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ABSTRACT. Let T = (V, A) be a digraph with n vertices. T is
called a local tournament if for every vertex z € V, T[O(z)] and
T[I(x)] are tournaments. In this paper, we prove that every arc-
3-cyclic connected local tournament T is arc-pancyclic except
T = T-, Ts-type digraphs or Ds.

1 Introduction

A digraph D = (V, A) consists a pair of V, A, where V is a vertex set and
A is an arc set. We say that z dominates y where z,y € V, denoted by
z — y, if (z,y) is an arc of a digraph D. Let S; and S, be two vertex
subsets of V. We say that S; dominates Sz, denoted by S; — Sy, if there is
a complete connection between S; and S; and all arcs between S; and S2
are directed toward 2. For convenience, we write z — S, (resp., S — )
instead of {z} — Sz (resp., S; — {z}). Forany z € V and any S C V, We
define

O(z) ={yly € V, (z,9) € A}, I(z) = {yly € V, (v,z) € A}
Os(z) =0(z)N S, I,(z) = I(z)N S.

A directed path of length k from z to y is denoted by Pi(z,y). A k-cycle
containing arc (z,y) is denoted by Ci(z,y). The converse of D = (V, A)
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is defined as a digraph D = (V| A) such that (z,y) € A if and only if
(v,z) € A.

A semicomplete digraph is a digraph without nonadjacent vertices. A
locally semicomplete digraph is a digraph D that satisfies the following
condition for every vertex z of D, D[O(z)] and D[I(z)] are semicomplete
digraphs. A local tournament is a locally semicomplete digraph without
directed cycles of length 2 and loops. A digraph D is said to be arc-k-cyclic
if each arc of D is contained in a cycle of length k(3 < k < n,n = |V|). An
arc e of D is said to be pancyclic if it is contained in cycles of all length
m, 3 < m < n. A digraph D is said to be arc-pancyclic if each arc of D is
pancyclic.

Other notations and definitions not defined here can be found in {3].

2 The Main Results

The concept of locally semicomplete digraphs, which is a generalization of
semicomplete digraphs or tournaments, was first introduced by J. Bang-
Jensen [1]. Using this new concept, many classical theorems for tourna-
ments have been generalized. For example:

Lemma 1 ([1] Theorems 3.2 and 3.3). A connected locally semicom-
plete digraph has a directed Hamiltonian path, and a strong locally semi-
complete digraph has a directed Hamiltonian cyclic.

In this paper, we prove the following two theorems, which extend two
theorems in [4] and [5] respectively. (See Corollaries 2 and 3 below)

Theorem 1. Every arc-3-cycle connected local tournament T of order
n (n > 3) is arc-pancyclic, except T = Tg-, Ts-type graphs or Dg. (See
Figures 1, 2 and 3).

Figure 1. Dy
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Figure 2.
Ts-type digraphs (The orientation of the edges without arrow
can be chosen arbitrarily.)
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Figure 3.
Te-type digraphs (T} and T both are arc-3-cyclic tournament.
The orientation of the edges without arrow can be chosen arbitrarily.)
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Theorem 2. At most one arc of an arc-3-cycle connected local tournament
is not pancyclic.

Corollary 1. Let T be a connected local tournament of order n. Then T
is arc-pancyclic if and only if T is arc-3-cyclic and arc-n-cyclic.

Corollary 2 ([5], Theorem 1). Let T be a tournament of order n. Then
T is arc-pancyclic if and only, if T is arc-3-cyclic and arc-n-cyclic.

Corollary 3. ([4], Theorem 1). Except for Tg-type digraphs and Tg-
type digraphs, every arc-3-cyclic tournament is arc-pancyclic.
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The proofs of our results are given in the next section.

3 The Proofs Of Theorems

In the following, we shall assume that T = (V, A) is an arc-3-cyclic con-
nected local tournament of order n. In order to prove Theorem 1, we need
the following lemmas.

Lemma 2. ([2], Corollary 3.13). Let P, = (z1,22,...,Zm) and P, =
(y¥2,...,9), m >2,t >3, be paths in T. If there exist i, j,1 <i < j <
m such that z; =y, and z; =y, and V(P))NV(P2) — {y1,:} = 0, then
T has an (z1, T, )-path P such that V(P) =V (P,)UV(P).

