 6 x 7. However, if §; ; has more than
1 distinct adjugate sat we can obtain further 6 x 7 Youden squares. Let
Y;,; represent the set of 6 x 7 Youden squares obtainable from &; ;. Then:
@) F=1= Yl =7 (i) 5 =2 = |Vl = 14, (iii) 5 = 3 = |Yi;| = 21,
(iv) 5 = 6 = |Y; j| = 42. How many of the Youden squares y1,y2 € Y; ; are
non-isomorphic?
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4.1 Using G(6; ;) to count non-isomorphic 6 x 7 Youden squares

We can use the automorphisms Iy, Iy, . - . , € G(8; ;) to identify for equiv-
alence(s) within each of the rows ry,72,...,77 € R, columns ¢;,c3,...,¢7 €
C and symbols a,b,...,g € L of § ;. In this way we can recognize equiva-
lences within R, C, and L and consequently identify isomorphisms within
the set of 6 x 7 Youden squares Y; ;. In particular, if ¥;?; represents the set
of non-isomorphic 6 x 7 Youden squares obtainable from §; ; we investigate
the order of Y;%; according to whether G(6; ;) is trivial or non-trivial.

4.1.2 Non-isomorphic 6 x 7 Youden squares obtainable from 7 x 7
Latin squares with |G(§; ;)| > 1

Consider 6153. As |G(615,3)] = 2, there is only one non-trivial automor-
phism I, € G(615,3) where I, = (7, = (15)(23)(47), 7. = (17)(25)(46),
m = (ab)(cf)(eg)) and consequently II, fixes 1 row, 1 column and 1 letter.
Furthermore, row 1 is equivalent to row 5, (r; = rs) in the sense that the
6% 7 Youden square obtained by omitting row 1 is isomorphic to the Youden
square that is obtained by omitting row 5, and likewise for rows 2 and 3
and rows 4 and 7. For columns we have: ¢; = ¢7, ca = ¢s and ¢4 = ¢5 and
for symbols: a = b, ¢ = f and e = g. Consequently 3 rows, 3 columns and 3
symbols are equivalent and we can obtain 12 non-isomorphic 6 x 7 Youden
squares by omitting any one of the 3 rows: 1, 2, 4 or 6 from each of ¢y,
8trer 61cr. Thus 6353 gives 12 non-isomorphic 6 x 7 Youden squares, that
is [Yi5 5| = 12.

Remark. Clearly there is a connection between the cycle structure of
IIo € G(& ;) and the number of non-isomorphic 6 x 7 Youden squares
obtainable from 6; ;. The number of non-isomorphic Youden squares will
depend on the order of =, n, and m;. For example, a permutation of
rows that consists of a single cycle of length m has order m and implies
that m — 1 rows are equivalent. On the other hand permutation consisting
of z cycles each of length m implies that z (m — 1) rows are equivalent.
Moreover a Latin square with a large automorphism group will have more
equivalences within each of its constraints and consequently give rise to
fewer non-isomorphic Youden square. Indeed we have

IG(8:,5)1 > 1= Y3 5] > Y7351 M

As |G(6:,5)] Increases, |Y;?;| Decreases (2)
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4.1.3 Non-isomorphic 6 x 7 Youden squares obtainable from 7 x 7
Latin squares with |G(5; ;)| =1

If G(6;;) is trivial then there are no equivalences within the set of rows,
columns and symbols and we have

IG(8:.5)l = 1= |Yi 5] = |¥] 3)

and |G(83)| = 1 = [¥4] =7, [¥;3] = 14, [¥%| = 21 and [Y%| = 42. The
set |Y*| of all non-lsomorphlc Youden squares of order 6 x 7 is given by (4),
where j = {1,2,3,6}.

147

Ve =) 1¥l (4)
=1

Remark. We have shown that the number of distinct transformation sets
obtainable from a Latin square §; ; depends on the number of distinct ad-
Jjugate sets within 6; ; and |G(8; ;)|. If G(6; ;) is trivial, then the number
of non-isomorphic 6 x 7 Youden squares contained in Y;’; is unaffected.
However, if |G(6;,;)| is non-trivial, the number of non-isomorphic Youden
squares will depend on the order G(6;;). What can we say about the
number of species of 6 x 7 Youden squares?

