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Abstract

A graph is well covered if every maximal independent set has
the same size and very well covered if every maximal independent
set contains exactly half the number of vertices. In this paper, we
present an alternative characterization of a certain sub-class of well-
covered graphs and show that this generalizes a characterization of
very well covered graphs given by Favaron [3].

1 Introduction

In what follows, G denotes a simple, undirected, finite graph G = (V, E)
with | V | vertices and | E | edges. A vertex is isolated if it has no
neighbours. For a graph G, the size of a maximum independent set is
denoted by a(G), and the number of cliques in a minimum clique cover by
k(G).

The concept of a well-covered graph was introduced by Plummer [4]. He
defined a graph to be well covered if every maximal independent set in it
has the same size. These graphs are of interest because the independence
number problem, which is NP-complete for general graphs, can be solved
efficiently for this family. Chvétal and Slater [2], and Stewart and the
author (8], independently showed that the problem of recognizing a graph
as being not well covered is NP-complete. Hence, it is unlikely that there
exists a good characterization of this family. See [5] for an excellent survey
on well-covered graphs.

A graph is said to be very well covered if every maximal independent set
in it contains exactly half the vertices in the graph. Berge [1] showed that
the size of a maximal independent set of a well-covered graph G without
isolated vertices is bounded by | V | /2. Hence, any such graph can be
transformed into a very well covered one by adding an appropriate number
of isolated vertices. Therefore, we, like all previous researchers in this area,
restrict our attention to very well covered graphs without isolated vertices.
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Hence, in this paper, the term very well covered stands for very well covered
without isolated vertices.

Very well covered graphs were studied independently by Staples [9] and
Favaron [3]. Favaron gave a characterization of these graphs that showed
that all such graphs have perfect matchings that obey a certain property P.
In this paper, we give an alternative characterization of the family Wxp, a
sub-class of well-covered graphs that properly contains the family of very
well covered graphs. We show that all graphs G belonging to this family
have clique partitions of size a(G) that obey a certain property Q. We
also show that this characterization generalizes Favaron’s characterization
of very well covered graphs.

This paper is organized in the following manner. Section 2 introduces
some definitions and states some preliminary results. Sections 3 presents
an alternative characterization of the family Wsp and shows that this is
a generalization of Favaron’s characterization of very well covered graphs.
Conclusions and future work make up Section 4.

2 Preliminaries

We first introduce some definitions and notation. We then define and char-
acterize the family Wsp and state some results on this family. For the
proofs of these results, and for more information on this and other related
families of well-covered graphs see ([6],(7]). We conclude this section by
stating Favaron’s characterization of very well covered graphs.

1 ~ v denotes that the vertices # and v are adjacent. Given a vertex set
A CV, < A> denotes the subgraph induced by A. N(v) and N{v] denote
the open and closed neighbourhoods, respectively, of a vertex v € V', where
N@w)={z |z € V and z ~ v} and N[v] = N(v) U {v}. N(S) and NI[S]
denote the open and closed neighbourhoods, respectively, of a set S C V,
where N(S) = UN(v), for all v € S, and N[S] = N(S)US. A vertex is
simplicial if < N(v) > is a clique.

A graph G is said to be complete k-partite if its vertex set can be
partitioned into one or more disjoint independent sets, or parts, such that
each vertex is adjacent to every other vertex that is not in the same part.
It is said to be complete k,-partite if it is complete k-partite with all parts
having the same number of vertices. In the instances where values are
assigned to k and n, k corresponds to the number of parts, and n to the
number of vertices in each part, respectively.

Let the vertex set V of a graph G be partitioned into disjoint sets, or
layers, Ly, Ly,...,Ly, 1 < t <| V |, such that the induced subgraphs, or
lgraphs, H; =< L; >, 1 <1 < t, are complete k,-partite. Then G is said to
be partitioned into complete k,-partite subgraphs. E; denotes the edge set,
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k; the number of parts, and n; the number of vertices in each part, of H;,
1< ki <| L; |, ni =| L; | [ki. Hj is written as H; = (Pi1, Pizy -+«  Pi;, Ei),
where P;, P2, ..., Pix, denote the parts in H;. A part P, is adjacent to a
vertex v if v has a neighbour in P,. Two parts P, and P, are adjacent, or
connected, or are neighbours, if there exist u € P, and v € P, such that
u ~ v. P, is completely connected to P, if < P,UP, > is complete bipartite.
Two layers are adjacent if there is a part in one that is adjacent to a part
in the other.

