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ABSTRACT. For a given graph G an edge-coloring of G with
colors 1,2,3,... is said to be a consecutive coloring if the colors
of edges incident with each vertex are distinct and form an
interval of integers. In the case of bipartite graphs this kind of
coloring has a number of applications in scheduling theory. In
this paper we investigate the question whether a bipartite graph
has a consecutive coloring with A colors. We show that the
above question can be answered in polynomial time for A < 4
and becomes NP-complete if A > 4.

1 Introduction

In this paper we consider a relatively new concept of graph coloring, namely
the consecutive edge-coloring problem. Given a coloring of the edges of G
with colors 1,2,3,... the coloring is said to be a consecutive coloring if
the colors received by the edges incident with each vertex are distinct and
form an interval of integers. Not all graphs have such colorings. A simple
counterexample is Ks.

The consecutive coloring problem has immediate applications in schedul-
ing theory, in the case when an optimal schedule without waiting periods
and idle times is desired. In this application the vertices of a graph corre-
spond to processors or jobs, edges represent unit execution time tasks and
colors correspond to assigned time units.

The consecutive edge-coloring problem apparently was first studied under
the name of "interval coloring” by Asratian and Kamalian [1] and Sevast-
janow [8]. Their papers were devoted mainly to bipartite graphs, and so is
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ours. In this article we consider a problem of deciding whether any given
bipartite graph has a consecutive coloring with A colors. We show that this
problem can be solved in polynomial time if G is a graph with A < 4, but
it already becomes NP-complete, if A = 5. Though algorithms considered
herein solve decision problems, but on the basis on this paper it is easy to
convert our decision algorithms into optimization ones.

The fact that a given bipartite graph doesn’t have a consecutive coloring
with A colors does not mean that it is not consecutively colorable at all.
Many known bipartite graphs have such a coloring. For example, trees, even
cycles, complete bipartite graphs, even cacti and (2, A)-regular bipartite
graphs are consecutively colorable. As it was shown in [8], the problem of
deciding whether a bipartite graph has consecutive coloring is NP-complete.
The smallest, in the sense of the number of vertices, known bipartite graph
which is not consecutively colorable has order 19, and the smallest with
respect to the maximum degree has degree A = 14. Bipartite graphs with
small A seem to have consecutive colorings, but this was proved only for
A < 3 [4]. Even the question if all bipartite graphs G(V;, V2), whose every
vertex from V) has degree 3, and every vertex from V5 has degree 4 have a
consecutive coloring is an open problem [6].

2 Factors and matchings

In this article we use G(Vi, Vs, E) to denote a bipartite graph with the
partitions V; and V;, and E as the set of its edges. Let V = V; UV, and let
V) C V denote a set of vertices,with degree i. All graphs considered are
simple, bipartite and have no vertices of degree 0, though they need not be
connected.

In the following we will need some facts about factorization in graphs.

Definition 2.1. Let f : V +— N be a function, where V is the vertex set
of G(V,E) an N is the set of positive integers. Then by an f-factor in G
we mean & subset A of E such that for all vertices v € V the number of
edges in A incident with v is equal to f(v). If k € N then a subset AC E
is k-factor if A is f-factor for the constant function f(v) = k. A 1-factor
in G is called also a perfect matching.

We will show the polynomial solvability of decision problems concerning
the existence of some factors in bipartite graphs. The following theorem is
crucial for further considerations. As usual n = |V| and m = |E|, and A
(respectively 6) is the maximum (respectively minimum) vertex degree in
graph.

Theorem 2.2. (7] A maximum cardinality matching in a bipartite graph
can be found in O(m+/n) time. o
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Corollary 2.3. The problem of existence a perfect matching in a bipartite
graph can be solved in polynomial time. (]

Let G(W1, V2, E) be a bipartite graph and f : V — {1,2}. Suppose that
vertices v; and v are connected by an edge e and f(v;,) = f(v2) = 2. We
construct a bipartite graph G’ by deleting edge e and replacing it by a path
v — v] — vj — v, where v] and v} are new vertices. We extend function
f to f’ by setting f'(v}) = f'(v4) = 1. For these graphs we have

Lemma 2.4. G has an f—factor if and only if G’ has an f'—factor.

Proof: => Let A be an f—factor in G. If e € A, then (A — {e}) U
{{v1,v1}, {v2,v5}} isan f'—factor in G’; otherwise it is the set AU{{v], v}}}.

