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ABSTRACT. An (r,s; m,n)-de Bruijn array is a periodic r X s
binary array in which each of the different m x n matrices ap-
pears exactly once. C.T. Fan, S.M. Fan, S.I.. Ma and M.K.
Siu established a method to obtain either an (r,2",m + 1,n)-
array or a (2r,2"'s,m + 1,n)-array from an (r, s; m, n)-array.
A class of square arrays are constructed by their method. In
this paper, decoding algorithms for such arrays are described.

1 Introduction and some notations

A periodic binary sequence of length 2" in which each of the different n-
tuples appears exactly once is called a de Bruijn sequence of span n [4]. It
became familiar through the works of de Bruijn and Good in 1946 [1, 5].
A generalization of de Bruijn sequences to two dimensional case was held
out. Such generalized objects were called de Bruijn arrays [4, 8] or perfect
maps [3, 6, 10, 12]. A number of constructions of de Bruijn arrays were
devised (3, 4, 8, 10].

Definition 1.1: An (r, s;m,n)-de Bruijn array (or for short (r, s;m,n)-
array) is a periodic r x s binary matrix (with m < r, n < s, rs = 2™) in
which each of the different m x n matrices appears exactly once.
Remark 1.2: Arrays in which each non-zero m x n matrices appears
exactly once were considered in [3, 6, 9, 11, 12].
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A numbser of applications exist for de Bruijn arrays, such as 2-dimensional
range-finding, scrambling, various kinds of mask configuration, coding, etc.,
one of which is the position location application [2, 12]. Recently, Mitchell
and Paterson devised a construction of a class of de Bruijn arrays and a
decoding algorithm [10]. Some questions were asked at the end of their
paper. One of those is how to decode the square de Bruijn arrays which
were constructed by C.T. Fan, S.M. Fan, S.L. Ma and M.K. Siu [4]. For
convenience these constructions will be called the FFMS method.

In this paper a decoding algorithm is presented.

Let M, 5(Z2) be the set of r x s matrices (arrays) over Z,. When A =
(aij) € M,.',,(Zg) we let A;, be the i-th row of A and A.; = }[_, a;; be the
j-th column sum of A.

Let A(""") be the m x n sub-matrix (sub-array) of A whose (z,y)-th
entry is deﬁned by @i—14zj- ~1+ys 1<z<m,1<y<n,wherei—1+=x
is computed modulo rand 1 <i— 14z < r, and j — 1+ y is computed

modulo s and 1 € j — 14y < s. That is, the top left hand corner of A("‘ ")
is the (3, 7)-th entry of A.

2 The FFMS method

Let A be an (r, 8; m, n) array.

Type 1: If (A.q,...,A,) = 0= (0,...,0). Take a de Bruijn sequence span
n with n 0’s at the beginning. Delete the first zero to obtain a sequence
a=C1,C2y...,C2n—-1.

B = (biba...ban-1,) € My 2n,(Z2), where

=bz="°=b8=oa‘nd
ba+j+k(2"—l) =Cj (j= 1,...,2" —1,k=0,1,...,s—1).
(2.1)
That is, B = ‘00...0?162...Czn_L...\CICz...CQn_L) € My 2n4(Z3).

s entries 1st 8:‘}‘

Let Z = (A:A:---:A) (2" copies of A). Then

B
B+ Z;.

A= B+ Zl‘ + Z2. € Mr,2"a(22)-
B4 T 2

is an (r,2"s;m + 1,n) de Bruijn array. For convenience this array will be
called an array of type 1 consiructed from A and a.
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Example 2.1: Consider the example 5.4 in [4].
0000101000110101
0001101100111110)] . ,

A=l1111010111001010 | 52416 23)-array.
1110010011000001

Let a = ¢1, ¢, ¢3, ¢4, C5, c6, c7 = 0011101. Then we obtain the (4,128;3, 3)-
array A; of type 1 constructed from A and a. Such array is described in
Appendix (1).

Type 2: If (Ay,...,As) =1 =(,...,1). Let B = (byby...byn-1,) €
M 2n-1,(Z2) be defined as follows.