The intersection R of a pair of maximal independent sets of G is said to
be mazimal if for every pair of maximal independent sets I, and I, that
contain R, I, NI, = R.

Theorem 2.1 The intersection R of a pair of mazimal independent sets I,
and I, of a well-covered graph G is magzimal if and only if <V — N[R] >
is complete ky,-partite.

We now define and characterize the family W4pg.

Definition 2.2 A graph G is said to belong to the family War if
a) G is complete ky-partite, or
b) G is well covered and for every mazimal R, the intersection of a pair
of mazimal independent sets of G, < N[R] > belongs to War.

From Definition 2.2 and Theorem 2.1, it is easy to see that a graph G
belonging to the family Wag can be recursively decomposed into complete
kn-partite subgraphs such that the corresponding vertex sets partition the
vertex set of G into layers. Clearly, there can be more than one such
decomposition, since at every stage of such a decomposition, there can be
more than one maximal intersection R for which < N[R] > is in Wupg.

Theorem 2.3 A graph G belongs to the family War if and only if its
vertices can be partitioned into layers Ly, La,...,Ls, 1 < 8 <| V|, that
have the following properties:

a) The layers induce complete kn-partite subgraphs, with every layer ex-
cept L, having at least two parts. Ly has one or more parts.

b) For every two adjacent layers L; and Ly, there exist parts P;e L;
and Pi € Ly, such that | N(P;)N Ly |=0 and | N(Pc)NL; [=0, and
the parts of L; — P; and Ly — Pi are completely connected to each
other.

c) The non-common neighbours of every pair of parts in every layer are
completely connected to each other.

From [6] and (7], we recall some of the properties of a graph G belonging
to this family: All recursive decompositions of G yield the same set of layers;
that is, the layers obtained are unique. Isolated vertices, if any, form the
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layer L;. Every maximal independent set of G contains exactly one part
from each layer. For each layer L;, 1 < i < t, we can find a maximal
intersection R such that L; = V — N[R].

In ([6],[7]), it is shown that War properly contains the family of very
well covered graphs. We now state Favaron’s characterization of very well
covered graphs.

Favaron’s theorem ([3]) For a graph G, the following are equivalent:
a) G is very well covered.
b) There ezists a perfect matching in G that satisfies P.
¢) There ezists at least one perfect matching in G and every perfect
matching of G satisfies P.

Property P in the above theorem is defined as follows.

Property P A matching M in a graph G satisfies property P if for every
edge (v,v) € M, N(u) N N(v) = ¢, and N(u) — {v} is adjacent to all of
N(v) - {u}.

Favaron also defined the following equivalence relation for very well
covered graphs.

Definition 2.4 Let M be a perfect matching of a very well covered graph G.
Two vertices z and y are called equivalent if either = = y or if (z,v), (y,u) €
M and xz € N(u) and y € N(v).

She showed that the resulting equivalence classes form a partition of the
vertex set of G into independent sets with certain properties.

3 The generalization

Let ¢ = {C1,C3,...,Ct}, 1 £ k < n, be a clique partition of a graph
G, with the corresponding vertex set being {V;,V3,...,Vi}. We denote
by C(v) the clique (€ C), and by V(v) the corresponding vertex set, that
v € V belongs to. We define property Q as follows.

Property Q We say that a clique partition C satisfies property Q if:
a) INw)NVi|=00r | NO)NV;|=|Vi|-1,VoeV,1<i<k.
b) (w € V(v),u € N(v) — N(w)) = (N(u) 2 N(w) — N(v)), Vv € V.

The first condition states that if a vertex in G has a neighbour in some
clique in the clique partition, then it is adjacent to all but one vertex in
that clique. The second one states that for every two vertices in a clique,
their non-common neighbours are completely connected to each other.