< Let A’ be an f'—factor in G'. If {v{,v5} € A’, then {v;,v{} ¢ A’
and {vs,v5} & A, so A’ — {{v},v3}} is an f—factor in G. Otherwise
{{v1,v1}, {v2,v3}} € A’, and (A’N E) U {e} is an f—factor in G. o

Now, let G and f be as above. Suppose that there is a vertex u with
f(u) = 2 and f(v) = 1 for every vertex v adjacent to u. We construct
a new bipartite graph G’ by adding a new vertex «’ and connecting it by
edges with all vertices which are adjacent to « in G. Consider the function
f! such that f'(u) = f'(v’) = 1 and f’ is equal to f for all vertices of G
distinct from u. For these graphs we have

Lemma 2.5. G has an f—factor if and only if G’ has an f’'—factor.

Proof: => Let A be an f—factor in G. Then exactly two edges e; # ez
belong to A and are incident with u. Let ez = {u,v2} . The set (A—{e2})U
{{w’, v2}} is an f’—factor in G".

< Let A’ be an f’'—factor in G’, and let e = {u,v} € A’, &’ = {v/,v'} €
A’. Then the set (A — {e’}) U {{u,v'}} is an f—factor in G. m]

Theorem 2.8. For any bipartite graph G(V,, Vs, E) and a function f :
V — {1,2} the problem of existence of f—factor in G is polynomially
solvable.

Proof: Let ey,...,ex be all the edges of G such that the function f has
value 2 on both endpoints of ¢;, for i =1,... , k. Using the construction of
Lemma 2.4 k times we obtain a graph G; and a function f;, such that the
existence of an f—factor in G is equivalent to the existence of an f; —factor
in G;. Every vertex v in G, for which f;(v) = 2 is incident only with vertices
u with fi(u) = 1. Let vy,... , v be all verticesin G; with f;(v;) = 2. Using
the construction from Lemma 2.5 { times we reach a graph G2 and function
f2 such that the existence of f;—factor in G; is equivalent to the existence
of fo—factor in G2. But f; is a constant function equal to 1, so the last
problem is simply that of finding a perfect matching, which is polynomial
by Corollary 2.3. Since G2 has at most twice as many vertices as G; and
G has at most 3m edges, so the proof is complete. a
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Corollary 2.7. The problem of the existence of 2—factor in a bipartite
graph can be solved in polynomial time. (]

3 Polynomial cases

A finite subset A of Z is called an interval if it includes all integers between
min A and max A.

Definition 3.1. Let G be a graph with edge set E, and let Z be a set of
integers. A function ¢ : E — Z is called a proper edge-coloring or simply
a coloring if for every vertex v of graph G all edges incident with v have
different colors.

Definition 3.2. A coloring c of graph G is consecutive at vertex v € V if
the colors of edges which are incident with v form an interval. The coloring
c is called consecutive if it is consecutive at every vertex of G.

Every connected component of a bipartite graph with A < 2 is a path or
an even cycle, so the edges of any component can be consecutively colored
with colors 1 and 2, alternately. Therefore we have

Theorem 3.3. A bipartite graph with A < 2 can be consecutively colored
with A colors in linear time. o

Before we begin considering more difficult cases, we need one more defi-
nition.
Definition 3.4. A doubling of graph G with respect to U C V(G) is a
supergraph of G obtained by building an isomorphic copy of G, say G,
and connecting by single edges all vertices from U with their copies in G’.

For example a doubling of a path of 2 edges with respect to its two
endpoints is a cycle Cs. A doubling of a connected graph with respect
to the empty set is a graph which has two connected components, both
isomorphic to G. It is easy to see that doubling of a bipartite graph is
bipartite.

Theorem 3.5. A bipartite graph with A > 2 can be consecutively colored
with A colors if and only if its doubling with respect to V(1) can also be
consecutively colored.

Proof: First notice that the doubling of G with respect to V(1) has the
same maximum degree A.

= Given a consecutive A-coloring of G with colors {1,...,A} we can
carry it over to the graph G’. Now we must assign approporiate colors
from {1,...,A} to the edges connecting vertices of degree 1 in G with
their copies in G’ in such a way the remaining coloring is consecutive.

<= Restriction of a consecutive coloring with A colors of the doubling of
graph G to E(G) is a consecutive A—coloring of G. o
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Let us consider the case of bipartite graphs with A = 3. Not all of these
graphs have consecutive coloring with 3 colors, for example K33 needs 4
colors in order to color it consecutively.

Lemma 3.6. A bipartite graph G with A = 3 and § > 2 has a consecutive
A—coloring if and only if it has a perfect matching.

