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ABSTRACT. A graph without 4-cycles is called Cy-free. A C;-
free graph is Cys-saturated if adding any edge creates a 4-cycle.
Ollmann showed that any n-node Cy-saturated graph has at
least 3n — 3 edges. He also described the set of all n-node Cs-
saturated graphs with [$n] — 3 edges. A graph is Ps-connected
if each pair of nonadjacent nodes is connected by a path with
exactly 3 edges. A Cj-saturated graph is Ps-connected, but not
vice versa. We generalize Ollmann'’s results by proving that any
n-node Ps-connected graph has at least 3n — 3 edges. We also
describe the set of all n-node Ps-connected graphs with [$n] -3
edges. This is a superset of Ollmann’s set as some n-node P3-
connected graphs with [%n] — 3 edges do have 4-cycles.

Let P; be a path on k edges. Two nodes are Pi-connected if they are
connected by a Pi. A graph is Py-connectedif all pairs of nonadjacent nodes
are Pi-connected. The only P;-connected graphs are complete graphs. A
graph is P;-connected if and only if its diameter is at most 2. In general, a
P,-connected graph has diameter at most k. However, a diameter k graph
need not be Py-connected. For example, P for k > 3 has diameter k and
yet is not Py-connected.

Let Cj be a cycle with k edges. A graph without Cj as a (not necessarily
induced) subgraph is called Cx-free. A Ci-saturated graph is a maximal
Ci-free graph in the sense that adding any edge creates a Ci. If adding an
edge between two nodes creates a Cl, then a Pe_; must connect the nodes.
So a Cj-saturated graph is P,_;-connected. However, a Pi_;-connected
graph need not be Ci-saturated (e.g., Figure 3 (d) and (e)).

Ollmann [1] answered the question: What is the minimum number of
edges in an n-node Cy-saturated graph? He showed that all Cy-saturated
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graph have at least %n— 3 edges. He also described all Cy-saturated graphs
with [§n] — 3 edges showing the answer is [3n] — 3 for all n > 4. Tuza [2]
gave simpler proofs of Ollmann’s results.

What is the minimum number of edges in an n-node P3-connected graph?
Theorem 1 shows the answer is again [3n] — 3 for all » > 4. Since a
Cy-saturated graph is Ps-connected, this is a generalization of Ollmann’s
bound. Theorem 2 describes all Ps-connected graphs with [3n] — 3 edges.
In addition to the three families given by Ollmann (Figure 3 (a), (b), and
(c)), we find two new families (Figure 3 (d) and (e)) of Ps-connected graphs
that are not Cy-saturated.

Lemma 1. Let G be an n-node connected graph where every edge is in a
C3. Then G has at least 3(n — 1) edges.

Proof: Any connected graph has a spanning tree T with n — 1 edges. An
edge of G — T can form a C3 with at most two edges of T. So G — T has
at least (n — 1)/2 edges. D

Theorem 1. Let G be an n-node Ps-connected graph. Then G has at
least [3n] — 3 edges.

Proof: This is trivial for n = 1. Assume n > 2. Let & be the minimum
degree of the nodes of G. Since G is connected, § > 0. If § > 3, then G has
at least 3n edges. So assume & =1 or 2.

Case 1: 6§ = 1. Let v be a degree 1 node with neighbor w. Let T be the
breadth-first tree rooted at . Let X and Y be the nodes that are distance
2 and 3, respectively, from v. Since all nodes are distance at most three
from v, all nodes save v and w are in X or Y. Thus |X|+|Y|=n—2. Let
z € X. Since z is not adjacent to v, there is a path v,w, g,z. Since qis
distance 2 from v, we have ¢ € X and hence the nodes in X have degree 1
or more within X,

Let Y; be the degree 1 nodes of Y and k = |Y;|. Let Yo =Y — Y;. Let
X1 be the nodes of X adjacent to Y; and let X = X — X;. Then for all
Y1, %2 € Y, there is a path y1, 21, 73,y where z,, 2, € X;. Since z; # zo,
each node in X is adjacent to exactly one node in Y;. Further, every pair
of nodes in X is adjacent. Thus [X;| = k and X; is a clique (see Figure 1).
Since each node in X; and Y; is incident to at least one edge not in T, the
number of edges not in T is

[X1] [Xa| + |Ya| k n-2-2k _ n-4
-T)Y> 22l 2] )
(G T)_( o )t o) T2

Thus the number of edges in G is ¢(G) > (n —4)/2+n—1=$n -3,

300



Figure 1. The construction in Case 1 of Theorem 1.