266



We now give an alternative characterization of the class War. We say
that a clique partition of a graph G is an a-clique partition if the number
of cliques in the partition is a(G), the size of a maximum independent set

in G.

Theorem 3.1 The following are equivalent for a graph G.
a) G belongs to War.
b) There ezists an a-clique partition of G that satisfies Q.
c¢) There ezists an a-clique partition of G, and every a-clique partition

of G satisfies Q.

Hence, if G is in WaRg, every a-clique partition of G satisfies Q. In order to
prove this theorem, we need to state some definitions and establish some
results.

Let C be a clique partition of a graph G, and let C satisfy Q. We define
the following equivalence relation.

Definition 3.2 We say that v and v are equivalent if either u=v or
| V(u) |=| V(@) | and z ~ v,y ~u, Vz € V(u) — {u},y € V(v) — {v}.

That is, two vertices 4 and v are said to be equivalent if either they are
the same vertex, or if their clique sizes are the same, and every vertex of
V(u) — {u} is adjacent to v, and every vertex of V(v) — {v} is adjacent to
u. Note that two distinct vertices u» and v in the same clique cannot be
equivalent as this would require each one to be adjacent to itself, which is
not permitted.

We need to show that the above is indeed an equivalence relation. We
first prove the following lemma.

Lemma 3.3 Let C be a clique partition of a graph G end let C satisfy Q.
Then, if u is equivalent to v, u # v, < V(u)UV(v) > is complete k-partite,
with {u,v} forming one of the parts.

Proof:

Since u and v are equivalent, we know that | V(u) |=| V(v) | Also,
C(u) and C(v) are cliques. Since u is adjacent to all of V(v) — {v}, from
Property Q a), u is not adjacent to v. Similarly, v is adjacent to all but
u in V(u). Consider some vertex z € V(u) — {u}. Since z ~ v, from
Property Q a), = is adjacent to all but some y € V(v) — {v} in V(v).
Likewise, y is adjacent to all but z in V(u). Therefore, the vertices of V'(u)
and V(v) can be paired into disjoint sets of two vertices each such that the
neighbour set of a vertex in a pair consists of all but the other vertex in the
pair. From the above, {u,v} forms one such pair. This proves the lemma.

O
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Figure 1: Equivalence of u and w

Now, let u be equivalent to v, © # v, and v be equivalent to w,
u,v # w. Since | V(u) |=| V(v) | and | V(v) |=| V(w) |, it follows
that | V(z) |=| V(w) |. From Lemma 3.3, < V(u)U V(v) > is complete
kq- partite, as is < V(v) U V(w) >. Also, u % v and v o w; with Q a),
this implies that C(u) # C(w). Consider a part {z,y} in < V(u) UV (v) >,
z€V(u),y€V(v), z#u,y#v. Now,v ~z and y ~ w. Also, v % w and
Y 9 z. Since v and y are in the same clique C(v) and have non-common
neighbours z and w respectively, from Property Q b), w ~ (see Figure 1).
Therefore, w is adjacent to all the vertices in V(u) — {u}. In a similar
fashion, we can show that u is adjacent to all of V(w) — {w}. That is, u is
equivalent to w. Therefore, the relation of Definition 3.2 is an equivalence
relation.

Let EC(u) denote the equivalence class of u, and let CC(x) denote the
corresponding clique class; that is, CC(u) is made up of the cliques C (v)
corresponding to each vertex v € EC(u), together with the edges between
the cliques. Let V'C(u) represent the vertex set of CC(u) (see Figure 2).
We now prove the following lemma.

Lemma 3.4 Let C be a clique partition of a graph G, and let C satisfy Q.
Then the following are true:
a) The equivalence classes partition V into independent sets.
b) The clique classes are complete k,-partite with each part forming an
equivalence class, and form a partition of G.