For n > 3 we let bl = bz = e =0 = 0 b5+j+(2n—l -k = Cj (_7
L...,2 1 -1,k =0,1,...,5-1), i.e, B=(00...0cico...Con-1_1.
8 entries 1st
(] Cz...%n—l_l) € Ml,2"—1o(Z‘2)a where ¢ =a +ay+--+aj_ with
P
s—th

B =ag,ay,...,a9n-1_, being a de Bruijn sequence of span n — 1 withn—1
0’s at the beginning. Forn=1welet b, =0 (u=1,...,5) and forn =2
welet by =by=---=b, =0, by2k—1 =0, b,+gk=1(k=l,...,%).

27~1 copies

P

Let Z = 444 (2 x 2"~ copies of A). Then
AA A

/ B
B+ 2y,
B+ th +Z2t

A= B+ Zr_l Zit € M2r,2"‘13(z2)
B+ Z,=1 Zix

\B + Efﬁ?‘ Zi.)

isa (2r,2""!s;m+1,n) de Bruijn array. Note that Y1 Z =Y A= 1
For convenience this array will be called an array of type 2 constructed from
A and B. (For n =1 or 2, this array will be called an array of type 2 con-
structed from A).

Example 2.2: The (8, 8; 3, 2)-array of type 2 constructed from a (4, 4;2, 2)-
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array

(0000010 1)

00100111

0010 00110110
a_|0001}). _Jo1000001
“lo 111 11171111010
1011 11011000
11001001

\l! 011111 0

Note that this is the example 5.6 in [4].

Example 2.3: Let A= (1) (1) {1) (1)) Then A is a (2,4;1, 3)-array. Let

B = 0011, which is a de Bruijn sequence span 2. Then ¢;,c2,c3 = 001.
We obtain the following (4, 16; 2, 3)-array A; of type 2 constructed from A
and B.

0000001001001001
A = 0001001101011000
'11111110110110110
1110110010100111

3 Decoding for arrays of type 1

For any (m + 1) x n matrix N over Zy, let D: Mpy10(Z2) = Mp n(Z2)
be the mapping defined by

Nl# + N2¢
N2t + N3t

D(N) = y N € M 41n(Z2). [4, section 4; 7). (3.1)

Nmt + Nm-}-l#

Suppose A is an (r, s; m,n)-array with (A.4,...,A;) = 0 and A, is an
(r,2"s;m + 1,n)-array of type 1 constructed from A and some . The
following theorem permits us to find the location in A; of a given matrix

Me Mm+1,n (Zz)

Theorem 1. Suppose A is an (r, s;m,n)-array with (A.1,...,A,) = 0,
and that 0, ¢y, ¢, .. ., can_1 is a de Bruijn sequence span n, with n 0’s at the
beginning. Let A, is an (r,2"s;m + 1,n)-array of type 1 constructed from
Aand a = ci,ep...,cono1. Lot M € Mmy1n(Za). If M = (A)){7H™
then D(M) = Af:";'"), for some 1 < j < s. Moreover, if we let

&= My — ALY — AL — ... — AL then either @ =G or g, 1 <
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g < 2" —1, such that & = (cyCy41...Cg4n—1) (c1 follows con_y). For the
first case k = j andfor&he]astcweil'z 0 <z < s-—1, such that
k=s+g+(2"-1)z=j (mod s).

Proof: By the construction described in Section 2 we have

Bk+(Z("'"))1 +- 4 (Z(r’") Jh—1e
By + (27}, (%) Yie o+ (Zl N htmete

where By = (bx bk41...bk4n—1), and h + m — 1 is considered modulo r,
(Z(rn)) he
1<h+m—1<r. Then D(M) = : = Ag’;.’“) where

(Zglz:n))h-!-m—lt
j=k (mod s8),1 <j < s. Hence

-

a
a+A(1’")
(A )(r'n) = a+ A(l ﬂ)+A(l,ﬂ)

a+A(1 n)+A(1.n)+m+A£1_.v;?j

for some & € Z% and therefore, a= My - A(l'") A,E,f_;“) A(l'")

Since k = j (mod s), then & = (bysy; bu.h,.,.l beatjin—1 ) for some 'i

where by,’s were defined in (2.1)

It is easy to see from the definition of B that & = 0 if and only if
1 < k < 5. Therefore k = j (mod s) yieldsk—g If & # 0 there is a
unique g, 1 < g < 2" — 1, such that & = (cycg41...c94n-1) (c1 follows
can_1) where ¢, are deﬁned in (2.1). Then

k=s+g+(2*-1)z=; (mod s).

