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ABSTRACT. We call a node of a simple graph connectivity-redun-
dant if its removal does not diminish the connectivity. Studying
the distribution of such nodes in a CKL-graph, i.e., a connected
graph G of order > 3 whose connectivity & and minimum degree
& satisfy the inequality § > (3x — 1)/2, we obtain a best lower
bound, sharp for any s > 1, for the number of connectivity-
redundant nodes in G, which is x + 1 or x + 2 according to
whether k is odd or even, respectively. As a by-product we
obtain a new proof of an old theorem of Watkins concerning
node-transitive graphs. .

1 Introduction

In this note we consider only finite simple graphs. As usual, by V = V(G),
6 = §(G), and k = x(G) we denote the node set of a graph G, the minimum
degree of a node in G, and the connectivity of G, respectively. For a subset
U c V, by G—U we denote the induced subgraph {V —U) of G. Generally,
the terminology and notation in this note follow [4].

In order to measure the contribution of a single node v of a nontrivial
graph G to x(G), Akiyama et al. introduced [1] the concept of the coke-
siveness cg(v) of v in G, defined by cg(v) = £(G) — k(G —v). In this note
we will call a node v of G connectivity-essential, or an e-node, if cg(v) > 0;
we will call v connectivity-redundant, or an r-node, if cg(v) < 0. It can be
easily seen that G may have at most one node v with c¢g(v) < 0, which is
the case if and only if G is obtained from some n-connected, n > 1, graph
H by adding a node, v, and then joining it to some n — 1 nodes in H.

The following is an obvious lower bound for the number of e-nodes in G,
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which is certainly positive if G is a connected nontrivial graph:
#ess(G) 2 k. (1)

In this note we find a positive lower bound for the number #red(G) of
r-nodes of G, with placing some constraints on G. (Of course, #ess(G) +
#red(G) = |V|.) We now mention two known related results. One is the
content of Exercise 5.25 of [4], attributed to Chartrand, Kaugars, and Lick;
it says essentially that if G has x > 2 and satisfies the inequality:

3k—-26<1, 2

then #red(G) > 1. The other is Exercise 10 of [9, §2.2], whose result
is due to Lozovanu and Syrbu; it says essentially that every graph G of
connectivity 2 satisfying (2) has #red(G) > 4.

In this note we are particularly concerned with connected graphs G of
order |[V| > 3, and of connectivity x > 1 satisfying (2). We will refer to
such graphs as CKL-graphs; “CKL” is for “Chartrand, Kaugars, Lick”. We
now state the principal result of this note:

Theorem. For any CKL-graph G of connectivity s, we have
#red(G) 2 2[(x+1)/2]. 3)

Furthermore, this bound is sharp for each value of k (k > 1).

Let us see immediately what this theorem gives if applied to trees. Clearly,
a node v of a tree G = T of order > 3 is connectivity-redundant if and only
if v is an endpoint, that is, a node having degree equal 1. Next observe that
every T is a CKL-graph of connectivity 1, and thus (3), when applied to
trees, is essentially equivalent to a well-known fact that every tree of order
> 2 has at least two endpoints (see [4]).

We include here an example of a class of graphs that attain all the bounds
(1), (2), and (3). Let k be any positive integer congruent to 1 modulo 3.
With K,, denoting the complete graph on n nodes, consider the graph
G = K(2k4+1)/3 + 2K(k+2)/3, Wwhere 2Kk 2)/3 is the union of two disjoint
copies of K(x42)/3, and “4” denotes the join of the summand graphs (see
[4]). Ghas 6§ = (k+2)/3—-1+(2k+1)/3=k; k = (2k+1)/3 = (1+26)/3;
#red(G) = 2(k + 2)/3 = k + 1; and #ess(G) = «.

The Theorem will be completely proven in Section 3, in which we study
the structure of the set of r-nodes in a given CKL-graph; the sharpness of
the bound (3) will be established in the next section. In Section 4 we develop
the structural characterization of the sets of r-nodes and of e-nodes in an
arbitrary graph. Finally, in Section 5 we address connectivity properties of
node-transitive graphs.
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2 Examples

Here we will construct three series of examples. For providing these we will
employ a binary operation due to Sabidussi [7}-the composition H;[H>)
(also called the lexicographic, or wreath, product) of two graphs H; and
Hj with V(H,) N V(Hz2) = 0, defined to be the graph with the node set
V(Hl [Hz]) =V(H1)XV(H2), and the edge set X(Hl [Hz]) = {(ul, ‘uz) (‘01, ‘Uz) .
either [ujvy € X(H,)] or [u; = v; and ugvs € X(Ha)]}. (This operation
is also useful for the study of the groups of graphs; one application will be
addressed in Section 5.)