5 Enumeration and classification of 6 x 7 Youden squares into
species

Let S; represent the set of species of 6 x 7 Youden squares obtained from
species i of 7 x 7 Latin square. Then we have (5), and the set of all species
of 6 x 7 Youden squares S is given by (6)

|Y: 5] > [Si] (5)

147

IS| = Z 1S:] (6)
i=1

To classify the non-isomorphic Youden squares into species, we consider
the number of species of 6 x 7 Youden square obtainable from a single species
of 7 x 7 Latin square §; ;. As in sections (4.1) and (4.2) we investigate the
number of species of Youden squares obtainable from 6; ; when |G(6; ;)| is
trivial and non-trivial respectively.

5.1 The number of species of 6 x 7 Youden squares obtainable
from species of 7 x 7 Latin squares with |G(6; ;)| = 1

We have four possibilities to consider:
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(i)

(if)

(ii)

(i)

5.2

If 6;; contains 1 adjugate set, then each of the 7 Youden squares
represents a single species.

If 6; ; contains 2 distinct adjugate sets, see (7):

AL = AbLr = Alpc # Akre = ALcr = ACrL (7

Then interchanging the roles of constraints C and L of a Youden
square y belonging to an adjugate set from the LHS of (7) will produce
the dual of y — ¢ that belongs to an adjugate set from the RHS of
(7) and consequently any Latin square containing 2 adjugate sets and
having the trivial automorphism group will give only 7 species of 6 x 7
Youden squares.

If 6; ; contains 3 distinct adjugate sets, then interchanging the roles of
constraints C and L of a Youden square from each adjugate set pro-
duces a self-dual Youden square, and a pair of Youden squares that are
duals of one another. We therefore have 7 species produced from the
self-dual Youden square and 7 species from the pair of Youden squares
that are duals of one another. Consequently, a Latin square belong-
ing to a species that contains 3 distinct adjugate sets and having
non-trivial automorphism group produces 14 species of 6 x 7 Youden
squares.

If §; ; contains 6 distinct adjugate sets, then interchanging the roles
of constraints C and L of a Youden square from each adjugate set
produces 3 pairs of duals giving 21 species of 6 x 7 Youden square.
See Table 1:

Number of distinct | Number of species of 6 x 7
adjugate sets in Youden squares obtainable
é from 6
1 7
2 7
3 14
6 21
Table 1

The number of species of 6 x 7 Youden squares obtainable
from species of 7 x 7 Latin squares with |G(6; ;)| > 1

Norton’s species 15 of 7 x 7 Latin square has constraints columns and
symbols equivalent [8]; consequently its 3 distinct adjugate sets are either
Akcrs Alres Bicrs OF Ahrcy Atru, AtLr 2nd as [G(6i)| = 2, bis3
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produces 12 non-isomorphic 6 x 7 Youden squares. See section 4.1.1 and
Table 2.

Number of adjugate sets | [Yy5 5] | [Sis]
distinct sets
reL = ARic 4 4
Afrc = ArL 4 4
Alcr = AtLr 4 /
Table 2

As constraints C and L are equivalent (C = L), then interchanging the
constraints C and L of a Youden square y obtained from A}y, produces a
Youden square 3’ and the 4 non-isomorphic Youden squares obtained from
ARt are self-dual; each set represents a species. Further, interchanging
the columns and symbols of a Youden square obtained from Aj}pc pro-
duces a Youden square obtainable from adjugate set Aj~p and Youden
squares from Ajp. and Af g are duals of one another, consequently, the
12 transformation sets of 6 x 7 Youden squares obtained from Y5 3 fall into
8 species, that is, |S1s| = 8.