If T were not arc-pancyclic, then there is an arc e = (k, 1) in T such that
e is contained in one of m-cycles, 3 < m < k < n, but ¢ is not contained in
any (k + 1)-cycle. i. e.

There does not exist any Pi(1,k) in T. (*)

Let C = Ck(e) = (1,2,...,k,1) be a k-cycle containing e. Without
ambiguity, we also let C be the set of itself’s vertices. Let W =V ~C =
V-{1,2,...,k}, thus |[W| > 1. If O.(w) # 0 and I.(w) # @ for w € W,
we define:

a(w) = max{i|i € Oc(w)}, b(w) = min{i|i € I,(w)}.

Lemma 3. If T satisfies (), then T[W] is a tournament, and then O,(w) =
{1,2,...,a(w)} # 0 and I.(w) = {b(w), b(w)+1,...,k} # 0 forany w e W.

Proof: We prove the following two assertions:
(a) Oc(w) # 0 for w € W if and only if I.(w) # 0.

If Oc(w) # 9, set i = min{j|j € O.(w)}. Suppose that i > 1. By the
definition of a local tournament and {w, -1} C I(3), we have that i—1 and
w are adjacent in T. Thus by the definition of ¢, we have i — 1 — w. Hence
T contains a Pi(1,k) =(1,2,...,i—1,w,4,...,k). This is a contradiction
to (x). Soi=1.

From the above arguments, we also have O.(w) = {1,2,...,a(w)}. If
a(w) = k, then w — C. Hence, since T is arc-3-cyclic, there exists a 3-
cyclic C3(w, 1) = (w,1,z,w) with z € W. Thus T contains a P(1,k) =
(1,z,w,3,...,k). This is a contradiction to (x). So a(w) < k.

Similarly, we have I.(w) = {b(w),...,k} and b(w) > 1 when I.(w) # 0.

Now if Oc(w) # @, then there is a C3(w, 1) = (w, 1, z,w). If x € W, then
1 € I(z) and b(z) = 1. This contradicts b(w) > 1 for any w € {wjw €
W, I(w) # 0}. Hence z € C, i.e., z € I.(w) and I,(w) # 9. Similarly, if
I.(w) # 0, then O (w) # 0 for w e W.
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(b) Let W) = {w|w € W,0.(w) # 0} and Wy = W —-W,. Then W, =W.

Since T is connected and arc-3-cyclic, we have Wy # 0.. Suppose that
W, # 0. Thus for any z € W», we have O(z) = I(z) = @ by (a). Since T'is
connected, there exist z € W) and y € W, such that z and y are adjacent.
Without loss of generality, we assume z — y. (Otherwise, we consider the
converse of T'). Since O.(z) # 0 and z — 1, 1 and y are adjacent and
1 € O.(y) by (a), which is a contradiction. Hence Wy = 0. i.e, W = W;.

From (a) and (b), we have that W C I(1). Hence T[W] is a tournament
by the definition of a local tournament. So Lemma 3 is valid.

For any w € W, we define:

p(w) = min{ili € O(1) N Ie(w)}, q(w) = max{ili € I(k) N Oc(w)}.

Lemma 4. If T satisfies (%), then O(1) NI .(w) # 0, I(k) N O.(w) # 0 and
2 < g(w) < a(w) < b(w) < p(w) <k-1forany we W.

Proof: There is a C3(w,1) = (w,1,z,w). We have z ¢ W by Lemma 3.
Thus £ € O(1) N Io(w) by z — w. And b(w) < z < k—1since k — 1.
Similarly, we have y € I(k) N O.(w) and 2 < y < a(w). By the definitions
of p(w) and q(w), we have 2 < y < g(w) < e(w) < b(w) <p(w) <z < k-1
for every w € W. So Lemma 4 is valid.

Lemma 5. If T satisfies (x), then b(w) = b(w’) and a(w) = a(w’) for
every w,w’ € W. And T[W] is an arc-3-cyclic tournament.

