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ABSTRACT. In this note, we give a method to construct bi-
nary self-dual codes using weighing matrices. By this method,
we construct extremal self-dual codes obtained from weighing
matrices. In particular, the extended Golay code and new ex-
tremal singly-even codes of length 40 are constructed from cer-
tain weighing matrices. We also get necessary conditions for
the existence of some weighing matrices.

1 Introduction

A weighing matrix W(n, k) of order n and weight k is an n by n (0,1,—1)-
matrix such that WW* = kI, k < n, where I is the identity matrix of
order n and W* denotes the transpose of W. A weighing matrix W(n,n)
is a Hadamard matrix. We say that two weighing matrices W; and W5 of
order n and weight k are equivalent if there exist monomial matrices of 0’s,
1’'s and —1’s P and Q with W; = PW,Q.

Chan, Rodger and Seberry [1] classified the inequivalent weighing ma-
trices of any order with weight less than 6. Ohmori [7] gave the complete
enumeration of weighing matrices of order 12 and weight k (6 < k < 10).
Recently, Ohmori (8] has determined inequivalent weighing matrices of or-
der 13. Our terminology from weighing matrices follows [3].

Let F = GF(q) be the field with q elements where g is a prime power.
An [n, k] linear code C over F is a k-dimensional vector subspace of F™.
In particular, codes over GF(2) and GF(3) is said binary and ternary
codes, respectively. The elements of C are called codewords and the weight
of the codeword is the number of its non-zero coordinates. A minimum
weight is the smallest weight among non-zero codewords. An [, k] code
with a minimum weight d is called an [r, k, d] code. Two binary codes are
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equivalent if one can be obtained from the other by a permutation of the
coordinates.

The dual code CL of C is defined as C+ = {z € F*| z -y = 0 for all
y € C}. If C c C*, C is called a self-orthogonal code. C is called self-dual
if C = Ct. C is called doubly-even if the weights of all codewords of C are
a multiple of four. A self-dual code is called singly-even if there exists at
least one codeword whose weight is = 2 (mod 4).

A binary self-dual code C is called extremal if C has the largest possible
minimum weight. For each length, the detail of the largest possible mini-
mum weight is listed in TABLE I in [2]. Conway and Sloane [2] also gave a
list of the possible weight enumerators of binary extremal self-dual codes.
The existence of some extremal self-dual codes is an open question in [2].

For our consideration, we need some facts from coding theory. Our ter-
minology and notation follow (6], [9].

There are some known methods for construction of self-dual codes. Some
of these methods make use of properties of symmetric designs, Hadamard
matrices and graphs. Tonchev [10] gave a method to construct self-dual
codes based on Hadamard matrices. It is the aim of this note to discribe
a method for construction of self-dual codes from weighing matrices. How-
ever the present method has no direct relevance to Tonchev’s method in
[10]. Some extremal self-dual codes derived from weighing matrices are
constructed in Section 4. In particular, we reconstruct the extended Golay
code and find new extremal singly-even codes of length 40 from some weigh-
ing matrices. Moreover we apply self-dual codes as a tool for investigating
weighing matrices. In Section 3, we discuss the binary and ternary self-dual
codes based on weighing matrices. Such codes imply necessary conditions
for the existence of some weighing matrices.

2 Construction of Self-Dual Codes

First we discribe the method to construct self-dual codes in Tonchev [10].
The Hamming distance between each pair of rows of a Hadamard matrix
of order 7 is n/2. The following construction of self-dual codes was proved
using this fact.

Theorem 2.1 (Tonchev [10]) Let H is a Hadamard matriz of order n =
8t + 4 such that the number of +1’s in all rows are congruent modulo 4.
Then the matriz [ I, (H+J, )/b ] generates a binary self-dual code of length
2n where J is the all-one matriz of order n.

