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Abstract

In this paper, we prove that if G is a k-connected (k > 2)
graph of order n such that the sum of degrees of any k + 1
independent vertices is at least n + k, and if the set of claw
centers of G is independent, then G is hamiltonian.
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In this paper, we will consider only finite, undirected graphs, without
loops or multiple edges. We use the notations and terminology in [3). In
addition, if G is a graph, we denote by V(G) the vertex set of G, by E(G)
the edge set of G. For any v € V(G), A C V(G) and B C V(G)\A, we put

N(@) = {u€eV(G):w € E(G)}, d(v) = |[N(v)],
N(A) = {ueV(G)\A:w € E(G)},

ox(G) = min { zd(z) : I is an independent set of order k in G},
zel

e(4A,B)

|{uweE(G):ueAandweB}.

In a graph G, the subgraph induced by A C V(G) will be denoted by
G[A]. Let C = cicz...cpcy be a cycle. We put ¢f = ciyq and ¢ = ¢i—1
(i=1,2,...,p, cpy1 = €1, c0 = Cp). Set AT = {a* :a € A} and 4™ =
{a~ :a € A} for any A C V(C). A graph is said to be claw-free (or Ky,3-
free) if it does not contain K 3 as an induced subgraph. The vertex with
degree 3 in a K 3 is called a claw center.
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In recent years, there have been a lot of results dealing with claw-free
graphs, in particular in finding sufficient conditions in claw-free graphs for
various cycle and path properties. Many of these are related to tradi-
tional conditions on degrees, neighborhood unions, connectivity, indepen-
dence number, etc. for hamiltonian graphs. For the recent related topics,
people can see [7], [9], etc. We are interested in the following result and
conjecture.

Theorem 1. [10] If G is a k-connected claw-free graph of order n
such that ox41(G) > n — k, then G is hamiltonian.

Conjecture 2. [8] Every 4-connected claw-free graph is hamiltonian.

A weaker version for Conjecture 2 is the following.
Conjecture 3. [2] Every 4-connected line-graph is hamiltonian.

In this paper, we consider the class of graphs in which the set of claw
centers is independent. A graph in this class is called a claw center in-
dependent graph. It is clear that a claw-free graph is also a claw center
independent graph.

In [5], Li, Lu and Sun proved the following theorem.

Theorem 4. Let G be a 2-connected graph of order n and minimum
degree § such that n < 46 —3. If the set of claw centers of G is independent,
then either G is hamiltonian or G is in one of three families of exceptional
graphs.

Li and Tian [6] proved the following theorem, which solves a conjecture
proposed by Broersma, Ryjacek and Schiermeyer in {4] for n > 79.

Theorem 5. Let G be a 2-connected graph of order n (n > 79) such
that g3(G) > n — 2. If the set of claw centers of G is independent, then
either G is hamiltonian or G is in one of two families of exceptional graphs.

Now, for k > 2, we construct a graph Gi as follows (see Fig. 1). Let
Hy be a complement of Ki_; with V(Hg) = {z1,z2,...,2x-1}. For any
1< i< k+1,let H; be a complete graph of order k£ — 1, M; a matching
between H; and Hy. Set

k+1
V(Gr) = V(Ho)U ( U V(H.-)) U {z},
k41 '=1k+l k+1
E(Gy) = ( U ai)u (U E(H,-)) U {vzk cve | V(H,-)}.
i=1 i=1 i=1

Obviously, G is a k-connected non-hamiltonian claw center independent
graph. This means that Conjecture 2 can not be extended to claw center
independent graphs. Therefore, it is meaningful to find sufficient conditions
for the hamiltonicity of claw center independent graphs.
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Fig.1: A k-connected claw center independent non-hamiltonian graph.

In this paper, we prove the following result.

Theorem 8. Let G be a k-connected (k > 2) graph of order n such
that 0x41(G) > n + k. If the set of claw centers of G is independent, then
G is hamiltonian.

For G = Gy, we have n = k* + k — 1, d(v;) = k for any v; € V(H;)
(¢ > 0), d(z;) = k+1 for any z; € V(Hp) and d(zx) = k% — 1. Then
0k4+1(G) = k? + k = n + 1. This shows that Theorem 6 is best possible
when k = 2,

Now, we assume that G satisfies the conditions of Theorem 6 and is not
hamiltonian. In order to prove Theorem 6, we introduce some additional
notations. Let @ := {v € V(G) : v is a claw center}, which by the condition
of Theorem 6, is an independent set.