Case 2: § = 2 and a degree 2 node is not in a C;. Let v have
degree 2 with nonadjacent neighbors w; and ws. Let T be the breadth-first
tree rooted at v. Let X and Y be the nodes which are distance 2 and 3,
respectively, from v (see Figure 2). Since a P3 connects v to z € X, there
is an edge incident to z that is not in T'. Further since § =2, eachy €Y is
also incident to an edge not in T. So (G —T) > (|X|+|Y])/2 = (n-3)/2,
and hence the number of edges in G is ¢(G) > n—1+(rn—-3)/2=3n- 2.

Figure 2. The tree formed in Case 2 of Theorem 1.

Case 3: 6§ = 2 and each degree 2 node is in a C3. Let S be the
subgraph of all C3’s with one or more degree 2 nodes. Let S;,S5,...,Smn
be the components of S. Lemma 1 shows that e(S;) > 2(|S:| — 1). Since
the degree 2 nodes of two components are Ps-connected, there is an edge
between every pair of components of S. So there are at least (7) edges
between components of S. Then the number of edges in the subgraph
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induced on the nodes of S is

() 2 3el5) + (r;) > gg(lsel —1)+ (’g)

i=1
3 m? 3

= — —_— >~ - 2.
2[S|+ 5 2m_2|SI 2

Since all degree 2 nodes are in S, nodes not in S have degree 3 or more.
Thus the number of edges in G is ¢(G) > 3|S| -2+ 3(n—|S|) = 3n-2. D

Theorem 2. Let G be a Ps-connected graph with n nodes and [3n] -3
edges. Then G is in one of the families of graphs in Figure 3.

Figure 3. Families of n-node Ps;-connected graphs with
[2n] — 3 edges. The dots indicate an arbitrary number
(including zero) of pendant Cj’s.

Proof: In Theorem 1, Case 3 had at least %n — 2 edges which is greater
than [3n] — 8 for all n. So we only need consider Cases 1 and 2.

Case 1: 6§ =1. Let v, w, X, Y, X}, Y3, X2, Y2 and T be as they were in
Case 1 of Theorem 1. For e(G) = [3n] -3, either |Y;| = 1 or 2, and either
e(G-T)=(n—-4)/2if nis even or ¢(G —T) = (n — 3)/2 if n is odd.
Case la: |Y;| = 1. Let X; = {z;} and Y; = {1}. Since every node in
X and Y; has degree 1 or more in G — T, we have (G — T) > (n — 3)/2.
So n is odd and e(G — T') = (n — 3)/2. Since e(G — T) is half the number
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of nodes in X and Y3, every node in X and Y3 has degree one in G —T.
Further, since each node of X is adjacent to a node of X and these edges
are not in T, no edge of G — T connects a node of X to a node of Y3. Thus
every node in Y> is adjacent to exactly one node in X (this edge is in T')
and exactly one node in Y> (this edge is not in T'). Further, every node in
X is adjacent to exactly one node in X.

Let z5 € X3 so that z1z5 is an edge. Let yoys be an edge in Y. Since z;
is not adjacent to any node in X other than zj, for y; to be Ps-connected
to 7;, we have that either y,z5 or ysz; is an edge.

First assume y,z5 is an edge. Since each node in Y5 is incident to only
one node of X and only one node of Yz, the only nodes adjacent to y, are
y3 and z2. Then for y3 to be P;-connected to y;, we have that yszo is an
edge. Further since y3 is adjacent to only one node of X, we have that
y3 is not adjacent to z;. Otherwise assume y3z; is an edge. Then we can
similarly show that yoz; is an edge, and ¥ is not adjacent to z2. Either
way, 72 and y3 are either both adjacent to z; or both adjacent to zz. So
the ends of any edge in Y; are either both adjacent to z; or both adjacent
to zo. Thus G is in Family (c) where w, zy, z2 is the central Cs, and vw
and zy; are pendant edges.