Proof: = Let ¢ be a consecutive coloring of such G with colors 1,2, 3.
Since every vertex in G has degree 2 or 3, it must be incident with exactly
one edge colored 2. All such edges form a perfect maching in G.

<= Let A be a perfect matching in G. We color every edge from A with
color 2. The set of remaining edges forms a subgraph, whose every vertex
has degree 1 or 2. So its components are paths or even cycles. The edges
of any component can be colored alternately with 1 and 3. Together with
previously colored edges of A, this makes a consecutive A-coloring of graph
G. (u]

Theorem 3.7. The problem of deciding the existence of consecutive
A—coloring in a bipartite graph with A = 3 can be solved in polynomial
time.

Proof: Let G* be a doubling of G with respect to V(). Then G* does
not contain a vertex of degree 1. By Theorem 3.5 the existence of consec-
utive 3—colorings for G and G* are equivalent. But by Lemma 3.6 this is
equivalent to the existence of a perfect matching in G*, and the latter is
polynomial by Corollary 2.3. a

Now we consider the case of bipartite graphs with A = 4. Again not all
of these graphs can be consecutively colored with 4 colors, for example it
was shown in [5], that every consecutive coloring of K34 requires at least
6 colors.

Lemma 3.8. Let G be a bipartite graph with A < 4. If G has a coloring
with colors from set {1,... ,4} fulfilling the following properties:

e it is consecutive at every vertex of degree 3 or 4,

e at every vertex of degree 2 the difference between colors of its edges
is1or2,

then G has a consecutive coloring with colors from set {1,... ,4}.

Proof: Let c be a coloring of G as required. Denote by G|, 5] the subgraph
of G generated by the edges of colors ¢ and j. Obviously such a subgraph
contains only vertices of degree not exceeding 2, so its components are paths
and even cycles. Denote by GIi, j](v) a component of G[i, ;] containing
vertex v. Vertex u is a final vertez of such a component iff G[s, 5](v) is a
path and one of its endpoints is u. The coloring ¢ is not consecutive only
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at vertices of degree 2. The edges of such vertices have colors 1 and 3 or
2 and 4. These vertices will be called vertices with a gap. We will give a
method to successively eliminate all gaps. First, note that by interchanging
the colors of edges in any component of G[2, 3] or G[1, 4] we obtain again a
coloring satisfying assumptions of the lemma. Observe that components of
G2, 3] can have final vertices only of degree 1 or 2 in G, and components of
GJ1,4] only of degree 1,2 or 3 in G. Now let v; be an arbitrary vertex with
a gap (if there is no such vertex then the coloring is already consecutive).
Then v, is a final vertex of a component G[2,3](v;). Let va be its other
final vertex. If vo is neither a vertex with a gap nor pendant then it is a
final vertex of a component of G[1, 4](v2). Let v3 be its second final vertex,
etc. In this way we form a sequence of vertices vy, vs,..., v, such that
i, %41 are both final vertices of the same component of subgraph G[1,4]
if ¢ is even, and G[2, 3] if i is odd. We finish the construction at vertex vy,
k > 1 if one of the following situations holds:

1. vy is the first vertex after v, at which there is a gap,
2. dege(vk) € {1,3},
3. v1 = k.

In Cases 1 and 2 we interchange colors successively in components G[2, 3]
(v1), G[1,4)(v2), G[2, 3](v3),- .. , G[i, 7](vk—1), where , j depend on the par-
ity of k. In Case 1 this eliminates gaps at v; and v, and in Case 2 this
removes a gap at v;. In both cases we do not obtain gaps at new vertices,
so the number of vertices with gaps decreases. We will show that Case 3 is
not possible, hence by repeating the above procedure we eliminate all gaps.
Suppose that Case 3 holds. Then the successive edges of paths G[2, 3](v;),
G1,4)(v2), G[2,3)(v3), ... ,Gli, j](vk—1) form a closed chain which begins
at v; and comes back to v;. Every two of its successive edges (except the
first and the last) have colors with difference 1 or 3, so their parities are
different. Since G is bipartite, this chain has even length, and the first of
its edges and the last (both incident to v;) have colors of different parity.
On the other hand, we know that the difference of these colors is 2 and we
obtain a contradiction. This completes the proof. (m]

Next fact was first proved in [4] (see also [6]).

Corollary 3.9. A bipartite graph with A = 3 is consecutively colorable
with at most 4 colors.