Proof: Suppose that there are two distinct vertices w, w’ in W such that
b(w) # b(w'). Let wy € W be chosen such that b(wp) = min{b(w)|lw € W}.
Let W) = {w|w € W,b(w) > b(wp)} and Wo = W — W;. Then W; # 0,
Ws # @ and b(wp) = b(w) — w for every w € W. Suppose that there
exist w; € W; and wy € Wy such that wy — w. Since w; — wp and
b(ws) — wo, we know that wy and b(w;) are adjacent and w; — b(wz) by
b(w;) > b(wp) = b(ws). Hence a{w;) > b(wy). By the definitions of p(w,)
and g(ws), we have that

2 < q(ws) < a(ws) < bwn) < a(wn) < b(wr) <p(wr) <k—1 (A)

and hence g(wz2) + 1 < p(wy) — 1.

When g(ws) + 1 = p(w1) — 1, we have that g(wz) = a(wz) = b(wz) — 1
and b(wq) = a(wy) = b(wy) — ! = p(w;) — 1 from (A). Then we have
Pe(1,k) = (1,p(w1), ..., k—ywy,wa,2,...,q(ws), k) in T, a contradiction.
Hence q(ws) +1 < p(wy) —2. Thus it follows that either p(w;) — 2 > b(ws)
or g(ws) + 2 < a(w;) by (A). We have either Pi(1,k) = (1,p(w1),...,k —
Lwy,q(ws) +1,...,p(w1) — 2,w2,2,...,q(w2), k) if p(w1) — 2 > b(wy) or
P"(l’ k) = (lvp(wl)s ey k—l)wl’ Q(w2)+2, o ap(wl)'—l) w2, 2) soe Q(w2); k)

246



if g(wq) + 2 < a(w;). These are contradictions. Hence no vertex of W;
dominates any vertex of W,. W, — W since T[W] is a tournament.

Let w; € W) and w, € W,, then wo — w; and b{wp) = b(wp) — wo.
There is a C3(ws, w;, T, ws). T ¢ W since Wy — W;. Hence we have z € C
and a(w;) > = > b(wz). Thus we have that: g(wz) < a(ws) < b(wz) <
a(wy) < b(wy) < p(w1). And hence g(w2) +1 < p(w;) — 1. As above,
we can also prove that T contains a Px(1,k), a contradiction. Therefore
b(w,) = b(wz) for any wy, ws € W. Similarly, we can prove a{w;) = a(ws)
for any w;, wa € W. Hence T[W] is an arc-3-cyclic tournament. So Lemma
5 is valid.

By Lemma 5, we denote e = a(w) and b = b(w) for each w € W. Thus by
Lemma 3 and Lemma 4, Wehave 2 <a <b< k-1, O (w)={1,2,...,a},
and I.(w) = {b,b+1,...,k}. Hence T[{1,2,...,a}] and T[{b,b+1,...,k}]
both are tournaments.

Lemma 6. If there are a < v < 6 in C such that 1
a+1<y<é6§<kb+1<6§, (a,7) € Aand (y-1,8)
contains a Pi(1, k).

<
€

Proof: Let o, v and 6 satisfy the conditions of Lemma 6 and w € W. Then
there is Px(1,k) =(1,2,...,0,7,...,6 = L,bw,a+1,...,v-1,6,...,k).

Furthermore, we shall use the following symbols. For 1 < m < a, b <
! < k, we denote:

R(m) = {ip <i < k,(m,i) € A}, L{l) = {i]l <3 <a,(51) € A).

Thus for any w € W, 1 < m < a and b <1 < k, since there exist C3(w, m)
and Cs(l,w), it is easy to see that R(m) # 0, L(l) # @ and k ¢ R(1),
1 ¢ L(k). Hence we can define:

¥(m) = max{ili € R(m)},
(1) = min{i]i € L(1)},
p=min{ilb<i<k-1,(1,i) € A},
q=ma-X{i|2 <1< a’(i:k) € A}.
Then (m,¢(m)), (p(1),1), (1,p), (9,k) € A and b < ¢P(m
p()<a,2<q<a<b<p<k-1 foranylSmSa.andb
Lemma 7. If T satisfies (x) and b > e+ 1, then T = Ds.

