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ABSTRACT. In this article we give a direct construction of HPMD.
As an application, we discuss the existence of (v, 6,1)-PMD and
obtain an infinite class of (v, 6,1)-PMD where v =4 (mod 6).

1 Introduction

The concept of a perfect cyclic design was introduced by N.S. Mendelsohn
[18). This concept was further studied in a subsequent paper [6], where
the notation of resolvability was discussed and associations made with cer-
tain classes of quasigroups and orthogonal array with interesting conjugacy
properties. A development of the concept was made by D.F. Hsu and A.D.
Keedwell [16], where the designs were called Mendelsohn designs. In what
follows we shall adapt the terminology and notation in [16] and introduce
the definitions involving the concept of Mendelsohn designs.

A set of k distinct elements {a1, a2, ..., ax} is said to be cyclically ordered
by a1 < ag < --- < ax < a; and two elements a;, a;4 are said to be t-apart
in a cyclic k-tuple (ay,as,...,ax) where i + ¢ is taken modulo k.

Let v, k and ) be positive integers. A (v, k, \)-Mendelsohn design (briefly
(v,k,2)-MD) is a pair (X,B) where X is a v-set (of point) and B is a
collection of cyclically ordered k-subsets of X (called blocks) such that every
ordered pair of points of X appears consecutively in exactly A blocks of B.
The (v, k, A)-MD is called r-fold perfect if each ordered pair of points of X
appears t-apart in exactly A blocks for all ¢ = 1,2,...,r. A (k- 1)-fold
perfect (v, k, \)-MD is called perfect and denoted it briefly by (v, k, A)-PMD.
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In graph notation, a (v, k, A)-MD is equivalent to the decomposition of the
complete directed multigraph MK on v vertices into k-circuits. A (v, k, A)-
PMD is equivalent to the decomposition of AK}} into k-circuits such that
for any r, 1 <7 < k—1, and for any two distinct vertices z and y there are
exactly A circuits along which the distance from z to y is r.

If we ignore the cyclic order of the elements in blocks, a (v, k,A\)-PMD
becomes a B(v, k, A\(k—1)). Therefore, we can consider perfect Mendelsohn
designs as a generalization of balanced incomplete block designs.

Since the complete directed multigraph AK} contains Av(v — 1) arcs and
each block as a circuit contains k arcs, it is easy to see that the number of
blocks in a (v, k, A\)-PMD is

Av(v —1)
—

This leads to an obvious necessary condition for the existence of a (v, k, A)-
PMD, that is,

Av(v —1) =0 (mod k). (1)

This condition is known to be sufficient in many cases, but certainly not in
all.

For k = 3, it has been shown in [3], [17] that the necessary condition
for the existence of a (v, 3, A)-PMD is sufficient, except for the non-existing
(6,3,1)-PMD. An alternative proof can be found in [24].

For k = 4, Mendelsohn started in [18] the investigation of the existence
of (v,4,1)-PMD, and noticed that a (v,4,1)-PMD is equivalent to the ex-
istence of a quasigroup of order v satisfying certain identities. A partial
solution for ¥ = 1 (mod 4) was obtained in Bennett [2]. Zhang [22] dis-
cussed the remaining case v = 0 (mod 4). An almost complete solution
for the existence of a (v,4,\)-PMD was presented in [11], where v = 12
and A =1 is the only unsolved case. F.E. Bennett recently reported find-
ing a (12,4,1)-PMD. So the necessary condition (1) for the existence of
(v,4,A)-PMD is also sufficient, except for v = 4 and X odd, v = 8 and
A=1.

