P₃-Connected Graphs of Minimum Size

David C. Fisher, Kathryn Fraughnaugh, and Larry Langley
Department of Mathematics
University of Colorado at Denver
Denver, CO
80217-3364, U.S.A.

ABSTRACT. A graph without 4-cycles is called C_4 -free. A C_4 -free graph is C_4 -saturated if adding any edge creates a 4-cycle. Ollmann showed that any n-node C_4 -saturated graph has at least $\frac{3}{2}n-3$ edges. He also described the set of all n-node C_4 -saturated graphs with $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges. A graph is P_3 -connected if each pair of nonadjacent nodes is connected by a path with exactly 3 edges. A C_4 -saturated graph is P_3 -connected, but not vice versa. We generalize Ollmann's results by proving that any n-node P_3 -connected graph has at least $\frac{3}{2}n-3$ edges. We also describe the set of all n-node P_3 -connected graphs with $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges. This is a superset of Ollmann's set as some n-node P_3 -connected graphs with $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges do have 4-cycles.

Let P_k be a path on k edges. Two nodes are P_k -connected if they are connected by a P_k . A graph is P_k -connected if all pairs of nonadjacent nodes are P_k -connected. The only P_1 -connected graphs are complete graphs. A graph is P_2 -connected if and only if its diameter is at most 2. In general, a P_k -connected graph has diameter at most k. However, a diameter k graph need not be P_k -connected. For example, P_k for $k \ge 3$ has diameter k and yet is not P_k -connected.

Let C_k be a cycle with k edges. A graph without C_k as a (not necessarily induced) subgraph is called C_k -free. A C_k -saturated graph is a maximal C_k -free graph in the sense that adding any edge creates a C_k . If adding an edge between two nodes creates a C_k , then a P_{k-1} must connect the nodes. So a C_k -saturated graph is P_{k-1} -connected. However, a P_{k-1} -connected graph need not be C_k -saturated (e.g., Figure 3 (d) and (e)).

Ollmann [1] answered the question: What is the minimum number of edges in an n-node C_4 -saturated graph? He showed that all C_4 -saturated

graph have at least $\frac{3}{2}n-3$ edges. He also described all C_4 -saturated graphs with $\left\lceil \frac{3}{2}n\right\rceil -3$ edges showing the answer is $\left\lceil \frac{3}{2}n\right\rceil -3$ for all n>4. Tuza [2] gave simpler proofs of Ollmann's results.

What is the minimum number of edges in an n-node P_3 -connected graph? Theorem 1 shows the answer is again $\left\lceil \frac{3}{2}n \right\rceil - 3$ for all n > 4. Since a C_4 -saturated graph is P_3 -connected, this is a generalization of Ollmann's bound. Theorem 2 describes all P_3 -connected graphs with $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges. In addition to the three families given by Ollmann (Figure 3 (a), (b), and (c)), we find two new families (Figure 3 (d) and (e)) of P_3 -connected graphs that are not C_4 -saturated.

Lemma 1. Let G be an n-node connected graph where every edge is in a C_3 . Then G has at least $\frac{3}{2}(n-1)$ edges.

Proof: Any connected graph has a spanning tree T with n-1 edges. An edge of G-T can form a C_3 with at most two edges of T. So G-T has at least (n-1)/2 edges.

Theorem 1. Let G be an n-node P_3 -connected graph. Then G has at least $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges.

Proof: This is trivial for n=1. Assume $n \geq 2$. Let δ be the minimum degree of the nodes of G. Since G is connected, $\delta > 0$. If $\delta \geq 3$, then G has at least $\frac{3}{2}n$ edges. So assume $\delta = 1$ or 2.

Case 1: $\delta = 1$. Let v be a degree 1 node with neighbor w. Let T be the breadth-first tree rooted at v. Let X and Y be the nodes that are distance 2 and 3, respectively, from v. Since all nodes are distance at most three from v, all nodes save v and w are in X or Y. Thus |X| + |Y| = n - 2. Let $x \in X$. Since x is not adjacent to v, there is a path v, w, q, x. Since q is distance 2 from v, we have $q \in X$ and hence the nodes in X have degree 1 or more within X.