m) < k, 1
<I<k

Proof: First, we have {a+1,...,b—1} # 0, and ¢ and w are nonadjacent
foranyie {a+1,...,b—1} and any w € W. There is a C3(a,a+1) =
(a,a+1,z,a)in T. Obviouslyz ¢ W. Ifz € {a+2,...,b—1}, thenz and w
are adjacent by z — a and w — q, a contradiction. So z ¢ {a+2,...,b—1}.
Sincew — ifori€ {1,2,...,a—1}, a+1 — z, a+1 and w are nonadjacent.
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Wehave z ¢ {1,2,...,a—1}. Thus, z € {b,b+1,...,k}. Supposez =1b, .,
b — a, then (b) < a and ¥(a) > b. w(b) and b—1 are adjacent by ¢(b) — b
and b—1 — b. Since b—1 and w are nonadjacent and w — ¢(b), ¢(b) — b—1.
Similarly, we can get p(b) — {a+1,...,b—1}. Let a = ¢(b), vy =a+1 and
6 = y(a), then by Lemma 6 there is a Px(1,k) in T. This is a contradiction
to (x). Hence z > b. Similarly, using C3(b—1,b) = (b —1,b,3,b — 1), we
have y < a.

Ifb > a+2, z and a+ 2 are adjacent sincea+1 —z anda+1—a+2.
Since a + 2 and w are nonadjacent and z —» w foranyw e W,a+2 - z
by the definition of a local tournament. Similarly, {a+1,...,b -1} — z.
Let a = y(< a),y=b—1 and § = z(> b). By Lemma 6 there is a Px(1,k)
in T, a contradiction. Hence b = a + 2.

Furthermore, a+1 and x —1 are adjacent sincea+1 —+zandz—-1 — z.
Then a+1 — z—1 by the fact that z—1 — w, w and a+-1 are nonadjacent.
Similarly, we have

b—1=ae+1->{b+1,...,z—1,z} (B)

Now the following three cases must be considered:

Case1l. k>b+1anda> 2.

If ¢(b) < a, then we may choose a = p(b), v = b and § = z. Hence there
is a Px(1,k) in T by Lemma 6. This is a contradiction. So ¢(b) = a, i.e,
a — b. Since 1,a € O(w), 1 and a must be adjacent. Suppose 1 — a. If
¢(a —1) > b, then we may choose a =1,y =a and § = ¢(a —1). There is
a P(1,k) in T by Lemma 6. ‘This is a contradiction. So ¥(a —1) = b since
P(a—1)>b,ie.a—1—b Now,leta=a—1,y=>band § =z, there is
also a Pi(1, k) in T by Lemma 6, a contradiction. Hence we always assume
that

a—landa—b (©)

in the following arguments.

1) {1,2,...,.a-1} - a+1.

1 —» a+1 since a + 1 and w are nonadjacent and 1, a + 1 € O(a).
Furthermore, 2 - a+ 1since 1 — 2 and 1 — a + 1. Similarly, we have
{1,2,...,a—1} s a+1

2)b—1l,a+1—kandj—obforeachje {b+2,...,k}.

If there exists a j € {b+2,...,k} such that b — j. Then T contains a
Pi(1,k)=(1,2,...,a-1,e+1,b+1,...,5 - 1,w,a,b,5,...,k) by 1), (B)
and (C). This is a contradiction. So {b+2,...,k} —b.

Since k, a+1 € I(b), we have that k and a+1 are adjacent. Furthermore,
a+1 — k since k — w and a 4+ 1 and w are nonadjacent.

248



Since 1, b € O(k), 1 and b are adjacent. If 1 — b, then we may choose
a=1,y=>band § = k. Then there is a Pc(1,k) in T by Lemma 6. This
is a contradiction. Hence b — 1.

3)k=b+2andp=>b+1.

p>bsinceb - 1. If k—1 > b+ 2, then T contains a Pi(1,k) =
Lp,...,k-1,b...,p-1w2,....,b—1 =a+1,k) by 2). Thisis a
contradiction. Hence k =b+2andp=>5b+1.

4) (a-1,b)¢ A,a=3,p=6and k=T.

Note that ¥(a — 1) € {b,b+ 1,b+ 2 = k}. If 9(a — 1) = b, then we may
choosea=a—1,y=19(a—-1)=b=a+2and § = k. By 2) and Lemma
6, there is a Pi(1,k) in T. This is a contradiction. So ¥(a — 1) > b and
(a—1,b) ¢ A.

If a —1 > 2, then we have either Pi(1,k) = (1,2,q,...,¢(a - 1) —
1,w,3,...,a—1,9%(a—1),...,k),if2 = aor Pe(1,k) = (1,a+1,...,9¥(a—
1)-1 w,a, ye.ya—1,9%(a—1),...,k) by 1), if e = 2. These contradict
to (). Hence a _<_ 3. Thus a = 3 by the assumption that a > 2. Finally by
3)wehavep=b+1=a+3=6andk=b+2=a+4="T.