With C4 denoting the cycle of length 4, our initial series consists of the
graphs Eg(n) = C4[Kyp), n > 1. We next “disbalance” Ey(n), firstly by
removing one arbitrary node u to obtain the series E;(n) = Ep(n) — u
(n 2 1), and secondly by removing a pair of nonadjacent nodes {u,v} to
obtain Ey(n) = Eo(n) — {u,v} (n > 2). Clearly, regardless of the choice
of the nodes to be removed, the graphs E;(n) and E3(n) are well-defined,
up to isomorphisms. It is readily seen that Ey(n) has connectivity 2n,
with all nodes essential; therefore x(Ei(n)) = 2n — 1, and x(E2(n)) =
2n — 2. Furthermore, it is straightforwardly verified that E)(n) and E»(n)
are CKL-graphs, while Eg(n) is not (for any n). Finally, it is also directly
verified that, given an odd [resp., even] value of x, the graph E;(%4!) [resp.,
E»(%£2)) attains both bounds (1) and (3).

3 A Structural Characterization of the Set of r-Nodes

Let G be a graph of connectivity s, x > 1. Its r-nodes break into equiva-
lence classes, called r-classes; two r-nodes are in the same r-class provided
they are joined by an r-path, that is, a path through only r-nodes. The ai-
tachment of a given r-class R, denoted by att(R), is defined to be the set of
e-nodes which are adjacent to at least one node in R; note that |att(R)| > x.
A subset A C V is called a separating set provided G — A is not connected
or, in other words, has at least two components, in which case we say that
A separates one node from another if those are in different components. Let
A be a separating x-set, that is, a separating set of cardinality x, and let I
be some component of G — A. The induced subgraph S = (AUV(I)) of G
is called a suspension; A is called the articulation set of S, art(S), and V(I)
the interior set of S, int(S). When S is the union of some suspensions with
a common articulation set, art(S), we preserve the notation int(S) for the
union of the interior sets of the members of S. A suspension S is called
minimal if, given a separating x-set A’, A’ C V(S) implies A’ = art(S).
Note that any CKL-graph is certainly not complete, and hence has at least
one separating x-set.

Lemma 1. Let G be a CKL-graph and let A be a separating x-set. Assume
that at least one of the components of G — A corresponds to a minimal
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suspension, S;, with art(S;) = A, and denote by Sy the union of the
remaining suspensions having A as their common articulation set. If there
is another separating x-set B such that BNint(S;) # 0, then A— B (#0)
entirely belongs to the node set of only one component of G — B.

Proof: Observe first that, since S; is minimal, we have B N int(Sz2) # 0.
Assume for a contradiction that A— B has members in, at least two, different
components of G — B. Those components correspond to a number (> 2)
of suspensions having B as their common articulation set. Denote one of
those suspensions by T}, and the union of the others by T5. For i =1 and 2,
denote the sets ANint(T;) and BNint(S;) by A; and B;, the interior parts
of A and B, and by a; (# 0) and b; (# 0) their cardinalities, respectively.
Of course, a; + a2 = by + by = k —|AN B|. We have four principal cases to
consider:

Case 1: a; < min{b,, a, ba}.

Case 2: a; = by < ag = by.

Case 8: a; = by > az = bs.

Case 4: ay =b; = az =by = (k — |AN BJ)/2.

We shall establish the impossibility of each case shortly, but first we
explain why these cases are indeed exhaustive. Case 1 corresponds to the
existence of a strict minimum among a; and b;, and we will see shortly
that it is enough to consider one, say a;, of the numbers chosen as such
minimum; the other choices are handled analogously. In Cases 2 and 3,
the consideration is up to reversing “a;” and “e”, which is a matter of
notation.