Proof:

a)

Consider the equivalence class EC(u) of a vertex u € V. From Lemma 3.3,
the vertices in EC(u) are pairwise disjoint, that is, EC(u) is an independent
set. As it is an equivalence relation, no vertex can appear in more than one
equivalence class.
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Figure 2: Equivalence and clique classes of the vertex u
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b)

Let v be in EC(u), v # u. Consider z € V(u), z # u. Since v is in
EC(u), using Lemma 3.3, we have that < V(u) U V(v) > is complete ky-
partite, with {u,v} forming one of the parts. Therefore, there has to be a
y € V(v), y # v, that forms a part with z in < V(u) U V(v) >. Thus, y is
adjacent to all of V(u) — {z}, and = is adjacent to all of V(v) — {y}. Also,
| V(u) |=| V(v) |, since v is equivalent to u. Hence, y is equivalent to z.
So for each vertex v € EC(u), we can find a y € V(v) that is equivalent
to z. Now, u is in C(z), by our choice of z. Using a similar argument,
we can show that for each z € EC(z), we can find a w € V(z) that is
equivalent to u. Therefore, | EC(u) |=| EC(z) |. From a), EC(u) and
EC(z) are mutually disjoint independent sets. Thus, each vertex z in V' (u)
yields an equivalence class EC(z), | EC(z) |=| EC(u) |, whose vertices
are from VC(u). Therefore, the EC(z)’s partition VC(u) into mutually
disjoint independent sets, all of which have the same size, with each EC(z)
having exactly one vertex from each clique (€ C) in CC(u). Since every
two vertices in EC(u) are equivalent to each other, from Lemma 3.3, the
cliques (€ C) in CC(u) form pairwise a complete k-partite graph. From
the above, CC(u) is complete k,-partite with n =| EC(u) |. It is easy to
verify that for every vertex v € VC(u), v # u, the clique class CC(v) is
the same as CC(u). Therefore, when we refer to the clique classes, we are
referring to the distinct clique classes obtained from the equivalence classes.
Clearly, every clique in the clique partition C belongs to some clique class,
and no clique can belong to more than one clique class. Hence, the clique
classes form a partition of G (see Figure 3 for an example).

O
We are now ready to prove Theorem 3.1.

Proof(of Theorem 3.1):

a) = ¢)

G belongs to Wap. Therefore, the vertices of G can be partitioned into
layers L, to L. that satisfy properties a) to c¢) of Theorem 2.3. From
Theorem 2.3 a), the corresponding lgraphs are complete k,-partite. Hence,
each lgraph can be decomposed into cliques giving an a-clique partition
of G since, by [7], every maximal independent set of G contains exactly
one part from each layer. Let one such a-clique partition be given by
C = {C1,C;,...,Cq(g)}- We observe that each clique in C appears in
exactly one Igraph and has exactly one vertex in each part of that Igraph.
That the vertices obey property Property Q a) follows from Theorem 2.3 a)
and b); that they obey Q b) follows from Theorem 2.3 ¢). Hence, there exists
an a-clique partition in G that satisfies Q. Since, for any graph, the size of a
minimum clique partition is greater than or equal to the size of a maximum

270



W X
C2 [ - :\

y )
CS ° o

G
EC(u)=EC(w) EC(v)=EC(x)

Twd v

Cu=C(v) < | e

Cw=C(x)

cy=c) « 1

M

CC(u)=CC(v)=
CC(w)=CC(x)

CC(y)=CC(2)

Figure 3: Equivalence and clique classes for the graph G

2n



independent set, x(G) = a(G).