Since a weighing matrix W(n,n) is a Hadamard matrix, weighing ma-

trices are a generalization of Hadamard matrices. Thus we investigate a
method to construct self-dual codes using weighing matrices.
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Let F3={1,0,—1} be the field with 3 elements and F2={1,0} the field with
2 elements. Let ¢ be a map from M,,(F3) to M, (F2) where ¢(a;;) = |a;;|
for a matrix (aij) € M, (F3). Let W(n, k) be a weighing matrix of order n
and weight k. We can regard weighing matrices as matrices over F3. Hence
@(W(n,k)) is regarded as a matrix over [F;. We state properties of the
matrix ¢(W(n, k)).

Lemma 2.2 Let r; and r; be any distinct two rows of W(n,k) end c;
and c; be any distinct two columns for 1 < i,5 < n. Then it holds that
lo(r:) N o(e5)] = 0 (mod 2) and lp(es) N p(e;)| = 0 (mod 2).

Proof: Suppose that ry = (1, ,7kn) for 1 < k < n. Since any two
rows r; and r; are orthogonal to each other over Z, it holds that

I{k M T,'k*Tjk:l}I:I{k : r,-k-rjk=—1}|.

By the definition of the map ¢, we get that the number of k (1 < k < n)
such that ¢(ri) = (rjx) = 1 is even. The proof for columns is similar. O

Thus the matrix ¢(W(n,k)) such that k is odd is the self-orthogonal
design of type (iv) in term of Tonchev [10]. Hence we can construct binary
self-dual codes based on weighing matrices as follows.

Proposition 2.3 Let W(n, k) be a weighing matriz of order n and weight
k such that k is odd. Then [ I, p(W(n,k)) | generates a binary self-dual
code of length 2n.

Proof: The orthogonality of the code follows from Lemma 2.2. ]

Since there are many weighing matrices, we may obtain extremal self-
dual codes from weighing matrices. We shall produce such extremal codes
in Section 4.

Now we consider a construction of doubly-even self-dual codes using
weighing matrices. We quote a well-known theorem in [9)].

Lemma 2.4 (Pless [9]) If the rows of a generator matriz for a binary
[n, k] code C have weights divisible by four and are orthogonal to each other,
then C is a doubly-even self-orthogonal code.

The following corollary is an easy consequence of Proposition 2.3 and
Lemma 2.4.

Corollary 2.5 Ifn =0 (mod 4) end k = 3 (mod 4), then[I, p(W(n,k))]
generates a binary doubly-even self-dual code of length 2n.
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Now we discuss the relation between the equivalence of weighing matrices
and one of the corresponding codes.

We recall that two weighing matrices W and W' are equivalent if there
exist monomial matrices of 0’s, 1’s and —1’s P and Q with PW'Q=W.

The following proposition indicates a relationship between an equiva-
lence class of weighing matrices and one of the corresponding codes. Since
a weighing matrix has many. =quivalent matrices, the proposition is use-
ful if we get an equivalence class of self-dual codes from certain weighing
matrices.

Proposition 2.6 All self-dual codes derived from eguivalent weighing ma-
irices are equivalent to each other.

Proof: Let W and W’ be equivalent weighing matrices. Thus there ex-
ist monomial matrices P and Q with PW’'Q = W. We can assume that
P = P, P, where P, is the permutation matrix and P, is the matrix of the
operations which multiply rows by —1 ,and Q = Q,Q; where Q) is the per-
mutation matrix and Q2 is the matrix of the operations which multiply rows
by —1. By definition of the map ¢, it holds that (W) = P1o(W’)Q;. This
implies that the self-dual codes generated by [ I, (W) ]and [I, o(W’) ]
are equivalent to each other. Thus the assertion of the proposition now
follows. 0

In order to determine the inequivalent self-dual codes from all weighing
matrices, it is sufficient to distinguish the codes from inequivalent weighing
matrices in view of Proposition 2.6.

3 Necessary Conditions for the Existence of Weighing Matrices

In this section, we shall get necessary conditions for the existence of weigh-
ing matrices. In the previous section, we studied the method to construct
self-dual codes based on weighing matrices.

We now note that a doubly-even [2n, n] self-dual code exists if and only
ifn =0 (mod 4) (cf. [6],[9]).

Theorem 3.1 If there exists a weighing matriz of order n and weight k,
then either n=0 (mod 4) or k # 3 (mod 4).