5)z=kandg=2 (hencea+1—-z=k—a).

Suppose z < k = b+ 2. z = b+ 1 since z > b. By 3) and the choice
of z, we have p = b+ 1 = z — a. Hence there is a Px(1,k) = (1,p =
z,a,b,w,2,a+1,k) by 1), 2) and (C). This is a contradiction to (x). Hence
rz=kand ¢g=2.

6)b+1—2.

2 and b+ 1 are adjacent since 2, b+ 1=p € O(1). If 2 — b+ 1, then
2 and b are adjacent by b — b+ 1. b — 2 since (2,b) = (a — 1,b) ¢ A by
4). Then there is a Pr(1,k) = (1,p=b+1,w,a,a+1,b,2 = ¢, k). Thisis
a contradiction. So b+ 1 — 2.

7) |W|=1.

Suppose that there is a wp € W — {w}. Without loss of generality, let
w — wp. Then there is Pi(1,k) = (1,p = b+ 1,w,wp,2,a,a+ 1, k) by 2).
This is a contradiction.

8) 2 and 5, 3 and 6 are nonadjacent.

Otherwise, there is a Pi(1, k) in T. For example if (6, 3) € A, there exists
a Pg(1,k)=(1,p=6,3=a,a+1,b,w,2 = ¢,k). This is a contradiction.

Up to now, we have proved that T = Dg (See Figure 1) in this subbase.

Case 2. k=b+1and a > 2.

Sinceb<z<k=b+landb<p<k=b+1l,z=kandp=},ie.
a+l—oz=kandl op=b=a+2 Leta=1,y=a+2and § =k,
there is a Pi(1,k) in T by Lemma 6. This is a contradiction.

Case 3. a=2and k> b+ 2.
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Consider the converse of T. Note that Case 3 in T' is Case 2. in ‘f So
Lemma 7 is valid.

Lemma 8. If T satisfies (x) and b = a + 1, then T is a Tg- or Tg-type
digraph.

Proof: We consider the following two cases.

Case 1. |W| > 2 (let w, w’ € W)

Suppose p > a+ 1, ¢ < a and k > 6. Then there exists an 7 €
{1,2,...,k} — {1,9,a,a + 1,p,k}. If 1 < i < q, then ¢ > 3 and there
isa P(1,k)=(Q,p,..., k-1, w,q+1,...,a,a+1,...,p-1,2",3,...,q,k).
Similarly, T contains a Pi(1,k) when ¢ < i < aora+1 < i < por
p < 1 < k. These are contradictions. If p > a+ 1, ¢ < a and k = 6, then
g=2,a=3and p=>5 Because |[W| > 2 and T[W] is an arc-3-cyclic
tournament by Lemma 5, we have |W| > 3. Let {w;, w2, w3} C W and
w; — wy — w3. Then T contains a Pi(1, k) = (1, p, w1, ws, ws, g, k). This
is a contradiction. Hence we have p=ce¢+1or g=a.

In the following we may assume that, without loss of generality, p = a+1
(Otherwise g = a, we can consider the converse of T'). Thus1 = a+1=5.
Now we can obtain the following assertions.

9) g < a (therefore (a, k) ¢ A).

Ifg=a,thena=q — k. Thereisa P(l,k) =(l,p=a+1,...,k—
1,w,2,...,a,k), a contradiction.

10)k=a+2,Vi={¢+1,...,a} = a+1 and T[V;] is a tournament.

Suppose k >a+2. If pla+2)=a,leta=1,y=a+land §=a+2,
then there is a P(1,k) in T by Lemma 6. This is a contradiction. Hence
p(a+2) < a. Since a+1, k € I(w), a+1 and k are adjacent. Ifa+1 — k,
let @ =p(a+2), y=a+2and § = k in Lemma 6, then there is a P(1, k)
in T, a contradiction. Hence k — a + 1. Thus a and k are adjacent by
a — a+1. Hence k — a by 9). Thereis a Cs3(k, a) = (k,, a, 2, k). Obviously,
z2¢W,2#1,z#a+1and 2 ¢ {g+1,...,a — 1} by the definition of q.
Let P, =(l,p=a+1,...,k—1,w,2,...,2,k) and P, = (w,2+1,...,aq,z2).
If z€ {2,...,q}, then P, and P; satisfy the condition of Lemma 2, hence
there is a Pi(1,k) in T. This is a contradiction. So z € {a +2,...,k —1}.
Thus there is a Pe(l,k)=(l,p=a+1,...,2-1,w,2,...,a,2,k) in T, a
contradiction too. Hence k = a + 2.