Proof: These graphs being bipartite can be edge-colored with 1,2, 3, and
this coloring meets the assumptions of Lemma 3.8. u]

Lemma 3.10. Let G be a biparite graph with A = 4. Then G has &
consecutive 4—coloring if and only if there is a consecutive 4-coloring of its
doubling with respect to V(3.
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Proof: Note that the doubling of G has the same maximum degree 4.

=> The proof is similar to that of Theorem 3.5. Given a consecutive
coloring of G with colors 1,... ,4, we can carry it over to its isomorphic
copy G’. Now we assign appropriate colors to the edges connecting vertices
of degree 2 in G with their copies in G’. Let v be such a vertex and let
c and c+ 1 be colors of edges incident with v in G. Then at least one of
numbers ¢— 1 or ¢+ 2 belongs to {1,...,4} and this color can be assigned
to( 2t;)he edge joining v with its copy. We repeat this for all vertices from
Vi),

<= If we have a consecutive coloring of a doubling of graph G with colors
{1,... ,4}, than the restriction of this coloring to E(G) is a coloring of G
which meets the assumptions of Lemma 3.8. (n]

Lemma 3.11. Let G be a bipartite graph with A =4 and § > 3. Then G
is consecutively 4-colorable if and only if G has a 2—factor.

Proof: = Suppose we have a consecutive coloring of G with colors 1,... ,4.
Every vertex has degree 3 or 4, so it is incident with exactly one edge colored
with 2 and exactly one colored with 3. This set of edges which have colors
2 or 3 is a 2—factor.

<= Let A be a 2—factor in G. The edges of A form a 2— regular bipartite
subgraph, so its components are even cycles. Their edges can be colored
alternately by 2 and 3. The subgraph generated by the edges not belonging
to A is bipartite and all its vertices have degree 1 or 2, hence its components
are paths or even cycles. We color them alternately by 1 and 4. The union
of these two partial colorings forms a consecutive coloring of graph G. 0O

Corollary 3.12. A bipartite graph G with A = 4 and no vertex of degree
3 is consecutively colorable with 4 colors.

Proof: Assume that G(V, E) has no pendant vertices. Then G is Eulerian
and has an even number of edges. So we can mark the edges in any Eulerian
cycle of G with black and white, alternately. Then the set A C E of all
black edges is an f— factor in G, where f(v) = deg(v)/2 for all v € V.
Let G*(V*, E*) be the doubling of G with respect to V(?) composed of G
and its isomorphic copy G’. Set A* C E* containing all the edges from A,
the isomorphic copy of A in G’ and the edges connecting vertices of degree
2 in G with their copies in G’ is a 2—factor in G*. Hence G* meets the
assumptions of Lemma 3.11 and by Lemma 3.10 the corollary follows.

If G has vertices of degree 1 then its doubling with respect to V(1) has
no pendant vertices and therefore is consecutively colorable with 4 colors.
Restriction of such a coloring to E(G) is a consecutive coloring of G. 0O

Theorem 38.13. The problem of deciding the existence of consecutive
A—coloring of a bipartite graph with A = 4 can be solved in polynomial
time.
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Proof: Denote by G*(V*, Vy) a doubling of G with respect to V(). Then
G* contains no pendant vertex. By Theorem 3.5 the existence of consecu-
tive 4—colorings for G and G* are equivalent. Next let G** be a doubling of
G* with respect to V*(?), Then G** contains no vertex of degree 1 or 2 and
by Lemma 3.10 the existence of consecutive 4—colorings for G* and G**
are equivalent. Lemma 3.11 implies that the later problem is equivalent to
the existence of a 2— factor in G**, which is polynomial by Corollary 2.7. O

4 NP-completeness result
We will use the following fact shown in [2]:

Theorem 4.1. Let G a bipartite graph with A = 3 in which some of pen-
dant edges are precolored with 0 or 1. The problem of deciding whether
that coloring can be extended to a proper coloring (not necessarily consec-
utive) of graph G using colors 0,1,2 is NP-complete. o

Corollary 4.2. The above problem remains NP-complete even if restricted
to graphs having no vertices of degree 2.