For a cycle C, we denote by C the cycle C with a given orientation. If
u,v € V(C), then uCv denotes the consecutive vertices on C from u to v in
the direction specified by E’ The same vertices, in reverse order, are given
by vCu. We will consider uCv and vCu both as paths and as vertex sets.

Let C be a longest cycle in G, H a component of G\V(C). Since G
is k-connected, we have h = |[N(H) NV(C)| > k. Let v1,v2,...,v5 be
the vertices of N(H) N V(C), occurring on C in consecutive order. By the
maximality of C, we know v;4+, # v;“, where vp41 = vs.

We call a vertex v € v;" av;;l insertible if there exists u € v;+1av,-'
such that {u,u*} C N(v).
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In order to prove Theorem 6, we need the following two lemmas.

Lemma 1. [1] For any 1 < i < h, there exists a non-insertible vertex
in v} E'v..';_l.

Along v} Gy, let ; be the first non-insertible vertex, R = G\V(C)
and Q = U:'=1(v;"a:c.~). Choose zo € V(H). Let I = {zo,z1,22,...,Zn}.

Lemma 2. [1]

(i) No two distinct vertices of I are joined by a path whose internal vertices
(if any) are in RU Q. In particular, I is an independent set;

(ii) Forany 1 < i< j< handv € :z:.-az:,-, vt ¢ N('u,f"azg) orv ¢
N(fo:cj).

Lemma 3. For any 0 < i< j < h, we have N(z;) N N(z;) CQ

Proof. Suppose z satisfies |[N(2) N I| > 2. By Lemma 2(i), we have
ze V(CO)\Q.

If z € N(zo) N N(z;) for some j > 0, then z¥,z= ¢ N(zo) by the
maximality of C, and zoz; ¢ E(G) by Lemma 2(i). If 2 = vj, then z;2~ ¢
E(G) as z; is non-insertible. We have that G[{v;, z0,z;,v; }] is a claw. If
z # v;, then z;z% ¢ E(G) by Lemma 1(i). We have that G[{z,zo, z;, z7}]
is a claw. In either case, we have z € Q.

If z € N(zi) N N(z;)\N(zo) for some 1 < ¢ < j < h, without loss
of geniality we assume that z € a:,-a:z:j, then 2 € :c,-z'vj' by Lemma 2(i).
We have z;z* ¢ E(G) by Lemma 2(ii), and z;z* ¢ E(G) as z; is non-
insertible. Then the subgraph G[{z,z*,zi,z;}] is a claw. Hence z € Q.

Let
I' = {zg,z),..., %k}
Define

Si={veV(G):IN@)NI'|=1} and s; = |Sil.
By Lemma 2(i), we have I C Sp, and hence
so>|=h+1>k+1.
It is easy to see that Y"r¥) s; = n and
E+1 k

zis.- = Zd(z.-) > ok41(G) > n+k.

i=0 =0
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Hence

k+1 k+1
k<) (i-1)si =) (i-1)s — so. (1)
i=0 i=2

Now, we turn to prove Theorem 6.
As the set of claw centers is independent, we have |[N(z;) N Q| < 2 for

any z; € I'. By Lemma 3, we have |J;2} S; C Q. Then

k+1 k+1

Yisi = e(I',|J Si) < e(I', Q\(So U 51))
i=2 i=2

< e(I'R)—e(I',(SoUS1)NN)

< 2k+1)— |Son9|.

If Zf:zl 8; < 2, then at most one of s;, say s; = 1, is not equal to 0.
We have Ef__le i—1)3; =j— 1< k;andif 2?:21 8; > 2, then

k+1 k+1 k+1
Di-1)si=) isi— Y s <2Ak+1)—2=2k (2)
i=2 i=2 i=2

In either case, we have (2). Combining (2) with (1), we have

k41
k<Y (i-1)si—(h+1)<2%~h-1<k—1.
i=2
a contradiction.
The proof of Theorem 6 is complete.

Remark We do not know whether Theorem 6 is true or not under the

condition g541(G) > n + 2. If true, the graph Gi (Fig. 1) shows that it is
best possible.
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