Let Y_1 be the degree 1 nodes of Y and $k = |Y_1|$. Let $Y_2 = Y - Y_1$. Let X_1 be the nodes of X adjacent to Y_1 and let $X_2 = X - X_1$. Then for all $y_1, y_2 \in Y_1$, there is a path y_1, x_1, x_2, y_2 where $x_1, x_2 \in X_1$. Since $x_1 \neq x_2$, each node in X_1 is adjacent to exactly one node in Y_1 . Further, every pair of nodes in X_1 is adjacent. Thus $|X_1| = k$ and X_1 is a clique (see Figure 1). Since each node in X_2 and Y_2 is incident to at least one edge not in T, the number of edges not in T is

$$e(G-T) \geq \binom{|X_1|}{2} + \frac{|X_2| + |Y_2|}{2} = \binom{k}{2} + \frac{n-2-2k}{2} \geq \frac{n-4}{2}.$$

Thus the number of edges in G is $e(G) \ge (n-4)/2 + n - 1 = \frac{3}{2}n - 3$.

Figure 1. The construction in Case 1 of Theorem 1.

Case 2: $\delta=2$ and a degree 2 node is not in a C_3 . Let v have degree 2 with nonadjacent neighbors w_1 and w_2 . Let T be the breadth-first tree rooted at v. Let X and Y be the nodes which are distance 2 and 3, respectively, from v (see Figure 2). Since a P_3 connects v to $x \in X$, there is an edge incident to x that is not in T. Further since $\delta=2$, each $y \in Y$ is also incident to an edge not in T. So $e(G-T) \ge (|X|+|Y|)/2 = (n-3)/2$, and hence the number of edges in G is $e(G) \ge n-1+(n-3)/2 = \frac{3}{2}n-\frac{5}{2}$.

Figure 2. The tree formed in Case 2 of Theorem 1.

Case 3: $\delta = 2$ and each degree 2 node is in a C_3 . Let S be the subgraph of all C_3 's with one or more degree 2 nodes. Let S_1, S_2, \ldots, S_m be the components of S. Lemma 1 shows that $e(S_i) \geq \frac{3}{2}(|S_i| - 1)$. Since the degree 2 nodes of two components are P_3 -connected, there is an edge between every pair of components of S. So there are at least $\binom{m}{2}$ edges between components of S. Then the number of edges in the subgraph

induced on the nodes of S is

$$e(\langle S \rangle) \ge \sum_{i=1}^{m} e(S_i) + {m \choose 2} \ge \sum_{i=1}^{m} \frac{3}{2} (|S_i| - 1) + {m \choose 2}$$
$$= \frac{3}{2} |S| + \frac{m^2}{2} - 2m \ge \frac{3}{2} |S| - 2.$$

Since all degree 2 nodes are in S, nodes not in S have degree 3 or more. Thus the number of edges in G is $e(G) \ge \frac{3}{2}|S|-2+\frac{3}{2}(n-|S|)=\frac{3}{2}n-2$. \square

Theorem 2. Let G be a P_3 -connected graph with n nodes and $\lceil \frac{3}{2}n \rceil - 3$ edges. Then G is in one of the families of graphs in Figure 3.

Figure 3. Families of *n*-node P_3 -connected graphs with $\left\lceil \frac{3}{2}n \right\rceil - 3$ edges. The dots indicate an arbitrary number (including zero) of pendant C_3 's.

Proof: In Theorem 1, Case 3 had at least $\frac{3}{2}n - 2$ edges which is greater than $\left[\frac{3}{2}n\right] - 3$ for all n. So we only need consider Cases 1 and 2.

Case 1: $\delta = 1$. Let $v, w, X, Y, X_1, Y_1, X_2, Y_2$ and T be as they were in Case 1 of Theorem 1. For $e(G) = \left\lceil \frac{3}{2}n \right\rceil - 3$, either $|Y_1| = 1$ or 2, and either e(G - T) = (n - 4)/2 if n is even or e(G - T) = (n - 3)/2 if n is odd.