Let Vi = {g+1,...,a}. Then T[V}] is a tournament by V; C O(w).
Since k = a + 2 and by the definition of ¢, ¥(j) = a + 1 for each § € W},
thatis V] = a+1.

11) T[V1] is a strong tournament.

Ifnot, then |V}] > 2 and ¢+1 — a. Thereisa C3(g+1,a) = (q+1,a,y, g+
1). Obviously y ¢ W. By ¢ — k and Lemma 6, y ¢ {1,2,...,q — 1}.
y # k by 9). And y # a+ 1 by 10). Since T[V}] is not strong, y ¢ V.
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Hence y = q. ie. a -y =gq. Let P, = (1,p = a+ 1,w,2,...,q,k)
and P, = (w,qg+1,...,a,q). Then P; and P, satisfy the conditions of
Lemma 2 and there is a P(1,k) in T, a contradiction. So T[V;] is a strong
tournament.

12) ¢ = 2 (therefore 2 — k) and V; — 1.

Suppose ¢ > 3. By ¢ — k and Lemma 6, we have ¢+ 1 — 2. We may
assume that (¢+1,h,...,q+1) is a Hamilton cycle in T[V;] by 11). Then
thereis a Pe(1,k) = (1,p = a+1,w,h,...,q+1,2,...,q, k), a contradiction.
Hence g = 2.

Now we show that V; — 1. T[{1,2} U Vi] is a tournament since {1,2} U
Vi C O.(w). Suppose there exists an x € Vj such that 1 — z. Let
(z,...,h,z) be a Hamilton cycle in T[V;]. Then there is a Pi(1,k) =
(1,z,...,h,a+1,w,2,k) by 10). This is a contradiction. Hence V; — 1.

13) T is a tournament.

In fact, T[{1,2}UV)] is a tournament since {1, 2}UV; C O(w). T[ViU{k}]
is a tournament since V; U {k} C I(1), 2 and a + 1 are adjacent by 1 — 2
and 1 — p = a+ 1. Hence T is a tournament by 10) and 12).

Therefore by 13 ) and p = a + 1, using the result of (9) case (i) in the
proof of Theorem 1 of [4], we get that T is a Te-type digraph (See Figure 3)
in this case.

Case 2. |[W|=1.

Let W = {w}. If p=a+1 or ¢ = a, then we can obtain that T is a
Te-type digraph by a similar argument in Case 1. Hence in the following
we may assume that p > a+1 and ¢ < a. And we can obtain the following
assertions.

14) There is either ¢(a) = a+ 1 or p(a+1) =a.

Suppose ¥(a) >a+1and p(a+1) <a,leta=¢p(a+1),y=a+1and
§ = 1(a) in Lemma 6, then there is a Px(1,k) in T. This is a contradiction.
Hence ¢¥(a) =a+1 or p(a+1) =a.

Without loss of generality, let ¥/(a) = a+1. Otherwise we can consider the
converse of T. Then (a,j) ¢ Aand 1 < ¢(j) < a foreach j € {a+2,...,k}.
Because ¢(¢(j)) > j > a+2 for each j € {a+2,...,k}, we may define:

m=max{ill <i<a-1,9y(t)>2a+2}, Vo={m+1,...,a}.

By the definition of m and ¢, we have that 2 < ¢ < m < a, ¥(m) 2 a+ 2
and 7 does not dominate any vertex of {a+2,..., k} for each i € V5. Hence

P(i) =a+1 for each i € V5. (D)

15)m+1—{1,2,...,m—1}and g+1 - {1,2,...,g—1}.
Suppose there exists j € {1,2,...,m—1} such that j - m+1. Leta = 3,
v =m+1 and § = ¥(m). Then thereis a Pi(1, k) in T by Lemma 6. This is
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a contradiction. Hencem+1 — {1,2,...,m—1} since T[1,2,...,q,...,a}]
is a tournament. Similarly, we have that ¢+ 1 — {1,2,...,9~1}.