For k = 5, some new constructions by weighting and by k-difference se-
quence were introduced and an almost complete solution for the existence
of a (v,5,1)-PMD was presented in [7], [8]. A (90,5,1)-PMD, a (110,5,1)-
PMD and a (130, 5,1)-PMD were found in [1] and [25]. A (86,5,1)-PMD,
(146,5,1)-PMD and (18, 5,5)-PMD was obtained in [13]. Chang [14] ob-
tained a (v,5,1)-PMD for v = 26, 36, 46, 66, 126, 186, 206, 246. We
summarize the results as follows: The necessary condition (1) for the exis-
tence of a (v, 5,\)-PMD is sufficient, except for v = 6 and XA = 1, and the
possible exceptions of (v, A\) where A = 1 and v € {10, 15, 20, 30, 50, 56}.
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For k = 6. Miao and Zhu in [19] proved that (v, 6,1)-PMD exists when-
ever v > 6 and v = 0,1 (mod 6) with at most 150 possible exceptions of
which 2604 is the largest. (6,6,1)-PMD does not exist. When v = 3,4

(mod 6), although the Wilson’s theory on PBD-closure [20] can be used
to show that a (v,6,1)-PMD exists whenever » is in these classes and v is
sufficiently large, neither a specific bound on v nor a specific value of v for
v = 3,4 (mod 6) is known. In Section 4 we will give an infinite class of
(v,6,1)-PMD where v =4 (mod 6).

For k = 7, a partial solution has been given in [5], [10]. For recent results
on PMDs with some additional properties such as resolvability, incomplete
PMDs, PMDs with holes, and perfect Mendelsohn covering designs, the
reader is referred to [4], [9], [12], [23].

2 Construction by filling in holes

We denote by Ky, n,,....ns the complete multipartite directed graph with
vertex set X = UJ,<;<s Xi, where X; (1 < i < h) are disjoint sets with
IXi] = ng, v = 21<;<h"’n and where two vertices z and y from different
sets X; and X; are joined by exactly X arcs (z,y) and X arcs (y, ).

If Kn, n,,...nsn can be decomposed into k-circuits such that for any 7,
1 < r € k-1, and for any two vertices z and y from different sets X;
and X, there are exactly A circuits along which the (directed) distance
from z to y is r, we call (X, B) a holely perfect Mendelsohn design, where
B is the collection of all circuits. We denote the design by (v, k, A\)-HPMD
(or (k,A)-HPMD). The set X; (1 <4 < h) is called a hole and the vector
(n1,m2,...,n4) is said to be the type of the HPMD. We sometimes use an
“exponential” notation to describe the type of the HPMD.

A (v, k,2)-HPMD of type (1,1,...,1,n) is called an incomplete perfect
Mendelsohn design, denoted by (v,n,k, A)-IPMD. It is easy to see that
a (v,k,A)-PMD is indeed a (v,k, A)-HPMD of type (1,1,...,1). We can
construct PMD from IPMD by filling in holes.

Lemma 2.1. If there exist both (v, n, k, \)-IPMD and (n, k, X)-PMD, then
there exists a (v, k, A\)-PMD.

Proof: Let (X,Y,B) be the (v,n,k, A)-IPMD where Y is the hole of size
n. Let (Y,Bp) be the (n,k,A)- PMD Then, (X,BU By) is the reqmred
(v, k, \)-PMD.

Lemma 2.2. If there exist a (v, k, \)-HPMD of type (n1,n2,...,n3) and
an (n; + m,m, k, A\)-IPMD for 2 < i < h, then there exists a (v +m,n; +
m, k, \)-IPMD. Moreover, if there exists an (n; + m, m, k,A)-IPMD, then
there exists a (v + m,m, k, \)-IPMD.

Proof: Let (X, B) be the given (v, k, \)-HPMD of type (n1,ng,...,n4). X
is partitioned into X1,..., Xn, [Y|=m, YN X =0. Let (X;UY,Y, B;) be
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the given (n; + m, m, k, A\)-IPMD for 2 < i < h. Then
(X UY, X1 VY, (Uz<i<nB;i) UB)

is the required (v + m, ny + m, k, A)-IPMD. If we further have the (n; +
m,m, k, \)-IPMD (X, UY,Y, B;), then

(X UY,Y, (Ui<i<nBi) U B)
is a (v +m, m, k, \)-IPMD. =

Lemma 2.3. If there exist a (v, k, \)-HPMD of type (n1,nz,...,ns) and
an (n;,k,A\)-PMD for 1 < i < h, then there exists a (v, k, \)-PMD.

