# A construction of holely perfect Mendelsohn designs\*

Chang Yanxun
Institute of Mathematics
Hebei Normal College
Shijiazhuang 050091
P.R. China

ABSTRACT. In this article we give a direct construction of HPMD. As an application, we discuss the existence of (v, 6, 1)-PMD and obtain an infinite class of (v, 6, 1)-PMD where  $v \equiv 4 \pmod{6}$ .

#### 1 Introduction

The concept of a perfect cyclic design was introduced by N.S. Mendelsohn [18]. This concept was further studied in a subsequent paper [6], where the notation of resolvability was discussed and associations made with certain classes of quasigroups and orthogonal array with interesting conjugacy properties. A development of the concept was made by D.F. Hsu and A.D. Keedwell [16], where the designs were called Mendelsohn designs. In what follows we shall adapt the terminology and notation in [16] and introduce the definitions involving the concept of Mendelsohn designs.

A set of k distinct elements  $\{a_1, a_2, \ldots, a_k\}$  is said to be cyclically ordered by  $a_1 < a_2 < \cdots < a_k < a_1$  and two elements  $a_i$ ,  $a_{i+t}$  are said to be t-apart in a cyclic k-tuple  $(a_1, a_2, \ldots, a_k)$  where i + t is taken modulo k.

Let v, k and  $\lambda$  be positive integers. A  $(v, k, \lambda)$ -Mendelsohn design (briefly  $(v, k, \lambda)$ -MD) is a pair  $(X, \mathcal{B})$  where X is a v-set (of point) and  $\mathcal{B}$  is a collection of cyclically ordered k-subsets of X (called blocks) such that every ordered pair of points of X appears consecutively in exactly  $\lambda$  blocks of  $\mathcal{B}$ . The  $(v, k, \lambda)$ -MD is called r-fold perfect if each ordered pair of points of X appears t-apart in exactly  $\lambda$  blocks for all  $t = 1, 2, \ldots, r$ . A (k-1)-fold perfect  $(v, k, \lambda)$ -MD is called perfect and denoted it briefly by  $(v, k, \lambda)$ -PMD.

<sup>\*</sup>Research supported by NSFC.

In graph notation, a  $(v, k, \lambda)$ -MD is equivalent to the decomposition of the complete directed multigraph  $\lambda K_v^*$  on v vertices into k-circuits. A  $(v, k, \lambda)$ -PMD is equivalent to the decomposition of  $\lambda K_v^*$  into k-circuits such that for any r,  $1 \le r \le k-1$ , and for any two distinct vertices x and y there are exactly  $\lambda$  circuits along which the distance from x to y is r.

If we ignore the cyclic order of the elements in blocks, a  $(v, k, \lambda)$ -PMD becomes a  $B(v, k, \lambda(k-1))$ . Therefore, we can consider perfect Mendelsohn designs as a generalization of balanced incomplete block designs.

Since the complete directed multigraph  $\lambda K_v^*$  contains  $\lambda v(v-1)$  arcs and each block as a circuit contains k arcs, it is easy to see that the number of blocks in a  $(v, k, \lambda)$ -PMD is

$$\frac{\lambda v(v-1)}{k}$$
.

This leads to an obvious necessary condition for the existence of a  $(v, k, \lambda)$ -PMD, that is,

$$\lambda v(v-1) \equiv 0 \pmod{k}. \tag{1}$$

This condition is known to be sufficient in many cases, but certainly not in all.

For k=3, it has been shown in [3], [17] that the necessary condition for the existence of a  $(v,3,\lambda)$ -PMD is sufficient, except for the non-existing (6,3,1)-PMD. An alternative proof can be found in [24].