16) k=a+3,p=a+2and (a+1,1) € A.

Sincea+1<p<k-1,k > a+3. Suppose k > a+ 3. Then we can
obtain the following results.

(a)k—1—a+1.

Suppose a+1 — k—1. By ¢(e) = a+1, we have p(a+2) < a. Then let
a=p(a+2),y=a+2and § =k — 1, there is a Pg(1,k) in T by Lemma
6 . This is a contradiction. Hence k—1 —»a+1since k-1, a+1 € I(w).

b)k-1-Vo={m+1,...,a}.

a and k — 1 are adjacent since k —1,a € I(a+1). So k—1 — a since
¥(a) = a + 1. Similarly, by (D). we have k — 1 —» Vo = {m +1,...,a}.

(¢c) m=2.

Suppose m > 3. Since m+1 — 2by 15) and k~1 —» m+2by a+1 > m42
and (a), (b), there is a Pr(1,k) = (1,p,...,k=1,m+2,...,p— 1, w,q+
1,...,m+1,2,q,k). This is a contradiction. So m = 2.

Now wehave 2=q —» ksince2<¢g<m=2 Andk—-1-m+1by
(b). Thus thereis a Px(1,k)=(1,p,...,k—1,m+1=3,...,p—1,w,2=
m = ¢, k). This is a contradiction. Hence k =a+3and p=a + 2.

Sincel > p=a+2anda+1—a+2 1and a+1 are adjacent. Thus
a+1 — 1 by the definition of p.

17) k = {g+1,...,a,a+1}. Therefore k — V5.

Suppose a+1 — k,leta=1,y=p=a+2and § = k in Lemma 6, then
there is a Pi(1,k) in T. This is a contradiction. Hence k — a + 1. Since
k—a+1l,a—a+1and¢¥(a)=a+1, wehave k = a. Sincea—1 — qa,
a—2—>a-1,...,9+1 — g+ 2 and the definition of ¢q, we can obtain
k—a-1,...,k— g+1 one by one. Thatis, k — {¢+1,...,a,a+1} and
k— Vs,

18) m > 3.

Suppose m < 3. Then m = 2 and ¢ = 2. By 17) (k,a) € A. Thereis a
Cs(k,a) = (k,a,z, k). Obviously, z # w, z # a+ 1 since k = a+1 in 17).
We also have z # a + 2 since Y(a) =a+ 1. z# 1since k — 1,and z ¢ V,
by 17). Hence £ = 2 =m. That is, a — 2.

By 16) we have a + 2 = p € O(1). So 2 and a + 2 are adjacent. If
2 >a+2 a+2and m+ 1 are adjacent since 2 = m — m+ 1. Thus
a+2 — m+ 1 by the definition of m.There is a Pc(1,k) = (1,p = a +
2,m+1=3,...,a+1,w,m=2=gq,k), a contradiction. Hence a+2 — 2.
Since @ — 2, a and a+ 2 are adjacent. a+2 — a since ¥(a) = a+1. When
m+1<a-—1, wehave a+42 — a —1 since a —1 — a and the definition of
m. Similarly, we have a4+2 —-a—2,...,a+2 — m+ 1. Then there is a
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Pi(Lk)=(L,p=a+2,m+1,...,a+1,w,2 = g,k), a contradiction. So
m > 3.

19)2—>a+1and m — a.

In fact, we have m+1 — a +1 by (D), and m + 1 — 2 by 15) and 18).
Hence 2 and a + 1 are adjacent. If a + 1 — 2, then there is a Pe(1,k) =
(1,p =a+2,w,q+1,...,a+1,2,...,q,k). This is a contradiction. So
2—-a+1.

Suppose @ — m. Since ¥(m) € {a + 2,a + 3 = k}, we have P, =
(1,2,a+1,w,3,...,m,a+2,k) (if p(m)=a+2) or P, =(1,2,a+1,a+
2,w,3,...,mk) (if ¥(m) =a+3) and P, = (w,m+1,...,a,m). Clearly
P, and P, satisfy the conditions of Lemma 2, hence T contains a Pi(1, k).
This is a contradiction. So m — a.