Proof: It follows by applying Lemma 2.2 with m = 0. ]

38 A direct construction of HPMD

In this section we give a direct construction on HPMD.

Let U = {1,2,...,u} and (U, B) be a (u, k, g\o)-PMD, where q is a prime
power and q > u+2. Let d = (3). We will construct a (k, Ag)-HPMD with
u holes of size ¢%.

Let V be a vector space of dimension d over GF(q) (the field with ¢
elements). As the point set of the (k, \o)-HPMD we take X =V x U. The
holes will be X;, i € U where X; =V x {i}. It remains to describe the set
A of k-circuits.

Since d = (};), we can label the coordinates of each vector of V with the
unordered pairs of U. We usually use bold letters to denote a vector in V.
The vector h € V has a representation

o= (1 2)

where (J) denotes the set of all unordered pairs of distinct elements of U.
Let us define a subset H of V by

H={h: Z hy=0 ’
re(3)
then H has ¢%~! vectors.

For any given unordered pair {a,b} € (g) (a<bd)andr (1 <r<k-1).
Since (U, B) is a (u, k, Aog)-PMD, (a,b) appears r-apart in exactly Aoq of
the blocks of B. So, there is a Ag-to-one correspondence from these blocks
to GF(q). Let

f(apy: {B € B: (a,b) appears r-apart in B} — GF(g)
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be a Ag-to-one mapping. As

{B € B: (a,b) appears r-apart in B}
= {B € B: (b, a) appears (k — r)-apart in B},

define f(‘;::;(B) = —ftap)(B), for any B in which (e,b) appears r-apart.

Then f(,;’:; is a Ao-to-one mapping from these blocks to GF(q).

Then for any given B, define a mapping ¢g: B +— V as follows: ¢g(i) =
(ar: 1€ (Y)) and

are f(“.".,)(B) if (4,4') appears t-apart in B, where I = {i,4'} and i < #,
™Yo otherwise.

For any ¢ € U, we define a map T;: V — V. Let g be primitive element
in GF(g). Since ¢ > u + 2, the powers g,92,...,g% are all distinct and
different from 1. Now if h = (hs: I € (3)) is any vector of V, defined each
component of T;(h) by

hy ifiel,
hrgt otherwise.

(Ti(h))r = {

For each triple (2,h, B) € V x H x B, define a k-circuit
A(z,h, B) = ((z + Ti(h) + ¢5(i),4): i € B)
based on X and define a set A of k-circuits as
A= {A(z,h,B): (z,h,B) € V x H x B}.

Lemma 3.1. Suppose that q is a prime power, u is a positive integer such
that ¢ > u+2, and d = (3). Suppose that there exists a (u, k, gho)-PMD.
Then there is a (k, A\o)-HPMD with type (¢%)®.

Proof: We verify that (X,.A) is a (k, \o)-HPMD with type (¢%)*. Direct
calculation shows that A contains A\gg?>%u(u — 1) ordered pairs which are
r-apart in circuits of .A. We only need to show that each ordered pair
not contained in a hole appears r-apart in at least )y circuits of A for all
r=12,...,k-1.

For any ordered pair {(x,1), (¥,7)} not contained in a hole, and integer
rsuchthat 1 <r<k-l,letw=x-y=(wr:1€ (g)) Since f(’;,j)
is & Ap-to-one mapping, it takes all values Ay times in GF(q) as B ranges
through all blocks in which {3, 5} appears r-apart. So, there are exactly Ao
blocks By, Ba,..., By, such that

fe)Bs) =wgy §=1,2,...,%.
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If ¢ < 7, by the definition of ¢, (%)

(¢B. (1) - ¢B.(J)){s,]} = f('«;h,)(Ba) =W} S= 1, 2) [ERX) AO'
If i > j, then

(88, (6)~ 98, (i} = — I3 (Bs) = fG.57(Bs) = wii gy
s=1,2,..., A
Define d, by
8 = w— ¢Ba(i) +¢B‘(j)’ 8= 1’2)" '7A0‘
Then d, is a vector of V with {i,5} component 0. We define k, by
(ds)i(g* — %) ifd,5¢1,
(ds)r(1 —¢9)? ifielbutjé¢l,
(ds)r(g* —1)7? ifjelbutigl,
- EJe(‘,’)\{e,j}(hO)J if I ={i,5}.
Since Z!e(g)(ha)] =0, we obtain h;, € H, s=1,2,..., .
By the definition of T;(h,), we have