Case 1a: $|Y_1| = 1$. Let $X_1 = \{x_1\}$ and $Y_1 = \{y_1\}$. Since every node in X and Y_2 has degree 1 or more in G - T, we have $e(G - T) \ge (n - 3)/2$. So n is odd and e(G - T) = (n - 3)/2. Since e(G - T) is half the number

of nodes in X and Y_2 , every node in X and Y_2 has degree one in G-T. Further, since each node of X is adjacent to a node of X and these edges are not in T, no edge of G-T connects a node of X to a node of Y_2 . Thus every node in Y_2 is adjacent to exactly one node in X (this edge is in T) and exactly one node in Y_2 (this edge is not in T). Further, every node in X is adjacent to exactly one node in X.

Let $x_2 \in X_2$ so that x_1x_2 is an edge. Let y_2y_3 be an edge in Y_2 . Since x_1 is not adjacent to any node in X other than x_2 , for y_2 to be P_3 -connected to y_1 , we have that either y_2x_2 or y_3x_1 is an edge.

First assume y_2x_2 is an edge. Since each node in Y_2 is incident to only one node of X and only one node of Y_2 , the only nodes adjacent to y_2 are y_3 and x_2 . Then for y_3 to be P_3 -connected to y_1 , we have that y_3x_2 is an edge. Further since y_3 is adjacent to only one node of X, we have that y_3 is not adjacent to x_1 . Otherwise assume y_3x_1 is an edge. Then we can similarly show that y_2x_1 is an edge, and y_2 is not adjacent to x_2 . Either way, y_2 and y_3 are either both adjacent to x_1 or both adjacent to x_2 . So the ends of any edge in Y_2 are either both adjacent to x_1 or both adjacent to x_2 . Thus G is in Family (c) where w, x_1, x_2 is the central G_3 , and v_2 and g_3 are pendant edges.

Case 1b: $|Y_1| = 2$. Let $X_1 = \{x_1, x_2\}$ and $Y_1 = \{y_1, y_2\}$ where x_1y_1 and x_2y_2 are edges. Since X_1 is a clique, x_1x_2 must also be an edge.

First assume n is even, so e(G-T)=(n-4)/2. For the inequalities to be equalities, each of the n-4 nodes in X and Y_2 has degree 1 in G-T, and there are no edges between X_1 and X_2 . Then arguments similar to those in Case 1a show that every node in Y_2 is adjacent to exactly one node in X and exactly one node in Y_2 , every node in X is adjacent to exactly one other node in X, and the ends of any edge in Y_2 are either both adjacent to x_1 or both adjacent to x_2 . So G is in Family (a) where w, x_1, x_2 is the central G_3 and vw, x_1y_1 and x_2y_2 are pendant edges.

Otherwise n is odd and e(G-T)=(n-3)/2. Since $|X|+|Y_2|=n-4$ and each node in X and Y_2 has degree 1 or more in G-T, every node except one in X and Y_2 has degree 1 in G-T. The exceptional node has degree 2.

First assume the exceptional node is in X_1 and without loss of generality, assume it is x_2 . Since x_1x_2 is an edge, x_2 is adjacent in G-T to some other node in X_2 or Y_2 . If x_2 is adjacent to a node of X_2 , which we can call x_3 , then by arguments similar to Case 1a, we have that G is in Family (e) where w, x_1, x_2 is the central G_3 , vw, x_1y_1 and x_2y_2 are pendant edges, and x_3 is adjacent to both w and x_2 . If x_2 is adjacent to a node of Y_2 , which we can call y_3 , then x_1y_3 must be an edge in order that y_3 is P_3 -connected to y_2 . So by arguments similar to Case 1a, G is in Family (e) where w, x_1, x_2 is the central G_3 , vw, x_1y_1 and x_2y_2 are pendant edges, and y_3 is adjacent

to both x_1 and x_2 .