We will say that two subsets of V' are adjacent if some node in one is
adjacent to some in the other. Note that a component of G—(AU B) cannot
be adjacent to both A; and Aj [or, resp., both By and By), for otherwise
int(Ty) and int(Tz) [resp., int(S1) and int(S2)] would be joined by a path
in G— B [resp., G — A]. Hence each component I of G- (AU B) is adjacent
to at most two interior parts; if one is of A, then the other must be of B.
Furthermore, I must be adjacent to ezactly two interior parts, and maybe
also to AN B, for otherwise G would be separated by some m-set with
m < k. For each pair {i,j}, where i,j € {1, 2}, among the components of
G — (AU B) adjacent to both A; and Bj, we select one of maximum order,
which we designate by I;;; it may happen that V(I;;) = @, though.

We next proceed to complete the reductio ad absurdum by proving the
impossibility of each of the four above-named cases. Regardless of the case
in question, at least one of the following three alternatives must arise: (i)
V(Iu) = V(I12) = 0, (ii) V(I11) # 9, (iii) V(I12) #0.

Impossibility of Case 1. If (i) arises, then any node occurring in A; may
be only adjacent to nodes in B; and Bs, and maybe also to ones in AN B,
as well as other nodes in A; itself. Then it can be easily verified, regardless
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of whether « is odd or even (using the fact that 6 is an integer), that a node
in A; has degree < x 4+ /2. Thus we come to a contradiction with the
inequality (2). If (ii) or (iii) arises, then the nodes in U = V(I11) or V(I12),
respectively, are adjacent to a total of at most a3 +max{b;, b2} +|ANB| < &
nodes not in U, which is a contradiction.

Impossibility of Case 2. Suppose first that (i) arises. Then, in the same
way as in Case 1 (in fact, we only used a; < a2), we obtain that the
degree of a node occurring in A; does not satisfy (2). If (ii) arises, then we
obtain a contradiction like we did in Case 1. So we can suppose that (iii)
arises, but (ii) does not. Then, taking B; as A; just above, we conclude
that V(I;) # 0, for otherwise the members of B; would not satisfy (2).
Therefore V' (I2;) is the interior set of some suspension, which we designate
by S»;, with art(Sm) C AoUBU (An B). Thus

|a.rt(5'21)| <az+b + IAn Bl =K. (4)

Clearly, strict inequality may not hold in (4), but if x is attained, we come
to a contradiction with the minimality of 5.

Impossibility of Case 8. This is established as that of Case 2; merely
reverse “1” and “2” in indices, beginning from the list of alternatives (i)-
(iii) through to the discussion as to what happens if (iii) [which alternative
now has the form V(I2;) # 0] arises, but (ii) [now in the form V(I22) # 0]
does not, in which place we now immediately have V(I3;) # @, and so that
we can continue like we did in Case 2 to come to a contradiction.

Impossibility of Case 4. Again, similarly to Case 2, we conclude that
V(I11) or V(I21) is nonempty, which is impossible by the minimality of S;.
The details are left to the reader.

The proof is complete. ]

Observe that, unless G is complete, a node of G is connectivity-essential
if it occurs in some separating x-set, and connectivity-redundant if not.

Lemma 2. Let G be a CKL-graph. If S is a minimal suspension in G,
then int(S) is an r-class, with its attachment having cardinality x.

Proof: Actually, our job is to prove that ini(S) is an r-class, in which event
its attachment, coinciding with art(S), certainly has cardinality x. Suppose
for a contradiction that int(S) is not an r-class. Then it must contain some
e-node which we designate by u. When x = 1, this already contradicts the
minimality of S. Thus we may suppose x > 2, in which case u must occur
in some separating x-set B, B # art(S), satisfying Lemma 1 with art(S) as
A, and S as S;. Hence art(S) — B belongs to one component of G — B. On
the other hand, every node v (if any) in V(G) — (V(S)U B) must be joined
to at least one node in art(S) — B by a path avoiding B, for otherwise v
would be separated from the nodes of int(S) by the set B — int(S) having
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cardinality < <. By a similar argument, thanks to the minimality of S, one
can establish that B N V(S) cannot separate any node of int(S) — B (if
such exists) from the nodes of art(S) — B. But now it follows that G — B
is connected, the final contradiction. (m|

Proof of the Theorem: By (2), given an r-class R in G, |att(R)| = &
implies [R| > [%41]. Thus it suffices to prove that G has at least two such
r-classes. Let A be a separating x-set. Pick first some two suspensions S,
and S» with art(S;) = art(S2) = A, and next pick two minimal ones, one
in S; and the other in S>. Now applying Lemma 2 finishes the proof of (3).
Thus, with the sharpness of the bound established in Section 2, the proof
is complete. (]