For k=4, Mendelsohn started in [18] the investigation of the existence of (v,4,1)-PMD, and noticed that a (v,4,1)-PMD is equivalent to the existence of a quasigroup of order v satisfying certain identities. A partial solution for  $v\equiv 1\pmod 4$  was obtained in Bennett [2]. Zhang [22] discussed the remaining case  $v\equiv 0\pmod 4$ . An almost complete solution for the existence of a  $(v,4,\lambda)$ -PMD was presented in [11], where v=12 and  $\lambda=1$  is the only unsolved case. F.E. Bennett recently reported finding a (12,4,1)-PMD. So the necessary condition (1) for the existence of  $(v,4,\lambda)$ -PMD is also sufficient, except for v=4 and  $\lambda$  odd, v=8 and  $\lambda=1$ .

For k=5, some new constructions by weighting and by k-difference sequence were introduced and an almost complete solution for the existence of a  $(v,5,\lambda)$ -PMD was presented in [7], [8]. A (90,5,1)-PMD, a (110,5,1)-PMD and a (130,5,1)-PMD were found in [1] and [25]. A (86,5,1)-PMD, (146,5,1)-PMD and (18,5,5)-PMD was obtained in [13]. Chang [14] obtained a (v,5,1)-PMD for v=26,36,46,66,126,186,206,246. We summarize the results as follows: The necessary condition (1) for the existence of a  $(v,5,\lambda)$ -PMD is sufficient, except for v=6 and  $\lambda=1$ , and the possible exceptions of  $(v,\lambda)$  where  $\lambda=1$  and  $v\in\{10,15,20,30,50,56\}$ .

For k=6. Miao and Zhu in [19] proved that (v,6,1)-PMD exists whenever v>6 and  $v\equiv 0,1\pmod 6$  with at most 150 possible exceptions of which 2604 is the largest. (6,6,1)-PMD does not exist. When  $v\equiv 3,4\pmod 6$ , although the Wilson's theory on PBD-closure [20] can be used to show that a (v,6,1)-PMD exists whenever v is in these classes and v is sufficiently large, neither a specific bound on v nor a specific value of v for  $v\equiv 3,4\pmod 6$  is known. In Section 4 we will give an infinite class of (v,6,1)-PMD where  $v\equiv 4\pmod 6$ .

For k = 7, a partial solution has been given in [5], [10]. For recent results on PMDs with some additional properties such as resolvability, incomplete PMDs, PMDs with holes, and perfect Mendelsohn covering designs, the reader is referred to [4], [9], [12], [23].

### 2 Construction by filling in holes

We denote by  $K_{n_1,n_2,...,n_h}$  the complete multipartite directed graph with vertex set  $X = \bigcup_{1 \leq i \leq h} X_i$ , where  $X_i$   $(1 \leq i \leq h)$  are disjoint sets with  $|X_i| = n_i$ ,  $v = \sum_{1 \leq i \leq h} n_i$ , and where two vertices x and y from different sets  $X_i$  and  $X_j$  are joined by exactly  $\lambda$  arcs (x,y) and  $\lambda$  arcs (y,x).

If  $K_{n_1,n_2,...,n_h}$  can be decomposed into k-circuits such that for any r,  $1 \le r \le k-1$ , and for any two vertices x and y from different sets  $X_i$  and  $X_j$ , there are exactly  $\lambda$  circuits along which the (directed) distance from x to y is r, we call  $(X, \mathcal{B})$  a holely perfect Mendelsohn design, where  $\mathcal{B}$  is the collection of all circuits. We denote the design by  $(v, k, \lambda)$ -HPMD (or  $(k, \lambda)$ -HPMD). The set  $X_i$   $(1 \le i \le h)$  is called a hole and the vector  $(n_1, n_2, \ldots, n_h)$  is said to be the type of the HPMD. We sometimes use an "exponential" notation to describe the type of the HPMD.

A  $(v, k, \lambda)$ -HPMD of type (1, 1, ..., 1, n) is called an *incomplete perfect Mendelsohn design*, denoted by  $(v, n, k, \lambda)$ -IPMD. It is easy to see that a  $(v, k, \lambda)$ -PMD is indeed a  $(v, k, \lambda)$ -HPMD of type (1, 1, ..., 1). We can construct PMD from IPMD by filling in holes.