Consider any a-clique partition ¢’ = {C{,C’é,...,C('x(G)} of G. Since
#(G) = a(G) and G is in Wy, every maximal independent set of G con-
tains exactly one vertex from each clique in C’. Consider any decomposition
of G into layers L; to L,. We show that the cliques in C’ can be arranged
to form the corresponding lgraphs H; to H;. We ignore isolated vertices
since each one forms a separate clique in the clique partition, and together
form the layer L, in the decomposition. Consider some layer L;, 1 <i < t.
As stated in Section 2, we can find a maximal intersection R, the intersec-
tion of a pair of maximal independent sets of G, such that L; = V — N[R]
(see [6] for a proof). We now show that N[R) consists of vertices from only
those cliques in C’ that have a vertex in R. Assume not. Then there exists
C;j € C', 1 £ j £ a(G), that has no vertex in R, but has at least one
vertex v in N[R]. Since G is in Wy, so is G2 =< N[R] >. Since R is a
maximal independent set of G2, every maximal independent set of G has
size | R |. Now, every maximal independent set of G contains exactly one
vertex from each clique in C’. Therefore, starting with v, we can form an
independent set that contains exactly one vertex from each clique (€ C’)
that has a vertex in R. This set has size >| R | implying that G5 is not in
Wag, which is a contradiction. Hence, N[R] consists of vertices from only
those cliques in C’' that have a vertex in R. That is, the lgraph H;, induced
by L; = V — N[R}, contains exactly those cliques from C’' that do not have
a vertex in R. Since the number of vertices in R is given by a(G) — n;,
there are a(G) — n; cliques from C’' in < N[R] >. As the number of cliques
in C’ is also a(G), there are exactly n; cliques from C' in H;.

Now, the lgraphs are complete k,,-partite. The size of a part in H; is n;,
and the maximum possible size of a clique in it is given by k;, the number of
parts in it. Hence, the minimum number of vertex disjoint cliques required
to cover the vertices of H; is n;, each being of size k;. Since the cliques in
C' are vertex disjoint, this means that the n; cliques in H; have exactly k;
vertices each, and form a partition of the vertices of H;. Therefore, each
lgraph in the decomposition contains whole cliques from €’ such that the
cliques form a clique partition of that Igraph. Since the sum of the n;’s is
a(G), and there are a(G) cliques in C’, and the Igraphs are vertex disjoint,
each clique in C’ appears in exactly one Igraph in the decomposition. That
C' satisfies Property @ follows from the fact that the layers satisfy properties
a) to ¢) of Theorem 2.3.

c) = b)
Follows.
b) = a)
There exists a clique partition C of G that satisfies . From Lemma 3.4, the
equivalence classes form a partition of the vertex set of G into independent

272



sets. From the same lemma, each clique class is complete k,-partite, with
each part forming an equivalence class. A clique class is constructed by
taking an equivalence class and picking all the cliques in C that contain the
vertices of the equivalence class. Since the clique classes are disjoint, every
equivalence class is in exactly one clique class. From Lemma 3.4 b), the
clique classes are complete k,-partite and form a partition of the vertex set
of G into layers. We show that G is in W4 by showing that the subgraphs
induced by these layers, that is, the clique classes, satisfy properties a) to
¢) of Theorem 2.3.

property a)

From Lemma 3.4, we know that the clique classes are complete k,-partite.
Isolated vertices, if present, will all be in the same equivalence class, and
hence will form a separate clique class.

property b)

Let CC(z) and CC(y) be two different clique classes. Let z € EC(z) from
the class CC(z) be adjacent to y € EC(y) from the class CC(y). From
Property @ a), there exists y; in C(y) that z is not adjacent to. Since
CC(y) is complete k,-partite, y, is adjacent to each 2 € EC(y). Since y
and y; are in the same clique C(y), using Property Q b), z is adjacent to
all such z (see Figure 4). Therefore, = is adjacent to all of EC(y). By a
similar argument, y, and every other vertex in EC(y), is adjacent to all of
EC(xz). Thus, < EC(z)U EC(y) > is complete bipartite.

Therefore, if parts from different clique classes are adjacent, they are
complete bipartite. This enables us to do the following reduction on the
clique classes: replace each part in a clique class by a single vertex, thus
reducing each clique class to a single clique; replace the set of edges between
two adjacent parts by a single edge. Clearly, this transformation preserves
the relationship between the clique classes. Since the clique classes now
consist of single cliques, the clique class CC(u) of a vertex u is the same
as C(u), the corresponding vertex set VC(u) is the same as V(u), and the
equivalence class EC(u) consists of the single vertex u. Hence, we will use
C(u), V(u) and E(u) to refer to the clique class, the corresponding vertex
set and the equivalence class, respectively, of a vertex u € V.