20) T'[V2] is a strong tournament.

If not, then |V} > 2 and m+1 — a. Thereis a Cs(m +1,a) = (m +
1,a,z,m+ 1) in T. Obviously, we have z # w, =z ¢ {1,2,...,m — 1} by
15), z # k by 17), z # a+ 1 by (D), z # a + 2 by 14), z # m by 19), and
z ¢ V3 since T'[V3] is not strong. Thus there is no C3(m + 1, ) in T. This
contradicts the fact that T satisfies the arc-3-cyclic property.

21) m = 3.

If m > 4, then m+1 — 3 by 15). Let (m+1,h,...,m+1) be a Hamilton
cycle in T[V;). Since (m) € {a+2,a+3 = k} and 19), we have Pi(1, k) =
1,2,e+1,w,h,...,m+1,3,...,m,¥(m) = a+ 2,k) (if ¥(m) = a+2)
or Pe(1,k) = (1,2,a+ 1,6+ 2,w,h,...,m+1,3,...,m,k) (if ¥(m) = k).
Hence T contains a Pi(1, k) by Lemma 2. This is a contradiction. Hence
m =3 by 18).

22) ¢ < m (that is, ¢ = 2) and (k, m) € A.

By 17) there is a Cs(k,a) = (k,a,z,k). Using a similar proof of 18),
we have z ¢ Vo U {l,a+ 1,6+ 2,w}, and z # m by 19). So z = 2 and
2=z —k.

Ifg=m,theng=3and m =q — k. Sincea+2=k—-1 -k, m
and a + 2 are adjacent. If a + 2 — m, then there is a Px(1,k) = (1,p =
a+2,m=3m+1,...,a+1,w2,k), a contradiction. So m — a+ 2.
We have a4+ 2 — m + 1 since m — m + 1 and the definition of m. Thus
T contains a Pi(1,k) = (l,p=a+2,m+1,...,a+1,»,2,3 = ¢,k), a
contradiction. Hence ¢ < m and ¢ = 2. Thus k — m = 3 by 17).

2)m—a+2,a+2—>a,a=4andk=7.

¥Y(m) = a+ 2 since 22) and a+ 2 < Y(m) < a+ 3 = k. That is,
m — a+ 2. And note that m — a by 19), hence a and a + 2 are adjacent.
Then a 42 — a since Y(a) = a+1.

By the definitionof manda—1—¢,a-2—a—-1,...,m+1—-m+2
anda+2 — a, we have that a+2 — {a — 1,6 —2,...,m + 1}. If a > 4,
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thena+2 - m+2since m+2 =5 < a. So, there is a Px(1,k) = (1,p=
a+2,m+2,....,a,a+1,wym=3m+1,m—-1=2=gq,k) by 15). This
is a contradiction. Hence a < 4. So we have a = 4 since 3 =m < a. And
thenk=a+3="7.

24) 6 and 2, 5 and 3 are adjacent respectively, where the orientation can
be chosen arbitrarily.

Because 6 =a+2=p, 2€ O(1) and 3, 5=a+ 1 € O(2) by 19), hence
24) is true.

Uptonow, if p >a+1, g <aand |W|=1, we have proved that T is a
Ts-type digraph (see Figure 2).

Note that the converse of *Ts- (Tg-, resp.) type digraphs is a Ts- (Ts-
resp.) type digraphs. Therefore the proof of Lemma 8 is a completed.

Proof of Theorem 1: Let T = (V, A) be an arc-3-cyclic connected local
tournament of order n. If T is not arc-pancyclic, then there is an arc e in T
such that e is not pancyclic. Thus T satisfies (*x). By Lemmas 3, 4 and 5,
we only consider the following two cases: b > a+1and b= a+1. And then
by Lemma 7 and Lemma 8, T' is a Tg- or T-type digraph or Dg. Therefore
the proof of Theorem 1 is completed.

Proof of Theorem 2: By Theorem 1, if T is an arc-3-cyclic connected
local tournament and an arc e is not pancyclic, then T must be a Tg- or
Ts-type digraph or Dg. It is easy to check that in each of Tj-, Ts-type
digraph and Dsg, there exists only one arc (k,1) which is not pancyclic.

Proof of Corollary 1: Note that for Tg- or Tg-type digraph or Dg, they
are not arc-n-cyclic.
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