**Lemma 2.1.** If there exist both  $(v, n, k, \lambda)$ -IPMD and  $(n, k, \lambda)$ -PMD, then there exists a  $(v, k, \lambda)$ -PMD.

**Proof:** Let  $(X, Y, \mathcal{B})$  be the  $(v, n, k, \lambda)$ -IPMD where Y is the hole of size n. Let  $(Y, \mathcal{B}_0)$  be the  $(n, k, \lambda)$ -PMD. Then,  $(X, \mathcal{B} \cup \mathcal{B}_0)$  is the required  $(v, k, \lambda)$ -PMD.

Lemma 2.2. If there exist a  $(v, k, \lambda)$ -HPMD of type  $(n_1, n_2, \ldots, n_h)$  and an  $(n_i + m, m, k, \lambda)$ -IPMD for  $2 \le i \le h$ , then there exists a  $(v + m, n_1 + m, k, \lambda)$ -IPMD. Moreover, if there exists an  $(n_1 + m, m, k, \lambda)$ -IPMD, then there exists a  $(v + m, m, k, \lambda)$ -IPMD.

**Proof:** Let  $(X, \mathcal{B})$  be the given  $(v, k, \lambda)$ -HPMD of type  $(n_1, n_2, \ldots, n_h)$ . X is partitioned into  $X_1, \ldots, X_h$ , |Y| = m,  $Y \cap X = \emptyset$ . Let  $(X_i \cup Y, Y, \mathcal{B}_i)$  be

the given  $(n_i + m, m, k, \lambda)$ -IPMD for  $2 \le i \le h$ . Then

$$(X \cup Y, X_1 \cup Y, (\cup_{2 \leq i \leq h} \mathcal{B}_i) \cup \mathcal{B})$$

is the required  $(v+m, n_1+m, k, \lambda)$ -IPMD. If we further have the  $(n_1+m, m, k, \lambda)$ -IPMD  $(X_1 \cup Y, Y, \mathcal{B}_1)$ , then

$$(X \cup Y, Y, (\cup_{1 \leq i \leq h} \mathcal{B}_i) \cup \mathcal{B})$$

is a  $(v+m, m, k, \lambda)$ -IPMD.

**Lemma 2.3.** If there exist a  $(v, k, \lambda)$ -HPMD of type  $(n_1, n_2, \ldots, n_h)$  and an  $(n_i, k, \lambda)$ -PMD for  $1 \le i \le h$ , then there exists a  $(v, k, \lambda)$ -PMD.

**Proof:** It follows by applying Lemma 2.2 with m = 0.

#### 3 A direct construction of HPMD

In this section we give a direct construction on HPMD.

Let  $U = \{1, 2, ..., u\}$  and  $(U, \mathcal{B})$  be a  $(u, k, q\lambda_0)$ -PMD, where q is a prime power and  $q \geq u + 2$ . Let  $d = \binom{u}{2}$ . We will construct a  $(k, \lambda_0)$ -HPMD with u holes of size  $q^d$ .

Let V be a vector space of dimension d over GF(q) (the field with q elements). As the point set of the  $(k, \lambda_0)$ -HPMD we take  $X = V \times U$ . The holes will be  $X_i$ ,  $i \in U$  where  $X_i = V \times \{i\}$ . It remains to describe the set  $\mathcal{A}$  of k-circuits.

Since  $d = \binom{u}{2}$ , we can label the coordinates of each vector of V with the unordered pairs of U. We usually use bold letters to denote a vector in V. The vector  $h \in V$  has a representation

$$\mathbf{h} = \left(h_I \colon I \in \binom{U}{2}\right)$$
 ,

where  $\binom{U}{2}$  denotes the set of all unordered pairs of distinct elements of U. Let us define a subset H of V by

$$H = \left\{ \mathbf{h} \colon \sum_{I \in \binom{U}{2}} h_I = 0 \right\},\,$$

then H has  $q^{d-1}$  vectors.