Case 1b: |Y;| = 2. Let X = {z1,z2} and Y; = {y1, %2} where z13; and
x2y2 are edges. Since X is a clique, 172 must also be an edge.

First assume n is even, so e(G—T') = (n—4)/2. For the inequalities to be
equalities, each of the n — 4 nodes in X and Y5 has degree 1 in G —T', and
there are no edges between X; and X,. Then arguments similar to those
in Case 1a show that every node in Y5 is adjacent to exactly one node in
X and exactly one node in Ys, every node in X is adjacent to exactly one
other node in X, and the ends of any edge in Y> are either both adjacent
to z; or both adjacent to z5. So G is in Family (a) where w, 1,z is the
central C; and vw, 1y, and zoy; are pendant edges.

Otherwise n is odd and e(G — T) = (n — 3)/2. Since | X|+ |Y2|=n -4
and each node in X and Y; has degree 1 or more in G — T, every node
except one in X and Y5 has degree 1 in G — T'. The exceptional node has
degree 2.

First assume the exceptional node is in X; and without loss of generality,
assume it is zp. Since zix3 is an edge, z2 is adjacent in G — T to some
other node in X5 or Y5. If z5 is adjacent to a node of X5, which we can call
x3, then by arguments similar to Case 1a, we have that G is in Family (e)
where w, T,, T3 is the central Cs, vw, 1y, and z,ys are pendant edges, and
z3 is adjacent to both w and zs. If x5 is adjacent to a node of Y3, which we
can call y3, then z;y3 must be an edge in order that y; is Ps-connected to
y2. So by arguments similar to Case 1a, G is in Family (e) where w, z;,z2
is the central Ca, vw, z1%; and z232 are pendant edges, and ys is adjacent

303



to both z; and z,.

Next assume the exceptional node, which we will call 3, is in X2. Then
3 cannot be adjacent to zs because then z, would also have degree 2 in
G-T. Similarly z3 is not adjacent to z;. Suppose z3 is adjacent to y3 € Y5.
Then y3 cannot be adjacent to any node of Y2, because otherwise y3 would
have degree 2 in G — T'. Since y3 is Ps-connected to y;, we must have that
yazo is an edge. Since y3 is Ps3-connected to y2, we must have that ysz; is
an edge. However, at most one of edges ysz» and ys3zy can be in T. Then
ys would have degree 2 or more in G — T. So z3 is not adjacent to any
node in Y5 in G — T. The only other possibility is that z3 is adjacent to
two other nodes in X5, which we will call z4 and z5. Then by arguments
similar to Case 1a, G is in Family (d) where w, z1, z; is the central Cs, vw,
z1y1 and zay2 are pendant edges, and x4, 3, z5 is the P, adjacent to w.

Finally, assume the exceptional node which we will call y3 is in Y5. Sup-
pose y3 is adjacent to z € X. Since z is adjacent to a node in X, its degree
within G — T is two or more. So y3 can only be adjacent to two nodes of
Yz, called them y4 and ys. Then by arguments similar to Case 1a, G is in
Family (d) where w, z1, z3 is the central Cs, vw, £, and z2y» are pendant
edges, and y4, y3, ys form the P which is adjacent to either z; or z3.
Case 2: § =2 and a degree 2 node is not in a Cs. Let v, wy, wo, X,
Y and T be as defined in Case 2 of Theorem 1. Since e(G) > 3n — §, we
have that n is odd, e(G — T') = (n — 3)/2, and every node of X and Y has
degree 1 in G — T'. Since v is Ps-connected to each z € X, every z € X
has a neighbor in X. Since all nodes of X are adjacent to another node of
X and these edges are in G — T', there are no edges between X and Y in
G —T. So each node in Y is adjacent to exactly one node of X (by an edge
of T') and exactly one node of Y (by an edge of G —T).