Proof: Let G be a graph meeting the assumptions of Theorem 4.1 with
some pendant edges precolored with 0 and 1, and let G’ be a graph obtained
from G by attaching to each vertex of degree 2 a new pendant edge. Then
the existence of a coloring using ¢olors 0, 1,2 is equivalent to the existence
of such a coloring for graph G'. o

= (S—v

—o

Vi
Figure 4.1. Graph Sxo

Now let us consider some bipartite graphs with A = 4 which can be
colored consecutively using 5 colors from set L = {-2,-1,0,1,2}. Note
that every interval containing at least 3 elements from this set must include
number 0. The first graph under consideration is shown in Figure 4.1. This
graph can be colored by taking any edge-coloring of K33 with —2,—1,0
and assigning to edge {a,v} color 1. By adding 1 to all colors we obtain
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a coloring with color 2 on edge {a,v} and by multiplying them by —1 we
obtain colorings with colors respectivelly —1 or —2 on this edge. Of course,
all these four colorings are consecutive and only use colors from L. Note
that graph cannot be colored consecutively with colors from L by assigning
to the pendant edge color 0. In fact, since such a coloring is consecutive,
exactly one edge outgoing from each vertex of V; has color 0. Therefore a
is connected by edge of color 0 to one vertex of V; and therefore this color
cannot be used for edge {a,v}. This graph will be denoted by Sxo.

The graph S is obtained by joining two graphs Sx¢ by their pendant
vertices and adjoining to this common vertex a new pendant edge as shown
in Figure 4.2. This graph can be consecutively colored with colors from L
only if the pendant edge has color 0.

Figure 4.2. Graph Sp

tew = (@)

Figure 4.3. Graph Sy,

X

:

Figure 4.4. Graph S},
The graph S.; is constructed by attaching another pendant edge to ver-

tex u in Sp. This graph can be consecutively colored with colors from L
and the new pendant edge may have only colors 1 or —1.
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Finally, we define the graph Si2 as shown in Figure 4.4. The pendant
edge must have color 2 or —2. This is so because vertex z’ is of degree 4,
and one of the edges incident to it must have color 2 or —2, but it cannot
be any of the edges of graphs S, and Sp.

Now we are ready to prove that the question whether a given bipartite
graph with A =5 can be consecutively 5—colored is NP-complete. We will
show even more:

Theorem 4.8. Let G be a bipartite graph with A = 5. It is NP-complete
to decide whether G has a consecutive 5-coloring even if G is consecutively
colorable.

& @OXE® @

® ® ® @

Figure 4.5. Examples of reduction

Proof: We will give a polynomially bounded reduction from the coloring
problem of Corollary 4.2. Let G be a bipartite graph with A = 3 having no
vertex of degree 2 and such that some of its pendant edges are precolored
with 0 or 1. We build a supergraph G’ of graph G as follows: to every vertex
of degree 3 we adjoin two graphs Si; and Syi2 (we call them stabilizing
graphs) and every pendant edge ,precolored with 0 or 1 is replaced by a
pendant edge outgoing from a copy of Sp or Sii, respectively (we call them
coloring graphs). An example of such a reduction is given in Figure 4.5.
Of course, G' is bipartite with maximum degree 5. Because So, S11,S+2
are consecutively colorable, so G’ has a consecutive coloring (possibly with
more then 5 colors). We now need to show that a precoloring of G can be
extended to a 3-coloring with colors 0, 1, 2 iff graph G’ can be consecutively
colored with colors from L.
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=> Suppose we have a proper coloring of graph G with colors 0, 1,2. Then
the colors of the edges at any vertex of degree 3 form interval {0, 1, 2}. All
stabilizing graphs S and Si2 can be colored by giving to their outgoing
edges colors —1 and —2, respectively. Similary, all coloring graphs Sp and
S are colored so that their outgoing edges are assigned 0 and 1, which
meets precoloring conditions. This coloring is cleary consecutive.

<= Suppose we have a precoloring of some pendant edges of G and a
consecutive coloring of G’ with colors —2,-1,0,1,2. Let us assign to each
edge of G a number equal to the'modulus of its color in G’, i.e. 0,1 or 2.
From the properties of the graphs Sp and Sy, it follows that the pendant
edges which were precolored in G get numbers equal to their colors in this
precoloring. Now, we have just to examine if the assigned numbers give a
proper coloring of the graph G, i.e. no vertex of degree 3 has two edges
with the same number. Let v be such a vertex. Note that degg(v) = 5 and
there are 5 different colors on its edges: one with color 0, two with colors
+1 and two with colors +2. Exactly two of the edges incident to v do not
belong to G - they are outgoing from two stabilizing graphs: S.i; (it has
color £1) and Si (it has color +2). The remaining 3 edges have colors
as follows: the first 0, second +1 and third +2. Then after computing
absolute values we obtain a proper coloring of G. (]

Using similar methods we can generalize the above theorem to any k > 4.

Corollary 4.4. Let k be any integer greater then 4 and G a bipartite graph
with A = k. It is NP-complete to decide whether G has a consecutive k-
coloring even if G is consecutively colorable. u]
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