For any given unordered pair  $\{a,b\} \in \binom{U}{2}$  (a < b) and r  $(1 \le r \le k-1)$ . Since  $(U,\mathcal{B})$  is a  $(u,k,\lambda_0q)$ -PMD, (a,b) appears r-apart in exactly  $\lambda_0q$  of the blocks of  $\mathcal{B}$ . So, there is a  $\lambda_0$ -to-one correspondence from these blocks to GF(q). Let

$$f_{(a,b)}^r \colon \{B \in \mathcal{B} \colon (a,b) \text{ appears } r\text{-apart in } \mathcal{B}\} \mapsto GF(q)$$

be a  $\lambda_0$ -to-one mapping. As

$$\{B \in \mathcal{B}: (a, b) \text{ appears } r\text{-apart in } \mathcal{B}\}\$$
  
=  $\{B \in \mathcal{B}: (b, a) \text{ appears } (k - r)\text{-apart in } \mathcal{B}\},$ 

define  $f_{(b,a)}^{k-r}(B) = -f_{(a,b)}^r(B)$ , for any B in which (a,b) appears r-apart. Then  $f_{(b,a)}^{k-r}$  is a  $\lambda_0$ -to-one mapping from these blocks to GF(q).

Then for any given B, define a mapping  $\phi_B : B \mapsto V$  as follows:  $\phi_B(i) = (a_I : I \in \binom{U}{2})$  and

$$a_I = \begin{cases} f_{(i,i')}^t(B) & \text{if } (i,i') \text{ appears } t\text{-apart in } B, \text{ where } I = \{i,i'\} \text{ and } i < i', \\ 0 & \text{otherwise.} \end{cases}$$

For any  $i \in U$ , we define a map  $T_i: V \mapsto V$ . Let g be primitive element in GF(q). Since  $q \geq u+2$ , the powers  $g, g^2, \ldots, g^u$  are all distinct and different from 1. Now if  $\mathbf{h} = (h_I: I \in \binom{U}{2})$  is any vector of V, defined each component of  $T_i(\mathbf{h})$  by

$$(T_i(\mathbf{h}))_I = egin{cases} h_I & ext{if } i \in I, \ h_I g^i & ext{otherwise.} \end{cases}$$

For each triple  $(z, h, B) \in V \times H \times B$ , define a k-circuit

$$A(z, \mathbf{h}, B) = ((z + T_i(\mathbf{h}) + \phi_B(i), i) : i \in B)$$

based on X and define a set A of k-circuits as

$$\mathcal{A} = \{ A(z, \mathbf{h}, B) \colon (z, \mathbf{h}, B) \in V \times H \times \mathcal{B} \}.$$

**Lemma 3.1.** Suppose that q is a prime power, u is a positive integer such that  $q \ge u + 2$ , and  $d = \binom{u}{2}$ . Suppose that there exists a  $(u, k, q\lambda_0)$ -PMD. Then there is a  $(k, \lambda_0)$ -HPMD with type  $(q^d)^u$ .

**Proof:** We verify that (X, A) is a  $(k, \lambda_0)$ -HPMD with type  $(q^d)^u$ . Direct calculation shows that A contains  $\lambda_0 q^{2d} u(u-1)$  ordered pairs which are r-apart in circuits of A. We only need to show that each ordered pair not contained in a hole appears r-apart in at least  $\lambda_0$  circuits of A for all  $r=1,2,\ldots,k-1$ .