This equation has a unique solution modulo s since g.c.d.(2" —1,s) = 1.0

Decoding algorithm for arrays of type 1:

We shall keep the notations introduced above.

Step 1: Compute D(M).

Step 2: Find the location of D(M) in A. Let us say D(M) = Af""")

Step 3: Let &= M), — A{'jY — A{L™ — ... _ g ¢

Step 4: If & = 0 then setk =3 and go to step 7. Ifa;éOthen find g,
1< g <2" -1, such that & = (¢ ¢g41. .. ¢g4n—1) Where ¢; are
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defined in (2.1).

Step 5: Solve the congruence equation g + (2" — 1)z = j (mod s),
0<z<s~-1.

Step 6: k=s5+g+ (2" —1)z.

Step 7: The top left hand corner of M is the (%, k)-th entry of A;.

Example 3.1: Consider the (4, 128; 3, 3)-array A; constructed in Example
010

2.1. Now suppose M = {0 0 1}. We want to find its location in A;.
1 00

1 01
Step 2: D(M) = Agf).

Step 1: D(M)=(0 1 1).

Step 3: Since A{Y = , &= 010 — 010 = 000.

-0 O
OO = =
o = = O

Step 4: k=6.
Step7: M= (&)g&s).

Example 3.2: Consider the array in Example 3.1. Suppose M = (

[
—

- O
SN———

0 01
Step 1: D(M)=(0 0 0).

Step 2: D(M) = AZY.

Step 3: &=110-110-111=111.

Step 4: g=3.

Step 5: 3+ 7z =11 (mod 16) = 7z =8 (mod 16) = z =8 (mod 16).
Step6: k=16+34+7x8=75.

Step 7: M = (A1)§50.

4 Decoding for arrays of type 2

Now we are going into decoding a (2r, " lgm 41, n)-arra_): of type 2
constructed from an (r, s;m,n)-array A with (A.1,...,A,)=1.

Theorem 2. Suppose A is an (r, s; m,n)-array, n > 3, with (A.,..., A,) = 1
and B = ag,a1,...,a9~-1_; is & de Bruijn sequence spann —1 withn —1
0’s at the beginning. Let A; be a (2r,2""'s;m + 1,n)-array of type 2
constructed from A and B. Let M € Mm41,(Zs).
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If M = (A )("'+1’”) and D(M) = A('"’“) then h = i or h = r +1 and
j=k (mod s), 1 < j < s, where D is ‘defined in (3.1). Moreover, if we let

& =Mu.- A(f_,;") A(fj"‘) .e- Agf";): then we have one of the following
cases:

(1) & =0;

Q) &=1;

(3) AN g,1<g< 27! —1, such that & = (cycgy1. .. Coyn—1) (c1 follows
con-1_1) where c; are defined in (2.2);

4) N g, 1<g<2™!—1,suchthata=1+a = (cycoq1---Cotn—1
hS 9 Co+ 9+
(c1 follows con-1_,) Where c, are defined in (2.2).

These cases correspond, respectively, to that (1) k=jand h=1,(2) k=3
and h=r+1,(3) Nz, 0 <z < s—1 such that
k=s+g+(2»'-1)z=j (mod s)andh=4i,and (4) N z,0<z <s-1,
such that k=s+g+ (2" 1—1)z=j (mod s) and h=r+1.

Proof: By the construction described in Section 2 we have

By + (Z(r’n))u S SRREE & (Z(r'"))h_l.
M= .
Bi+ (ZT 1 4+ (25 himo1a

where Bk = (bk bk+1 bk+n—1)

( (T,ﬂ))h* ( )
m,n

Then D(M) = : A(mn) ifh<r

() Ay, A>T
(Zl'ig )h+m—1t
where j = k (mod s), 1 < j < s. That is, if D(M) = A{T™ then h =i or
h =r 4. Hence
/ a._*_11(1 ) \
a+A(1 n)+A(1 n)