Next assume the exceptional node, which we will call x_3 , is in X_2 . Then x_3 cannot be adjacent to x_2 because then x_2 would also have degree 2 in G-T. Similarly x_3 is not adjacent to x_1 . Suppose x_3 is adjacent to $y_3 \in Y_2$. Then y_3 cannot be adjacent to any node of Y_2 , because otherwise y_3 would have degree 2 in G-T. Since y_3 is P_3 -connected to y_1 , we must have that y_3x_2 is an edge. Since y_3 is P_3 -connected to y_2 , we must have that y_3x_1 is an edge. However, at most one of edges y_3x_2 and y_3x_2 can be in T. Then y_3 would have degree 2 or more in G-T. So x_3 is not adjacent to any node in Y_2 in G-T. The only other possibility is that x_3 is adjacent to two other nodes in x_2 , which we will call x_4 and x_5 . Then by arguments similar to Case 1a, G is in Family (d) where w, x_1, x_2 is the central G_3 , v_2 , v_3 , v_4 , v_4 , and v_5 , and v_5 , are pendant edges, and v_5 , is the v_5 adjacent to v_5 .

Finally, assume the exceptional node which we will call y_3 is in Y_2 . Suppose y_3 is adjacent to $x \in X$. Since x is adjacent to a node in X, its degree within G - T is two or more. So y_3 can only be adjacent to two nodes of Y_2 , called them y_4 and y_5 . Then by arguments similar to Case 1a, G is in Family (d) where w, x_1, x_2 is the central G_3 , vw, x_1y_1 and x_2y_2 are pendant edges, and y_4, y_3, y_5 form the P_2 which is adjacent to either x_1 or x_2 .

Case 2: $\delta=2$ and a degree 2 node is not in a C_3 . Let v, w_1, w_2, X , Y and T be as defined in Case 2 of Theorem 1. Since $e(G) \geq \frac{3}{2}n - \frac{5}{2}$, we have that n is odd, e(G-T)=(n-3)/2, and every node of X and Y has degree 1 in G-T. Since v is P_3 -connected to each $x\in X$, every $x\in X$ has a neighbor in X. Since all nodes of X are adjacent to another node of X and these edges are in G-T, there are no edges between X and Y in G-T. So each node in Y is adjacent to exactly one node of X (by an edge of X) and exactly one node of X (by an edge of X) and exactly one node of X (by an edge of X).

Let X_i be the neighbors of w_i in X. Then X_1 and X_2 are both nonempty as both w_1 and w_2 have degree 2 or more. Suppose $x \in X_1$ and $x \in X_2$. Then both xw_1 and xw_2 are edges. However, only one of these edges can be in T. Since x has degree 1 in G - T and x is adjacent to a node of X, node x cannot exist. So X_1 and X_2 are disjoint.

Suppose there exists a pair of nodes $x_1 \in X_1$ and $x_2 \in X_2$ where x_1 has no neighbors in X_2 and x_2 has no neighbors in X_1 . Since x_1 cannot be adjacent to $x_2 \in X_2$, there is a path x_1, a, b, x_2 . Our choice of x_1 and x_2 guarantees that $a \notin X_2$ and $b \notin X_1$. Further, a and b cannot both be in X, because otherwise a and b would both have degree 2 within X. Without loss of generality, assume $a \notin X$. If $a = w_1$, then $b \in X_1$, a contradiction. Thus $a \in Y$. Since no node in Y is adjacent to two nodes in X, we have $b \in Y$. Then b is only adjacent to a and a, and a is only adjacent to a and a, since a is adjacent to a and a, there is a path a, a, a, a, a, a, then a, a, a, and a is only adjacent to a, then a is adjacent to both a, and a. If a, and a, and a is only adjacent to a, then a is adjacent to both a, and a. If a, then both edges a, and a is adjacent to both a, and a. If a, then both edges a, and a is adjacent to both a, and a. If a, then both edges a, and a is adjacent to both a, and a.

in G-T, this is impossible. If $q \in Y$, then one of the edges qx_1 and qx_2 is not in T. Since there are no edges of G-T between X and Y, this is also impossible. So b is not P_3 -connected to x_1 , a contradiction. Thus no pair of nodes are of this type.