For any ordered pair  $\{(\mathbf{x},i),(\mathbf{y},j)\}$  not contained in a hole, and integer r such that  $1 \leq r \leq k-1$ , let  $\mathbf{w} = \mathbf{x} - \mathbf{y} = (w_I : I \in \binom{U}{2})$ . Since  $f_{(i,j)}^r$  is a  $\lambda_0$ -to-one mapping, it takes all values  $\lambda_0$  times in GF(q) as B ranges through all blocks in which  $\{i,j\}$  appears r-apart. So, there are exactly  $\lambda_0$  blocks  $B_1, B_2, \ldots, B_{\lambda_0}$  such that

$$f_{(i,j)}^r(B_s) = w_{\{i,j\}}, \quad s = 1, 2, \dots, \lambda_0.$$

If i < j, by the definition of  $\phi_{B_n}(i)$ 

$$(\phi_{B_s}(i) - \phi_{B_s}(j))_{\{i,j\}} = f_{(i,j)}^r(B_s) = w_{\{i,j\}}, \quad s = 1, 2, \dots, \lambda_0.$$

If i > j, then

$$(\phi_{B_s}(i) - \phi_{B_s}(j))_{\{i,j\}} = -f_{(j,i)}^{k-r}(B_s) = f_{(i,j)}^r(B_s) = w_{\{i,j\}},$$
  
$$s = 1, 2, \dots, \lambda_0.$$

Define d<sub>s</sub> by

$$\mathbf{d}_s = \mathbf{w} - \phi_{B_s}(i) + \phi_{B_s}(j), \quad s = 1, 2, \dots, \lambda_0.$$

Then  $d_s$  is a vector of V with  $\{i, j\}$  component 0. We define  $h_s$  by

$$(\mathbf{h}_s)_I = \begin{cases} (\mathbf{d}_s)_I (g^i - g^j)^{-1} & \text{if } i, j \notin I, \\ (\mathbf{d}_s)_I (1 - g^j)^{-1} & \text{if } i \in I \text{ but } j \notin I, \\ (\mathbf{d}_s)_I (g^i - 1)^{-1} & \text{if } j \in I \text{ but } i \notin I, \\ -\sum_{J \in \binom{U}{2} \setminus \{i,j\}} (\mathbf{h}_s)_J & \text{if } I = \{i,j\}. \end{cases}$$

Since  $\sum_{I \in \binom{U}{2}} (h_s)_I = 0$ , we obtain  $\mathbf{h}_s \in H$ ,  $s = 1, 2, ..., \lambda_0$ .

By the definition of  $T_i(\mathbf{h}_s)$ , we have

$$(T_i(\mathbf{h}_s))_I = \begin{cases} -\sum_{J \in \binom{U}{2} \setminus \{i,j\}} (\mathbf{h}_s)_J & \text{if } I = \{i,j\}, \\ (\mathbf{d}_s)_I (1-g^j)^{-1} & \text{if } i \in I \text{ but } j \notin I, \\ (\mathbf{d}_s)_I (g^i-1)^{-1} g^i & \text{if } j \in I \text{ but } i \notin I, \\ (\mathbf{d}_s)_I (g^i-g^j)^{-1} g^i & \text{if } i,j \notin I. \end{cases}$$

and

$$(T_j(h_s))_I = \begin{cases} -\sum_{J \in \binom{U}{2} \setminus \{i,j\}} (\mathbf{h}_s)_J & \text{if } I = \{i,j\}, \\ (\mathbf{d}_s)_I (1-g^j)^{-1} g^j & \text{if } i \in I \text{ but } j \notin I, \\ (\mathbf{d}_s)_I (g^i-1)^{-1} & \text{if } j \in I \text{ but } i \notin I, \\ (\mathbf{d}_s)_I (g^i-g^j)^{-1} g^j & \text{if } i,j \notin I. \end{cases}$$