5.3 The total number of transformation sets and species of 6 x 7
Youden squares

Using the approach described in section 5 we enumerated the transforma-
tion sets and species of 6 x 7 Youden square. Tables 3 shows the total num-
ber of transformation sets and species according to the number of Youden
squares obtained from Latin squares with trivial automorphism groups.
Table 4 (i) and (ii) show the number of transformation sets and species
according to the number of adjugate sets and order of automorphism group
of the Latin squares from which each Youden square was obtained.

Number of | Frequency 1Y EA
adjugate sets
1 14 14 x 7=098 14 x7=098
2 4 4x14=45 4x7=28
3 43 43 x 21 =903 | 43 x 14 =602
6 44 44 x42=1848 | 44 x 21 =924
[ Total | 105 [ 2905 | 1652 |
Table 3
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[Species () [ 1G] [ [Vl | 15:] | | Species () [ IG(6:)I [ [Yi%l | IS:

1
13
70

129
135
136
138
145
146

294
24
24
12

4
4
3
4
168

- O B B DN BN DN

b WA RN NN

[ Total | 25 | 25 |

| Species (i) | IG(6:)] | IY:al | ISi] |

2

7
14
15
50
69
71
91
105
106
107
127
130
131
134
141
143
144

CONOONWNORNONNDNDNNAEANNDWND®

6
12
9
12
12
12
12
12
15
12
12
9
15
9
15
9
15
9

DS DS S 0000 - 0000 0000 00D 0o

[ Total | 207 | 138

[ 147

[[Total | 6 | 3

]
| 5 | 6 |3 |
|
]

| Species (i) | IG(&:)] | 1Yilel | IS:

3
18
20
32
38
39
40
52
56
59
88
98
114
116

12
12
12
12
12
12
12
12
12
12
12
12
12
12

RRXRRRRXRRRRRRER

NN NNDNNNNNNDNNDNDNDN

[ Total | 336 | 168 |

Table 4

From Tables 34 we have |[Y*| = 3479 and |S*| = 1986. Of these 1986
species, 493 are self-dual and 1493 are duals of each other.

6 Enumeration and classification of 6 x 7 DYRs

To enumerate all non-isomorphic 6 x 7 DYRs an exhaustive computerized
procedure was used. We used the notion that Youden squares isomorphic to

232



one another cannot come from different Latin squares. For each y € Y* we
searched exhaustively for all possible ways of placing a second set of symbols
on y to form a DYR. It then remained to sift for isomorphisms amongst
all DYRs obtained. The essence of our approach was to enumerate non-
isomorphic 6 x 7 DYRs that are obtainable from a single species of 7 x 7
Latin square, and then to sift for isomorphisms amongst DYRS obtained
from each species. Using such an approach avoids sifting for isomorphisms
amongst all DYRs obtained and consequently saves on cpu time. There are
two basic steps:

(i) V 5 € Y* find the set of all solutions g;;
(ii) within g* search for isomorphisms.

Let Y; be a Youden square obtained from species 7 of 7 x 7 Latin square
and g be a solution of y, such that if g is superimposed on y;, the resulting
design is a DYR of order 6 x 7. Further, let R = {ry,r2,...,76¢} and let
L =1{1,2,...,6} be the sets of rows and symbols of y. Then our sequential
process for obtaining all the solutions g} begins by placing the integer k
twice in rx and once in each of the remaining |R| — 1 rows, thus forming a
‘frame’ of type k, fx. For frames of type k that do not violate the conditions
of a DYR, we place the integer k+1 twice in rx4y and once in the remaining
|R| —1 rows. For frames of type k + 1 that do not violate the conditions of
a DYR we place the integer &k + 2 twice in 7442 and once in the remaining
|R| — 1. We continue in this way until we obtain, for a given y;, all frames
of type 6 (t¢ = gi). We then use an isomorphism testing program of McKay
[7] to check for isomorphism amongst the members of the set g of solutions
for y;. The basic algorithm is given in section (6.1).

6.1 A exhaustive search algorithm for 6 x 7 DYRs
The algorithm consists of 5 basic steps:

(1) Set k=1.

(2) Place k in two positions of r, and once in each of the remaining |R| -1
ITOWS.

(3) Check if fx is a possible solution.
(4) Put k=k+1.
(5) If k < go to (2).