(ha)l =

if I ={i,5},
ificlbutj¢l,

(- L re (@)t (Beds
(da)l(l - gj)_l

(n(ha))l = {

and

(Ti(ha))l = <

(do)s(g* — 1)~ 14}
| (de)1(g* — ¢7) ¢

(S se@nnbe)s
(da)I(l - gj)_lgj
(da)I(gi - 1)_1

((@a)r(g* —9°) 9

ifjelbutigl,
ifi,j ¢ 1.

if I ={,5}
ificIbutj¢l,
ifjelbutig¢l,
ifi,j¢1.

Thus, (Ti(hy) — T;(h,))r = (da)s for any I € (3), ie.,
Ti(h,) — Tj(hs) = d, =x —y — ¢5,(i) + ¢5,()
fors=1,2,..., 2. Let
Z = X — (Ty(hs) +68,(i)), s=1,2,..., 2.
Then, for s=1,2,...,

x = 2z, + Ti(h,) + ¢, (3)
Y = 25 + T;(hs) + ¢, (7).
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By the definition of A(z,, h,, B), it is easy to see that the ordered pair
((x,4), (¥, )) appear r-apart in Ao k-circuits A(z,, hy, By) (s =1,2,..., Ao)-
We complete the proof. 0

Corollary 3.2. Suppose that q is a prime power, u is a positive integer
such that ¢ > u+2andd = (") Suppose that there exist a (u, k, gho)-PMD
and (g%, k, o)-PMD. Then there is a (ug®, k, Ao)-PMD.

Proof: By Lemma 3.1 there is a (k, \o)-HPMD with type (g%)®. Applymg
Lemma 2.3 we have a (ug?, k, \g)-PMD.

4 An application

In this section we apply Corollary 3.2 to (v,6,1)-PMD, and obtain an infi-
nite class v such that » =4 (mod 6) and a (v, 6,1)-PMD exists.

Lemma 4.1. (Mendelsohn [18]). Let v be any prime power and k > 2
be such that k is a divisor of v — 1, then there exists a (v, k,1)-PMD.

J. Yin [21] investigated the case A = 3, we summarized the results as
follows:

Lemma 4.2. For v > 6, there exists a (v,6,3)-PMD except for v €
{6,10,12,16, 18,20, 22, 24, 26, 28, 30, 32, 33, 34, 38, 39, 40, 42, 44,45,48,51,52,
54,55, 60, 62}.

Lemma 4.3. (Greig [15]). A B(42t + 22,7,4) exists for any positive
integer t #1,2,5,11.

Lemma 4.4. Let t and X be positive integers and t # 1,2,5,11, A > 6.
There exists a (42t + 22, 6, \)-PMD.

Proof: By Lemma 4.1 there exists a (7,6,1)-PMD. Any integer A > 6 can
be written as A = 3a 4 4b, where a, b are non-negative integers. By Lemma
4.2 and Lemma 4.3, there exists a (42t + 22,6,1)-PMD for ¢ # 1,2,5,11
and A > 6. m]

Theorem 4.5. Let v = 42t+22, ¢ # 1,2,5,11 and | be an integer satisfying
v+ 2 < 7 < 7(v+2). Then there exist a (1)7’(:), 6,1)-PMD.

Proof: Let v =42t +22,t# 1,2,5,11. Let ¢ = 7*. By Lemma 4.4, there
exists a (v, 6,¢)-PMD. Applying Lemma 3.1, we get a (6,1)-HPMD with
type (q(z))” As a (q(ﬁ) 6,1)-PMD exists by Lemma 4.1, a (vq(z) 6,1)-
PMD exists by Corollary 3.2, where

vq(;) =v=4 (mod 6).
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