Thus,  $(T_i(\mathbf{h}_s) - T_j(\mathbf{h}_s))_I = (\mathbf{d}_s)_I$  for any  $I \in {U \choose 2}$ , i.e.,

$$T_i(\mathbf{h}_s) - T_j(\mathbf{h}_s) = \mathbf{d}_s = \mathbf{x} - \mathbf{y} - \phi_{B_s}(i) + \phi_{B_s}(j)$$

for  $s=1,2,\ldots,\lambda_0$ . Let

$$z_s = x - (T_i(h_s) + \phi_{B_s}(i)), \quad s = 1, 2, ..., \lambda_0.$$

Then, for  $s = 1, 2, \ldots, \lambda_0$ 

$$\begin{cases} \mathbf{x} = \mathbf{z}_s + T_i(\mathbf{h}_s) + \phi_{B_s}(i) \\ \mathbf{y} = \mathbf{z}_s + T_j(\mathbf{h}_s) + \phi_{B_s}(j). \end{cases}$$

By the definition of  $A(\mathbf{z}_s, \mathbf{h}_s, B)$ , it is easy to see that the ordered pair  $((\mathbf{x}, i), (\mathbf{y}, j))$  appear r-apart in  $\lambda_0$  k-circuits  $A(\mathbf{z}_s, \mathbf{h}_s, B_s)$   $(s = 1, 2, ..., \lambda_0)$ . We complete the proof.

**Corollary 3.2.** Suppose that q is a prime power, u is a positive integer such that  $q \ge u+2$  and  $d = \binom{u}{2}$ . Suppose that there exist a  $(u, k, q\lambda_0)$ -PMD and  $(q^d, k, \lambda_0)$ -PMD. Then there is a  $(uq^d, k, \lambda_0)$ -PMD.

**Proof:** By Lemma 3.1 there is a  $(k, \lambda_0)$ -HPMD with type  $(q^d)^u$ . Applying Lemma 2.3 we have a  $(uq^d, k, \lambda_0)$ -PMD.

## 4 An application

In this section we apply Corollary 3.2 to (v, 6, 1)-PMD, and obtain an infinite class v such that  $v \equiv 4 \pmod{6}$  and a (v, 6, 1)-PMD exists.

**Lemma 4.1.** (Mendelsohn [18]). Let v be any prime power and k > 2 be such that k is a divisor of v - 1, then there exists a (v, k, 1)-PMD.

J. Yin [21] investigated the case  $\lambda = 3$ , we summarized the results as follows:

**Lemma 4.2.** For  $v \ge 6$ , there exists a (v, 6, 3)-PMD except for  $v \in \{6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 38, 39, 40, 42, 44, 45, 48, 51, 52, 54, 55, 60, 62\}.$ 

**Lemma 4.3.** (Greig [15]). A B(42t + 22, 7, 4) exists for any positive integer  $t \neq 1, 2, 5, 11$ .

**Lemma 4.4.** Let t and  $\lambda$  be positive integers and  $t \neq 1, 2, 5, 11$ ,  $\lambda \geq 6$ . There exists a  $(42t + 22, 6, \lambda)$ -PMD.

**Proof:** By Lemma 4.1 there exists a (7,6,1)-PMD. Any integer  $\lambda \geq 6$  can be written as  $\lambda = 3a+4b$ , where a, b are non-negative integers. By Lemma 4.2 and Lemma 4.3, there exists a  $(42t+22,6,\lambda)$ -PMD for  $t \neq 1,2,5,11$  and  $\lambda \geq 6$ .

**Theorem 4.5.** Let v = 42t+22,  $t \neq 1, 2, 5, 11$  and l be an integer satisfying  $v + 2 \leq 7^{l} < 7(v + 2)$ . Then there exist a  $(v7^{l\binom{v}{2}}, 6, 1)$ -PMD.

**Proof:** Let v = 42t + 22,  $t \neq 1, 2, 5, 11$ . Let  $q = 7^l$ . By Lemma 4.4, there exists a (v, 6, q)-PMD. Applying Lemma 3.1, we get a (6, 1)-HPMD with type  $(q^{\binom{v}{2}})^v$ . As a  $(q^{\binom{v}{2}}, 6, 1)$ -PMD exists by Lemma 4.1, a  $(vq^{\binom{v}{2}}, 6, 1)$ -PMD exists by Corollary 3.2, where

$$vq^{\binom{v}{2}} \equiv v \equiv 4 \pmod{6}$$
.