Suppose $|X_1| > 1$ and $|X_2| > 1$. Then at least two edges are between X_1 and X_2 , for otherwise a pair of the type precluded above would occur. Let x_1x_3 and x_2x_4 be these edges where $x_1, x_2 \in X_1$ and $x_3, x_4 \in X_2$. Since x_i is adjacent to only one node in X, we have x_1 is not adjacent to x_2 and x_3 is not adjacent to x_4 . So there are paths x_1 , a, b, x_2 and x_3 , c, d, x_4 . Outside of Y, the only nodes adjacent to x_1 are w_1 and x_3 . If $a = w_1$, then b = v or $b \in X_1$. Since x_2 is not adjacent to v nor any node in X_1 , we have $a \neq w_1$. If $a = x_3$, then $b = w_2$ or $b \in Y$. Since x_2 is not adjacent to x_2 , and each node in x_1 is adjacent to exactly one node in x_2 , we have $x_1 \in Y_2$. Similarly, $x_2 \in Y_2$ is not adjacent to exactly one node in $x_2 \in Y_2$. Similarly, $x_1 \in Y_2$ is adjacent to exactly one node in $x_2 \in Y_2$. Since $x_3 \in Y_2$ is not adjacent to exactly one node in $x_1 \in Y_2$ is adjacent to exactly one node in $x_2 \in Y_2$. Since $x_3 \in Y_2$ is not adjacent to exactly one node in $x_3 \in Y_2$. Since $x_4 \in Y_2$ is adjacent to exactly one node in $x_4 \in Y_3$ is adjacent to exactly one node in $x_4 \in Y_3$. So $x_4 \in Y_4$ is adjacent to exactly one node in $x_4 \in Y_3$ is adjacent to exactly one node in $x_4 \in Y_3$. So $x_4 \in Y_4$ is adjacent to exactly one node in $x_4 \in Y_3$ is adjacent to exactly one node in $x_4 \in Y_3$. So $x_4 \in Y_4$ is adjacent to exactly one node in $x_4 \in Y_4$ is adjacent to exactly one node in $x_4 \in Y_4$.

Without loss of generality, assume $X_1 = \{x_1\}$ and $X_2 = \{x_2, x_3, \ldots, x_k\}$ where x_1x_2 is an edge. Let Y_1 be the nodes of Y adjacent to x_1 . Recall that each node of Y is adjacent to exactly one node in X and exactly one node in Y.

Assume $|X_2| = 1$. Let $Y_2 = Y - Y_1$. Since w_1 is P_3 -connected to nodes of Y_1 , every node in Y_1 is adjacent to another node in Y_1 . Similarly, every node in Y_2 is adjacent to another node in Y_2 . So the edges in Y_1 are independent, the edges in Y_2 are independent, and there are no edges between Y_1 and Y_2 . So G is in Family (b) with v, w_1, x_1, x_2, w_2 forming the central C_5 with only x_1 and x_2 having pendant C_3 's.

Otherwise $|X_2| > 1$. Let $y_1 \in Y_1$. Let y_2 be the neighbor of y_1 in Y. If y_2x_1 is an edge, then y_2 is not P_3 -connected to x_3 . If y_2x_2 is an edge, then y_2 is not P_3 -connected to w_2 . If y_2x_i is an edge for i > 2, then y_2 is not P_3 -connected to x_1 because x_2 is not adjacent to x_i . So y_2 is not adjacent to X and hence y_1 cannot exist. Therefore, the only neighbors of x are w_1 and x_2 . Since w_1 is adjacent to only v and x_1 which in turn are only adjacent to one other node, we can replace v by w_1 in the argument from the previous paragraph. So G is in Family (b) with v, w_1, x_1, x_2, w_2 forming the central C_5 with only x_2 and w_2 having pendant C_3 's.

References

- [1] L.T. Ollmann, $K_{2,2}$ -saturated graphs with a minimal number of edges, Proceedings of the Third Southeast Conference on Combinatorics, Graph Theory, and Computing (1972), 367-392.
- [2] Z. Tuza, C₄-saturated graphs of minimum size, Acta Universitatis Carolinae-Mathematica et Physica (1989), 161-167.