2r,
(A )( "ﬂ) a+A(1 ) +A(1-") + .- +A(l n) )

r—14

a+A(1’n)+A(fn)+ +A(1,n

Ka_‘_A(lv") +A(1 n) +-- +A(l ") +A(1rﬂ) +A(ln") +-.- +A(lnﬂ)
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for some & € Z3, and therefore, é" = M., = A(lf;.") - Ag}") —— A?_;")J
Since k = j (mod s), then & = b’ or & = b+ I, where
b= (bestj bes+jt1---brstj+n—1) for some ¢, and by’s were defined in (2.2).
We can see in a similar fashion to the one used in the theorem 1 that if
& =0thenk=j. Ifd +# 0 and thereisa g, 1 < g < 2"! —1, such that
& = (CgCgt+1---Cotn—1) (c1 follows con—1_1), then k = s+g+(2" 1 -1)z =
j (mod s) and h = i. If the value of & is not one of the cases discussed
above, then we let 8 = &’ + 1. Now we fall in one of the cases considered
above and k can be found. In this case h =7 + 1. a

Decoding algorithm for arrays of type 2 (for n > 3):

We shall keep the notations introduced above.

Step 1: Compute D(M).

Step 2: Find the location of D(M) in A. Let us say D(M) = Af:;."") .

Step 3: Let & = My, — AL — A — .o — AL

Step 4: If & = 0 then set k = j, h = i and go to step 10.

Step 5: If & # O then solve for g such that & = (cgcgy1...Cg4n—1),
1< g <2n! —1, where ¢;’s were defined in (2.2).

Step 6: If we can find a solution in step 5 then set A = and go to step
8. If we cannot find any solution in step 5 then let & =& + 1,
h=r+i.

Step 7: If &= 0 then set k = j and go to step 10. If & # 0 then find g,
1< g <271 —1, such that & = (¢ €g41 - . - Cg4n—1) Where ¢;’s
were defined in (2.2).

Step 8: Solve the congruence equation g + (2"~ —1) z = j (mod s),
0<z<s-1.

Step9: k=s+g+ (2! -1)=.

Step 10: The top left hand corner of M is the (h, k)-th entry of A;.

For n = 2 we also have the following decoding algorithm:

Decoding algorithm for arrays of type 2 (for n = 2):

Keep the notations as above.

Step 1: Compute D(M).

Step 2: Find the location of D(M) in A. Let us say D(M) = AE:;"”.
Step 3: Let & = My, — A(LD — AP .. A0

Step 4: If & = 0 then set k = 7, h = i and go to step 8.

Step 5: If %j is odd and & = 01” or “j is even and & = 10" then
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%k = s+ j and h =i. Go to step 8.

Step 6: If & = 11 then set k=3, h=r+ ¢ and go to step 8.

Step 7: If “j is even and & = 01” or “j is odd and & = 10” then
k=s+jand h=r+1i. Go to step 8.

Step 8: The top left hand corner of M is the (h, k)-th entry of A;.

Remark: Forn =1,ifa =0then k=34, h=14;ifd =1 then k = j,
h=r+i.
Example 4.1: Consider the (8, 8; 3, 2)-array A,, in Example 2.2. Suppose

00
M = {0 1). One can scan A, and find that M = (A1)$. The
00

algorithm suggest the following steps:

Step 1: D(M) = (g })

Step 22 D(M) = Aff).

Step 3: Since A{;Y = , & =00—01—00—11=10.

O OO
— -0 =

Step5: h=4,k=44+2=6.
Step 8: M= (Al)féz).

Example 4.2: Consider the (4, 16;2, 3)-array A;, in Example 2.3. Suppose

011
M= 10 1).Then

Step 1: D(M)=(110).

Step 2: D(M) = A$3>.

Step 3: & =011 — 001 = 010.

Step 5. g=2.

Step 6: h=2.

Step 8: 2+3z=2 (mod4)=>z=0.
Step9: k=4+2=6.

Step 10: M = (Al)g?és) .

Example 4.3: Consider the (4,16;2,3)-array A;, in Example 2.3 again.
110

Suppose M = (1 0 0) Then

Step 1: D(M)=(010).

Step 2: D(M) = A{3Y.
Step 3: & = 110.
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Step6: a=a+1=001, h=2+1.
Step7: g=1.
Step8: 1+3z=3 (mod4) =z =2.

Step 9: k=4+1+6=11.
Step 10: M = (41)$3.

5 Decoding for square arrays constructed by the FFMS method

Given a square array, Fan et al. [4] established a construction to obtain
another square array. This construction can be defined succinctly as follows:

Let A be an (r, s;m,n)-array then the transpose of A is an (s, r;n, m)-
array. We shall denote such array as AT.