Let X; be the neighbors of w; in X. Then X; and X are both nonempty
as both w; and w» have degree 2 or more. Suppose z € X; and z € X».
Then both zw; and zw, are edges. However, only one of these edges can
be in T'. Since z has degree 1 in G — T and z is adjacent to a node of X,
node z cannot exist. So X; and X5 are disjoint.

Suppose there exists a pair of nodes z; € X; and z3 € X3 where z; has
no neighbors in X2 and z, has no neighbors in X;. Since z; cannot be
adjacent to z; € X5, there is a path z1,a,b, z2. Our choice of z; and z5
guarantees that a ¢ X, and b ¢ X;. Further, a and b cannot both be in X,
because otherwise a and b would both have degree 2 within X. Without
loss of generality, assume a ¢ X. If @ = w;, then b € X, a contradiction.
Thus @ € Y. Since no node in Y is adjacent to two nodes in X, we have
b €Y. Then b is only adjacent to a and z2, and a is only adjacent to b
and z;. Since b is adjacent to z;, there is a path b,p, q,z;. If p = a, then
q = z, a contradiction. If p = z,, then q is adjacent to both z; and z,. If
g € X, then both edges ¢z, and gz, are in G — T'. Since g has degree one
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in G — T, this is impossible. If g € Y, then one of the edges gz, and gzs is
not in T'. Since there are no edges of G — T" between X and Y, this is also
impossible. So b is not P3-connected to z;, a contradiction. Thus no pair
of nodes are of this type.

Suppose | X;| > 1 and | X2] > 1. Then at least two edges are between X
and X», for otherwise a pair of the type precluded above would occur. Let
z1z3 and z2z4 be these edges where 1, z2 € X; and z3,4 € X2. Since z;
is adjacent to only one node in X, we have z; is not adjacent to z2 and z3
is not adjacent to 4. So there are paths z,, a, b, z5 and z3, ¢, d, z4. Outside
of Y, the only nodes adjacent to z; are w; and z3. If a = wy, then b= v or
b € X;. Since z is not adjacent to v nor any node in X, we have a # w;.
If @ = z3, then b = wy or b € Y. Since z is not adjacent to wo, and each
node in Y is adjacent to exactly one node in X, we have a #z3. Soe €Y.
Similarly, b,c,d € Y. Since each node in Y is adjacent to exactly one node
in Y, we have a, b, c,d are distinct. Since the neighbors of b are a and z3,
the neighbors of ¢ are d and z3, and there are no edges between {a, 22} and
{d, z3}, there is no P; between b and ¢, a contradiction. So either |X;| =1
or | Xz| =1.

Without loss of generality, assume X; = {z,} and X3 = {z2, z3,...,zx}
where z,z7 is an edge. Let Y; be the nodes of Y adjacent to z;. Recall
that each node of Y is adjacent to exactly one node in X and exactly one
node in Y.

Assume |X5| = 1. Let Yo =Y —Y;. Since w,; is P3-connected to nodes of
Y}, every node in Y} is adjacent to another node in Y;. Similarly, every node
in Yz is adjacent to another node in Y>. So the edges in Y; are independent,
the edges in Y2 are independent, and there are no edges between Y; and
Ys2. So G is in Family (b) with v, w1, 21, 22, ws forming the central Cs with
only x; and zs having pendant Cs’s.

Otherwise | Xo| > 1. Let y; € Y;. Let y» be the neighbor of y; in Y.
If yoz; is an edge, then y, is not P3-connected to z3. If y2z5 is an edge,
then %, is not Ps-connected to ws. If yoxz; is an edge for i > 2, then yo
is not Ps-connected to z; because z2 is not adjacent to z;. So y; is not
adjacent to X and hence y; cannot exist. Therefore, the only neighbors of
z are wy and z2. Since w; is adjacent to only v and z; which in turn are
only adjacent to one other node, we can replace v by w; in the argument
from the previous paragraph. So G is in Family (b) with v, w, z1,z2, wo
forming the central Cs with only z2 and ws having pendant Cj’s. (]
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