#### References

- [1] J. Abel, X. Zhang and H. Zhang, Three mutually orthogonal idempotent Latin squares of orders 22 and 26, preprint.
- [2] F.E. Bennett, Conjugate orthogonal Latin squares and Mendelsohn designs, Ars Combinatoria 19 (1985), 51-62.
- [3] F.E. Bennett, Direct construction for perfect 3-cyclic designs, Ann. Discrete Math. 15 (1982), 63-68.
- [4] F.E. Bennett and M. Chen, Incomplete perfect Mendelsohn designs, Ars Combinatoria 31 (1991), 211-216.
- [5] F.E. Bennett, B. Du and L. Zhu, On the existence of (v, 7, 1)-perfect Mendelsohn designs, *Discrete Math.* 84 (1990), 221-239.
- [6] F.E. Bennett, E. Mendelsohn and N.S. Mendelsohn, Resolvable perfect cyclic designs, J. Combinatorial Theory (A) 29 (1980), 142-150.
- [7] F.E. Bennett, K.T. Phelps, C.A. Rodger, J. Yin and L. Zhu, Existence of perfect Mendelsohn designs with k=5 and  $\lambda>1$ , Discrete Math. 103 (1992), 129–137.
- [8] F.E. Bennett, K.T. Phelps, C.A. Rodger and L. Zhu, Constructions of perfect Mendelsohn designs, *Discrete Math.* 103 (1992), 139-151.
- [9] F.E. Bennett, H. Shen and J. Yin, Incomplete perfect Mendelsohn designs with block size 4, J. Combinatorial Designs 1 (1990), 249–263.
- [10] F.E. Bennett, J. Yin and L. Zhu, On the existence of perfect Mendelsohn designs with k = 7 and  $\lambda$  even, *Discrete Math.* 113 (1993), 7-25.
- [11] F.E. Bennett, X. Zhang and L. Zhu, Perfect Mendelsohn designs with block size four, Ars Combinatoria 29 (1990), 65-72.
- [12] F.E. Bennett and L. Zhu, Perfect Mendelsohn designs with equal-sized holes, *JCMCC* 8 (1990), 181–186.
- [13] F.E. Bennett, C.J. Colbourn and L. Zhu, Existence of certain types of three HMOLS, preprint.
- [14] Y.X. Chang, Some new perfect Mendelsohn designs with block size five, preprint.
- [15] M. Greig, Balanced incomplete block designs with a block size 7, preprint.

- [16] D.F. Hsu and A.D. Keedwell, Generalized complete mappings, neofields sequenceable groups and block designs, II, *Pacific J. Math.* 117 (1985), 291–312.
- [17] N.S. Mendelsohn, A natural generalization of Steiner triple systems, in: Computers in Number Theory, edited by A.O.L. Atkin and B.J. Birch, Academic Press, New York (1971), 323-338.
- [18] N.S. Mendelsohn, Perfect cyclic designs, Discrete Math. 20 (1977), 63-68.
- [19] Y. Miao and L. Zhu, Perfect Mendelsohn designs with block size six, Discrete Math., to appear.
- [20] R.M. Wilson, An existence theory for pairwise balanced designs III, J. Combin. Theory (A) 18 (1975), 71-79.
- [21] J. Yin, The existence of (v, 6, 3)-PMDs, Mathematica Applicata 6, No. 4 (1993), 457-462.
- [22] X. Zhang, On the existence of (v,4,1)-PMD, Ars Combinatoria 29 (1990), 3-12.
- [23] X. Zhang, On the existence of (v, 4, 1)-RPMD, preprint.
- [24] L. Zhu, Perfect Mendelsohn designs, JCMCC 5 (1989), 43-54.
- [25] X. Zhang and H. Zhang, Three mutually orthogonal idempotent Latin squares of order 18, preprint.