Suppose A is an (s, s;n,n)-array. We choose 4 de Bruijn sequences
0,01,62,...; 0,011,021,...; 0,612,622,. - and 0,013,623,... of spans n, n,
n+1 and n + 1, respectively, such that each of them has the largest sub-
sequence of zeros. Let @ = C1,C2y..., (1 = C11,€21,..., Q2 = C12,€22,...
and a3 = c¢13,¢p3,.... We obtain an (s,2"s;n + 1,n)-array A; of type 1
from A and a, a (2"s,2"t!s;n 4+ 1,n + 1)-array A, of type 1 from AT and
a1, a (2"s,2"12s;n 4 2,n + 1)-array As of type 1 from A, and as and a
(27*2s,2"+25;n + 2, n + 2)-array A4 of type 1 from AI and a3 [4].

The array A4 can be decoded by the following procedure:

Suppose M, € Mn+2,n+2(22). Let M3 = D(M4), M = D(MgT), M, =
D(M) and Mo = D(M{). Using the algorithm described in section 3 with
Mo and o we can locate M{ in A; and M; in AT. Using the algorithm
with M; and a; we can locate Mz in A;. Using the algorithm with M, and
ap we can locate MY in A3 and M3 in AJ. Using the algorithm with M
and a3z we can locate My in A,4.

Remarks:

1. Before applying the procedure described above we must know A;, Ag
and As.

2. For finding the location of M, we have to know all the locations of
MT, M; and MT. Nevertheless, it is not necessary to scan by a ‘brute
force’ method the matrices A;, A> and As. That is, we need not use
the ‘brute force’ method.

The proof of Theorem 6.1 in [4] suggest us to construct a (256, 256;4, 4)-
array from the (4, 16; 3, 2)-array

A=

= O 00
- O 00O
O b
(=3
-0 00
O OO0
= O
=)
- o 00
oo =0
O ===
- O
[l == -]
OO O =
e O
O
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as follows:

Choose a = 0011101 = a; and as = 000100110101111. We obtain the
(16,32;3, 3)-array A; of type 1 from AT and o, the (16,256;4, 3)-array
Ay of type 1 from A; and o; and the (256,256;4, 4)-array Az of type 1
from A'{ and a3. Note that the construction of As differs from the general
construction of square array described above.

1 000

Example 5.1: Suppose M3 = g (1) g g . We want to find its location
0 001

in As. Let My = D(M3), My = D(MY), Mo = D(M;). That is

1100 010 11 1
My=|0 11 0|,My=]|1 0 1}],and My= . Hence
1 111

0011 010
00 0
00 0
T _ 432 \(2,3) mnaey _ |1 11
My = Ay3 and My = (A )3’1 . Now (A")};™ =1 1 1] We
110

have & = (M1, — (AT — (AT)§5Y = 010 — 000 — 000 and go = 6.
Solvmg the equatxon 6+7z=1 (mod 4) yields z = 1 and k = 17. That is,
(A1)3 . (A, is described in Appendix (2)).

(

From (Al)gf;s = we can determine

. om0O0QC
R O
. -

o OOB

\1 0 0
a1 = (MP)1e — (ALY - (415> = 100 — 010 — 010 and then g; = 7.
Solving the equation 7 + 7z = 17 (mod 32) yields z = 6 and k = 81. That
is, MI = (Ag):(, s‘? hence M = (A2)81 3 (Ajz is described in Appendix (3)).

From the Appendix we find (A2)4 256) and hence we know (AT)(256 4. We
have & = (Ms)1.—(AD)$3 - --(AT)§},43) =1000— 0011 — 0011 —-.-.—

1st row  2nd row
1010 = 0010 and g, = 2. Solving the equation 2 4 15z = 3 (mod 16)

80th row
yields z = 15 and k = 243. That is, M3 = (43)$y 23
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Appendix
(1) A (4,128;3,3)-array

Column 1 to 64:

0000000000000000001110100111010011101001110100111010011101001110
0000101000110101001100000100000111100011111001101010110101111011
0001000100001011001010110111111111111000110110001011011001000101
1110010011000001110111101011010100001101000100100100001110001111
Column 65 to 128:

1001110100111010011101001110100111010011101001110100111010011101
1001011100001111011111101101110011011001100100100100010010101000
1000110000110001011001011110001011000010101011000101111110010110
0111100111111011100100000010100000110111011001101010101001011100