If k = r fill in the spaces with the integer 6; this is a solution.
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6.3 Classification of 6 x 7 DYRs

The basic approach used by researchers in combinatorial design theory to
show that two designs with the same parameters are non-isomorphic in-
volves the identification of some special property that remains invariant
under permutation of the symbols of the design and distinguishes between
the two designs. Ideally our special property would remain invariant under
the permutation of the constraints and that it would be easy to compute
but effective in discriminating between non-isomorphic DYRs.

Christofi [2] used the order of the automorphism group of a DYR and an
isomorphism testing program of McKay [7] as invariants to sift for isomor-
phisms among DYRs of order 4 x 5 and 5 x 6. However, the classification
of the 2971 into species involves obtaining the adjugates of all 2971 DYRs
and then testing for isomorphism amongst all 11884 DYRs. Due to the
large number of DYRs, a similar approach to that used in [2] would be im-
practicable and we therefore require a more efficient method of extracting
isomorphisms.

6.3.1 An invariant for DYRs

For the classification of DYRs we redefine an intercalate to mean a 2 x 2
Latin square embedded in either set of symbols of a DYR. We propose a
characteristic of DYRs that involves the number of intercalates in each set
of symbols and is both quick and easy to compute. More importantly, our
special property remains invariant under:

(i) The permutation of the rows, columns, first and second sets of sym-
bols (or any combination of these).

(ii) The interchange of constraints @ and S.
(iii) The interchange of constraints P and T.

We begin by showing that the number of intercalates in each set of sym-
bols is unaffected by any permutation of the rows, columns or two sets of
symbols. Let P = {ry,72,...,7m}, @ = {c1,¢2,...,cn}, S={A,B...,n},
and T = {e, B, ..., m} represent the sets of rows, columns, first and second
set of symbols respectively of a DYR w; then the adjugates of w *w, w*
and *w* can be obtained as described in section (2.3). Let N(w;, Ir) and
N(wi,n) represent the number of intercalates in S and T respectively of
a DYR w;. As II, is one-one, the number of intercalates in each set of
symbols of w is unaffected by II, and we have (9):

w1 = we = (i) N(wy, In)=N (w2, In) and (ii) N(w1,n)=N(w2,7) (9)
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Remark. The converse of (9) is not necessarily true. Two DYRs satisfying
(9) are possibly isomorphic. On the other hand, two DYRs that do not
satisfy (9) cannot be isomorphic to each other.

Let (Tl: €1, A’ 7): (Tl) C2, Ba 6)1 (7'2: c1, Bv é‘) and (TZ) c2, A: E) represent the
location of intercalate I, in the set S of w (see Table 6 (i)); then interchang-
ing the constraints Q@ and S moves In to the new location (ry, 4, c1,7),
(r1,B,c2,6), (r2, B,c1,€) and (r2, A, c2,£) in *w, see Table 6 (ii). An in-
tercalate involving the symbols A, B and in columns ¢; and ¢ is moved
to an intercalate involving “symbols” ¢; and c; and in “columns” A and
B and the number of intercalates in the first set of symbols is unaffected
by the interchange of the constraints Q and S. Similarly let (ry,c;,C, @),
(r1,c2,D,B), (r2,c1,E, a) and (r,cy, F, B) represent the intercalate 7 in
set T' of w (see Table 7 (i)). Then interchanging the constraints P and T
of w moves 7 to the new location (e, ¢;, C,7y), (8,¢2, D,71), (o, 1, E, 73)
and (B, ca, F,r2) in w* (see Table 7 (ii)). The number of intercalates in set
T is unaffected by the interchange of the constraints P and 7.