We are now ready to prove Theorem 2.3 b). Two clique classes are said
to be adjacent if there is a part in one that is adjacent to a part in the
other. Consider a clique class C(z) that is adjacent to another clique class
C(y). Let i =| V(z) | and j =| V(y) |, with ¢ < j. Let p be the number
of vertices of V(z) that have a neighbour in V(y), and g be the number
of vertices of V(y) that have a neighbour in V(z). Since C(z) and C(y)
are adjacent, 0 < p < i and 0 < q < j. Moreover, from Property Q a),
q2>j—1,p>1i—1, and the number of edges between C(z) and C(y) is
p(7 — 1) = q(¢ — 1). This implies in particular that p < q.
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If p = 4, then p divides q and thus p = q = i = j. The edges between
C(z) and C(y) are those of a complete bipartite graphs minus a perfect
matching. Let (z,w) be the edge of this perfect matching incident to z.
The vertex = is adjacent to all but w in C(y) and w is adjacent to all but z
in C(z). Hence, z and w are equivalent, contradicting the fact that every
equivalence class contains exactly one vertex.

Hence, p =i —1, ¢ = § — 1, and there exists exactly one vertex u in

V(z) that has no neighbours in V(y) and one vertex v in V(y) that has
no neignbours in V(z), and the edges between V(z) — {u} and V(y) — {v}
are those of a complete bipartite graph. Therefore, the clique classes obey
property b) of Theorem 2.3.
property c)
Consider a clique class CC(z). Every part in CC(z) has exactly one vertex
from each clique C(v), Vv € EC(z). From b), which we have just proved,
if parts from different clique classes are adjacent, they are completely con-
nected. Property c) follows from this and Property @ b).

a

- We now show that Theorem 3.1 is a generalization of Favaron’s theorem.
We define the family Wag, as follows.

Definition 3.5 A graph G belongs to Wapa if G belongs to Wag and each
layer in any decomposition of G contains exactly 2 parts.

Assume that the graph G in the above theorem belongs to Wagz2; that
is, the graph is very well covered. An a-clique partition is now a perfect
matching in G. That is, each clique in an a-clique partition C of G is a K.
Using Property @ a), we see that a vertex in a clique in C can be adjacent
to at most one vertex in any other clique in C. Therefore, the vertices in
a clique in C do not have a common neighbour. We can use this fact to
rewrite Property @ for graphs that have a perfect matching. A perfect
matching M is said to satisfy Property @Q if the following condition is true.

(w € V(v),u € N(v),u # w) = (v € N(w)) and (N(u) 2 N(w) -
N(v)),VveV.

We see that this is the same as the Property P defined by Favaron. That
is, the theorem reduces to Favaron’s theorem for very well covered graphs.

Now let us see what happens to the equivalence relation of Definition 3.2
when G is very well covered graph without isolated vertices. From Favaron’s
theorem, there exists a perfect matching in G. Hence, any clique partition
of G consists of K3’s. Therefore, the equivalence relation reduces to the
following.
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u and v are equivalent if either u = v, or u € N(V(v) — {v}) and
v € N(V(u) — {u}).

This is the same as the equivalence relation defined by Favaron (Defini-
tion 2.4), and hence the equivalence classes obtained are the same.

4 Conclusions and future work

We have given an alternative characterization of the class W4 g, a sub-class
of well-covered graphs, in terms of a clique partition of size o that obeys a
certain Property (). We have shown that when the cliques in the partition
are K,'s, the clique partition reduces to a perfect matching, Property Q
reduces to Property P, and the characterization reduces to Favaron’s char-
acterization of very well covered graphs. This is an interesting result since
it generalizes the structure of very well covered graphs as characterized by
Favaron. We note here that this generalization does not change the com-
plexity of the recognition problem for the class W4 g as compared to that
for the class of very well covered graphs; it remains tractable for both the
classes (see [6]). An interesting problem is to see if the class Wsg can be
generalized further, perhaps by relaxing properties b) and/or ¢) of Theo-
rem 2.3, while still preserving the tractability of the recognition problem.
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