(2)-A (16,32;8,8)-array

(00000011101001110100111010011101\
00010010101101100101111110001100
00000011101001110100111010011101
11101101010010011010000001110011
00000011101001110100111010011101
00010010101101100101111110001100
00110000100101000111110110101110
10001011001011111100011000010101
11111100010110001011000101100010
11101101010010011016000001110011
10101001000011011110010000110111
01000111111000110000101011011001
11111100010110001011000101160010
11101101010010011010000001110011
011001011100600010010100011111011
\11011110011110101001001101000000}




(3) A (16,256;4, 3)-array

Columns 1 through 48:

000000000000000000000000000600000011101001110100
000000111010011101001110100111010011100111010011
000100010001000100010001000100010010101101100101
000100101011011001011111100011000010100011000010
111111111111111111111111111111111100010110001011
111111000101100010110001011000101100011000101100
111011101110111011101110111011101101016010011010
110111100111101010010011010600001110016000001110
010101010101010101010101010101010110111100100001
101010010000110111100100001101111001001101111001
010001000100010001000100010001000111111000110000
1110110101001001101000000111¢0111101011100111101
101010101010101010101010101010101001000011011110
010101101111001000011011110010000110110010000110
101110111011101110111011101110111000000111001111
1101111060111101010010011010000001110010000001110

Columns 49 through 96

111010011101001110100111010011101001110100111010
101001110100111010100100111010011101001110100111
111110001100001010110110010111111000110000101011
101101100101111110110101111110001100001010110110
000101100010110001011000101100010110001011000101
010110001011000101011011000101160010110001011000
000001110011110101001002101000000111001111010100
011110101001001101111001001101060000111001111010
101111001000011011110010000110111100160001101111
000011011110010000001110010000110111100100001101
101011011001011111100011000010101101160101111110
010010011010000001001010000001110011110101001001
016000110111100100001101111001060011011110010000
111100100001101111110001101111001000011011110010
010100100110100000011100111101010016011010000001
011110101001001101111001001101000000111001111010
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Columns 97 through 144

011101001110160111010011101001110100111010011101
011101110100111010011101001110100100110100111010
011001011111100011000010101101100101111110001100
011001100101111110001100001010110101110000101011
100010110001011000101100010110001011000101100010
100010001011000101100010110001011011001011000101
100110100000011100111101010010011010000001110011
101010101001001101000000111001111001000011100111
001000011011110010000110111100100001101111001000
110111011110010000110111100100001110011110010000
001100001010110110010111111000110000101011011001
100110011010000001110011110101001010001111010100
110111100100001101111001000011011110010000110111
001000100001101111001000011011110001100001101111
110011110101001001101000000111001111010100100110
101010101001001101000000111001111001000011100111

Columns 145 through 192

001110100111010011101001110100111010011101001110
011101001110100111101016011101001110100111010011
001010110110010111111000110000101011011601011111
011001011111100011111011011001011111100011000010
110001011000101106010110001011000101100010110001
100010110001011000010101100010110001011000101100
110101001001101000000111001111010100100110100000
101010010011010600110111101010010011010000001110
011011110010000110111100100001101111001000011011
1101111001000011010¢0000110111100100001101111001
011111100011000010101101100101111110001100001010
100110100000011100000100100110100000011100111101
100100001101111001000011011110010000110111100100
001000011011110010111111001000011011110010000110
100000011100111101010010011010000001110011110101
101010010011010000110111101010010011010000001110



Columns 193 through 240

100111010011101001110100111016011101601110100111
100111101001110100111010011101001101000000000000
100011000010101101160101111110001100001010110110
100011111000110000101011011001011100000100010001
0110600101100010110001011000101100010110001011000
011000010110001011000101100010110010111111111111
011100111101010010011010000001110011110101001001
010000110100000011100111101010010000110111011101
110010000110111100100001101111001000011011110010
001101000011011110010000110111100111101010101010
110110010111111000110000101011011001011111100011
011100000111001111010100100110100011111011101110
001101111001000011011110010000110111100100001101
110010111100100001101111001000011600010101010101
001001101000000111001111010100100110100000011100
010000110100000011100111101010010000110111011101

Columns 241 through 256

0100111010011101
0000000000000000
0101111110001100
0001000100010001
1011000101100010
1111111111111111
1010000001110011
1101110111011101
0001101111001000
1010101010101010
0000101011011001
1110111011101110
1110010000110111
0101010101010101
1111010100100110
1101110111011101
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