[w] a c2 [*w] A B__|
T | Ay Bb T | ay cob
ro | Be A€ T | cze caé
(i) Before interchange ~ (ii) After interchange
Table 6
lwla a2 [or] G & |
1 | Ca Dpg a | Cr Dry
T2 Eﬂ Fa ﬂ ET2 P T
() Before interchange (i) After interchange
Table 7

We can use our invariant to distinguish whether a DYR is isomorphic to
any of its adjugates and classify all transformation sets into species. There
are three possibilities:

(i) w belongs to a species containing a single transformation set if (10)
and (11) are satisfied;

N(w,I,) = N(*w, I)) = N(w*, I,) = N(*w*, I,,) (10)
N(wa 7’) = N(‘wa Tl) = N(w‘, 7’) = N(*w""]) (11)
(ii) w belongs to a species containing two transformation sets if any pair

of w, *w, w*, *w* have the same number of intercalates in each set of
symbols. For example,

N(w,I,) = N(*w*, I,) and N(w,n) = N(*w*, 1) (12)
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(iii) w belongs to a species containing four transformation sets if (13) and
(14) are satisfied:

N(w,In) # N(w,I) # N(w*, I) # N(*w*, I,) (13)
N(w,n) # N(*w,m) # N(w*,n) # N(w*,n) (14)

Remark. If any pair of w, *w, w* and *w* have the same number of
intercalates in sets S and T', then (10) or (11) is satisfied. In particular, if
N(w,I,) = N(*vw*,I,) and N(w,n) = N(*w*,n) are satisfied this implies
that (10) and (11) are satisfied.

A 6 x 7 DYR and its adjugates are shown in Table 8. The number of
intercalates in sets S and T for all 4 DYRs is given in Table 9 and we
can immediately note that (13) and (14) are satisfied and that w and its
adjugates are all non-isomorphic and consequently each of the DYRs shown
in Table 8 belongs to a different species.

Cl G2 E3 F4 A5 D6 B3|E5 G3 Al F6 C3 D4 B2
E2 D3 G6 Al C4 B5 F2|D1 F5 E4 B3 A2 G2 C6
F3 C6 A2 G5 Bl E4 D4|(C2 E1 B6 G4 F4 A3 D5
G4 E5 D1 B2 F6 A3 C5|F3 D2 G5 C1 B5 E6 A4
D5 F1 B4 E6 G3 C2 A6|G6 C4 F2 A5 D6 Bl E3
B6 A4 F5 C3 D2 Gl E1|B4 A6 D3 E2 Gl C5 F1
(w) (w)
Cl F5 D4 A2 B3 G6 E6{D2 E3 Al C4 G6 B5 F6
E2 Gl A3 B4 D6 C5 F2|C3 D4 F5 E6 A2 G2 Bl
F3 D2 E1 C6 G5 A4 B1|F4 Gl D6 B2 C1 A3 E5
G4 A6 B5 F1 C2 E3 D3{B6 C5 E2 G3 F3 D1 A4
D5 E4 F6 G3 Al B2 C4|{E1 F2 G4 A5 B4 C6 D3
B6 C3 G2 Es5 F4 D1 A5|G5 A6 B3 F1 D5 E4 C2

(w*) (*w*)
Table 8
| | N(n) [ N(n) |

w 6 7

*w 6 12

w* 7 7

*w* 7 12
Table 9
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Using our invariant we classified the 2971 DYRs into 772 species. The
results are shown in Table 10.

No. of Trans.
|Aut(w)| || sets in species  Total
fif2f 4 [

1 71 40 711 758
2 1] 2 1 4
3 0|1 0 1
5 0| 2 6 8
6 110 0 1

[ Total JOJ45] 718 | 772 ]

Table 10

1. A5 B4 C1 D1 E2 F3 G6{2. A2 Bl C1 D3 E4 F5 G6
C3 A2 B6 B4 D5 G1 F2 B4 A3 D6 E2 F2 G1 C5
D2 F6 E3 G3 Al B5 C4 C3 E5 G2 A6 D1 B3 F4
E6 D3 G2 C5 F4 A4 Bl D5 G4 A4 F1 B6 C2 E3
F1 G5 D4 A6 B3 C2 E5 El1 C6 F3 G5 A5 D4 B2
G4 E1 F5 B2 C6 D6 A3 F6 D2 B5 C4 G3 E6 Al