4 The Redundancy-Essence Graph

Like the set of r-nodes breaks into r-classes, the set of e-nodes breaks into
e-classes (merely replace “r-” by “e-” in the definition of the preceding sec-
tion). Denote by R; the r-classes of a given connected graph G, and by E; its
e-classes. We will call an r-class together with its attachment, R; Uatt(R;),
an extended r-class, and denote it by R}. In order to display the distribution
of r-nodes and e-nodes globally, we associate with G the redundancy-essence
graph, re(G), defined as follows: V(re(G)) = {R{}U { E;}, with two nodes
adjacent provided that the three conditions are satisfied: (i) one node cor-
responds to an extended r-class R], (ii) the other corresponds to an e-class
E;, and (iii) E; N R} # 0. Note that re(G) is a bigraph unless a trivial
graph.

The so-introduced concept of the redundancy-essence graph re(G) has
some resemblance with the concept of the block-cutpoint graph bc(G) orig-
inally introduced in Harary and Prins [5] and also in Gallai [2]. Our defini-
tion of re(G) is converted to Harary’s definition of bc(G) (see [4, Chapter
4]) by replacing “extended r-class, R}” by “block, B;”, and “e-class, E;”
by “cutpoint, c;”. However, even when G is a graph of connectivity equal
1 without adjacent cutpoints, re(G) need not coincide with bc(G). In fact,
graphs which are the block-cutpoint graphs of some 1-connected graphs
have been characterized [5] as trees in which the distance between any two
endpoints is even, whereas re(G) of a 1-connected graph G need not be
a tree at all. For example, let F be a graph obtained from K24 by the
removal of a pair of independent edges; clearly, F is well-defined (up to iso-
morphisms); also observe that it contains a cycle of length 4 and has re(F)
isomorphic with F itself. (Note that F is a CKL-graph of connectivity 1,
and also note that re(G) is never isomorphic with G for any 2-connected
CKL-graph G; the latter is derived easily from the above proof of the The-
orem.)

Recently a characterization of the redundancy-essence graphs re(G) has
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been obtained [6] in dependence on the connectivity of G: A nontrivial
graph H is the redundancy-essence graph of some graph G having a pre-
scribed positive value n of connectivity if and only if (i) for n = 1, H is
a connected bigraph with one part of the bipartition entirely consisting of
cut nodes, or (ii) for n > 2, H is a connected bigraph.

5 An Application to the Groups of Graphs

Denote by #orb(G) the number of transitivity classes (“orbits”) into which
V(G) splits under the action of the automorphism group of a given graph
G. G is said to be node-transitive if #orb(G) = 1, in which event G is
necessarily regular, that is, the degree of each node is the same, denoted
by p(G) = p (= 6). Let us now return to the examples constructed in
Section 2; since both factors of C4[K,] (with n fixed) are node-transitive
graphs, then Ep(n) is too. (With regards to transitivity properties of graph
compositions, we refer the interested reader to [8].) As for the CKL-graphs
E;(n) and E3(n), none of these is node-transitive; in fact, observe that
#orb(E,(n)) = 3, and #orb(Ex(n)) = 2 (for any n).

Since no automorphism of a graph sends an r-node onto an e-node (or vice
versa), and since inequalities (1) and (3) both hold for any CKL-graph, it
follows that if G is connected and node-transitive, then G is certainly not a
CKL-graph. Hencg, if such a graph G has order > 3, then it does not satisfy
inequality (2), and thus £ < 3 - 2——- Furthermore, for the graphs Eo(n),
all of which are node-transmve we have p(Eo(n))/x(Eo(n)) = 3 - & — 3
(as n — 00). Thus we are led to the following result:

Corollary. For every connected node-transitive graph G, other than K,
and K3, we have £ < 3 — L. < 3. Furthermore, although the bound of $
is never attained, it is still best possible.

In essence, this result is originally due to Watkins [8] who employed
another method. In a more general form the bound of % is also presented
in [3}], in which book (pp. 170-171) it is established that every connected
node-transitive graph G admits the so-called atomic partition (defined in
[3]), which yields 2 < 3.

Finally, note that the family of CKL-graphs is the utmost family of graphs
which is free from node-transitive members, in the strong sense of an infinity
of such members possible (e.g., Fo(n), n = 1,2,3,...) with bound (2)
minimally weakened (i.e., raised from 1 to 2).

Acknowledgement. The authors are indebted to the referee for helpful
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the bounds (in the Introduction).
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