3. A2 Bl C1 D3 E4 F5 G6|4. A6 Bl C5 D2 E3 F1 G4
B3 A4 G5 C6 D2 E2 F1 B2 E2 D6 F4 G5 A3 C1
D6 F3 A3 E1 B5 G4 C2 C3 A5 F2 G3 D1 F4 BS§
C4 E6 F2 A5 G3 D1 B4 D4 C4 B3 Al F6 G2 E5
E5 G2 B6 F4 Al C3 D5 El1 G6 A4 B5 C2 D5 F3
Gl C5 D4 B2 F6 A6 E3 F5 D3 Gl E6 B4 C6 A2

5. B4 C2 F1 E5 G1 D3 A6|6. A6 B2 C1 D5 E4 F1 G3
C3 E6 G4 F2 B2 A5 D1 B5 C6 E2 G1 D3 A4 F2
D2 F5 E3 G6 A4 C1 B3 C3 D1 G4 A2 F6 B3 E5
El1 D4 B5 A3 C6 G2 F4 D4 E3 F5 B4 C2 G6 Al
F6 G3 A2 Bl D5 E4 C5 El1 G5 B6 F3 A5 D2 C4
G5 Al D6 C4 F3 B6 E2 G2 F4 A3 E6 B1 C5 D6

7. A3 B6 C1 D1 E2 F5 G4|8. Bl G2 E4 F5 C3 Al D6
B2 C4 E5 G3 D6 Al F2 C4 D5 F2 A6 Gl B2 E3
C5 D2 G6 A4 F1 B3 E3 D3 C1 G6 B3 F4 E5 A2
D4 E1 F4 B5 C3 G2 A6 E2 F3 D1 G4 A5 C6 B4
F6 A5 D3 C2 G5 E4 B1 F6 A4 B5 E1 D2 G3 C5
Gl F3 A2 E6 B4 C6 D5 G5 E6 A3 C2 B6 D4 F1

Table 11
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9. F1 Al E3 G6 C4 D5 B2|10. Bl C3 D4 E5 G2 Al Fé6
D6 F2 A4 B5 G3 C2 E1 E4 G1 F2 C6 D5 B2 A3
G2 D3 Bl A3 F5 E4 C6 D3 F4 A6 B3 C1 G5 E2
E5 G4 F6 Cl1 A2 B3 D4 C2 A5 E1 G4 F3 D6 B4
B4 C5 G5 E2 D1 A6 F3 G6 D2 B5 F1 A4 E3 C5
C3 E6 D2 F4 B6 Gl A5 F5 E6 G3 A2 B6 C4 D1
11. F1 Al B3 C4 D5 G6 E2|12. F1 Al E4 G2 C3 D6 B5
G3 F2 D6 E5 A4 C2 B1 D5 F2 A6 B4 Gl C2 E3
C6 D3 E1 A3 G2 B4 F5 Gé6 D3 B2 A3 F4 E5 Ci1
B5 G4 A2 F6 C1 E3 D4 E2 G4 F3 C6 A5 Bl D4
E4 C5 G5 B2 F3 D1 A6 B3 C5 G5 E1 D2 A4 Fé6
D2 E6 F4 Gl B6 A5 C3 C4 E6 D1 F5 B6 G3 A2
13. Bl G5 E3 F6 C4 Al D2{14. B3 C1 A4 Gl D6 E2 F5
C6 D4 F2 A5 G3 B2 El C6 A5 B2 E4 F1 G3 D2
D3 C2 G1 B3 F5 E4 A6 D1 E3 G5 F3 C2 A6 B4
E5 F1 D6 G4 A2 C3 B4 E5 F2 D3 B6 G4 C4 Al
F4 A3 B5 E2 D1 G6 C5 F4 G6 E1 A2 B5 D5 C3
G2 E6 A4 C1 B6 D5 F3 G2 D4 F6 C5 A3 B1 Eé6
Table 11. cont
w | |[Aut{w)] Generator(s) of Aut w No. of T
P Q S T | setsinw
1 2 (12)(35)(46) (23)(a7)(56) (AC)(DF)(EG) (12)(35)(46) 2
2 2 (13)(25)(46) (12)(36)(45) (AE)(BC)(FG) (13)(25)(46) 1
3 2 (13)(25)(46) (15)(23)(67) (AB)(CF)(DE) (13)(25)(46) 2
4 2 (13)(24)(56) (12)(37)(46) (BC)(DE)(FG) (13)(24)(56) 4
5 3 (135)(264)  (246)(375) (BDF)(CGE)  (135)(264) 2
6 5 (12643) (16374) (BCFED) (12643) 2
7 5 (12643) (16374) (BCFED) (12643) 2
8 5 (12543) (16374) (AFCGD) (12543) 4
9 5 (12543) (16374) (AFCGD) (12543) 4
10 5 (12543) (16374) (AFCGD) (12543) 4
11 5 (12543) (16374) (AFCGD) (12543) 4
12 5 (12543) (16374) (AFCGD) (12543) 4
13 5 (12543) (16374) (AFCGD) (12543) 4
14 6 (12)(36)(45) (23)(47)(56) (BC)(DG)(EF) (12)(36)(45) 1
(13)(25)(46) (24)(36)(57) (BD)(CF)(EG) (13)(25)(46)

Table 12

Table 11 shows a representative w for each of the 14 species of 6 x 7
DYRs with non-trivial automorphism group. For each w, Table 12 gives
the order of the automorphism group and the number of transformation
sets contained within w.
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Remark. Bailey [1, problem 14] asks for more DYRs to be found, “prefer-
ably in infinite series”. Tables 11 and 12 provide a starting point for an
investigation into the construction of an infinite series of (n —1) x » DYRs.
We could begin by scrutinizing the structure of those DYRs that are iso-
morphic to their adjugates.

7 Conclusion

At present there is little in the literature concerning DYRs of order 6 x 7.
Hedayat et. al. [4] described a method to construct DYRs of order (n —
1) x n. Their technique, known as prolongation, utilizes orthogonal Latin
squares (OLS) of order (n — 1) to construct DYRs of order (n — 1) x n
and is consequently dependent on the existence of (OLS). However as there
does not exist a pair of (OLS) of order 6, their method cannot be used to
construct DYRs of order 6 x 7. Although one reason for the scarceness of
6 x 7 DYRs may be the non-existence of (OLS) of order 6, unawareness
of the number of non-isomorphic 6 x 7 Youden squares has undoubtedly
hindered the availability of DYRs of this size.

In this paper we have enumerated and classified all non-isomorphic Youden
squares and DYRs of order 6 x 7. We used all 147 Latin squares of order
7 x 7 to obtain all non-isomorphic 6 x 7 Youden squares. We showed that,
given two Latin squares each with the same number of adjugate sets, the
square with trivial automorphism group will yield more non-isomorphic 6x7
Youden squares than the square with non-trivial automorphism group. For
each of the 3479 non-isomorphic Youden squares, an exhaustive search was
carried out to enumerate the number of non-isomorphic ways of placing a
second set of symbols to form a DYR. We concluded that there are 2971
non-isomorphic DYRs of order 6 x 7. To classify all non-isomorphic DYRs,
we proposed an invariant that involves the number of intercalates in each
set of symbols. Using this invariant, we classified the 2971 DYRs into 772
species.

MacMahon [6] showed that the number of Latin squares of order n is

U, =nl(n-1)T, (15)

where T, is the number of reduced Latin squares of order n. Preece [9]
pointed out that there are as many standard (n—1) x n as there are reduced
Latin squares. Thus (15) also represents the number of standard (n—1) xn
Youden squares. More recently, Kolesova et. al. [5] used (15) together with
Burnside’s theorem to verify the results of Wells [12] concerning the number
of 8 x 8 Latin squares. If a symmetry group acts on the set of Latin squares,
then the set is divided into orbits and and the size of each orbit may be
determined if one knows the size of the automorphism group of any Latin
square in the orbit. As the automorphism group of each non-isomorphic
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6 x 7 Youden square and DYR is now known, the approach of Kolesova et.
al. can be used to verify the results obtained in this paper.
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