Proof: Let W be a weighing matrix of order n and weighing k such that
n # 0 (mod 4) and k = 3 (mod 4). The number of 1’s in every row of
[I, o(W)]isk+1 =0 (mod4). By Proposition 2.3 and Lemma 2.4,
[ I, (W) | generates a binary doubly-even self-dual code of length 2n.
However if doubly-even [2n,n] self-dual codes exist then n must be a mu-
lutiple of four. Thus this completes a proof. O
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Geramita and Seberry [3] gave some conditions for the existence of weigh-
ing matrices. The following result was shown in [3]. Here we give an alter-
native proof using ternary self-dual codes derived from weighing matrices.

Theorem 3.2 If there ezists a weighing matriz of order n and weight k,
then either n is even or k #2 (mod 3).

Proof: Here we consider ternary self-dual codes generated by weighing
matrices. It is easy to see that if W is a weighing matrix of order k with
k =2 (mod 3) then [I, W ] generates a ternary self-dual code. However it
is well known that length of ternary self-dual codes is necessarily a multiple
of four [6]. This completes a proof. a

4 Extremal Self-Dual Ceodes from Weighing Matrices

In this section, we shall produce some extremal self-dual codes using weigh-
ing matrices.

4.1 Intersection Pattern and Minimum Weight

Sometimes the intersection pattern (see [1] for definition) allows us to ob-
tain considerable information about the structure of weighing matrices.
Moreover the intersection pattern gives information about the minimum
weight of self-dual codes from weighing matrices. We discuss a relationship
between the intersection pattern of weighing matrices and the minimum
weight of these codes.

Let W be any weighing matrix of order n and weight k. We say that po;
rows of W intersect a row j in 2¢ places if there are ps; rows, each of which
has exactly 2¢ non-zero elements occurring in columns containing non-zero
elements in row 5. Then we have the following equalities [1] :

D pr=n-1 (1)
=0
and
Z ip2; = k(k —1)/2. 2
i=0

By a similar argument as Theorem 2.2 in Tonchev [10], we get the fol-
lowing relation between the intersection pattern and the minimum weight
of the self-dual code.

Theorem 4.1 Let W be a weighing matriz of order n and weight k such

that k = 3 (mod 4) (resp. k =1 (mod 4)) and k > 7 (resp. 5). Let C be
a doubly-even (resp. singly-even) self-dual code whose the generator matriz
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Gis[I, o(W)]. The minimum weight of C is at least 8 (resp. 6) if and
only if it holds that the intersection number px_y = 0 for any row of W.

Proof: It is sufficient to prove that the weight of any sum of at most three
rows of G is at least 8 (resp. 6). It is obvious that the weight of a row of
G is k+1 > 8 (resp. 6). If it holds that px—; = 0, in any two rows of
(W) the number of places where the two rows which do not intersect is
at least 4. Thus the weight of a sum of any two rows of G ia at least 8
(resp. 6). Conversely if it holds that px_; > 1, then there exist two rows
whose weight is 4. Since the code is self-dual, the parity check matrix

H=[(p(W)), I]

is also a generator matrix of C. If there is a codeword of weight 4 which
is a sum of three rows of G, then the codeword must be a row of H. Since
the weight of a row of H is k + 1 > 8 (resp. 6), this completes a proof. O

Theorem 4.1 gives a condition for extremality of self-dual codes obtained
from weighing matrices of small orders. By Proposition 2.3 and Theo-
rem 4.1, we shall construct some extremal self-dual codes using weighing
matrices of small orders.

4.2 Reconstructing the Extended Golay Code

We shall consider self-dual codes from weighing matrices of order 12. The
classifications of weighing matrices of order 12 and all weights were given
in Chan, Rodger and Seberry [1] and Ohmori [7]. Ohmori [7] determined
weighing matrices of order 12 and weight 7 and 9. There exist exactly three
inequivalent weighing matrices of order 12 and weight 7 and exactly four
inequivalent matrices of weight 9. First we discribe how to construct the
extended Golay code using weighing matrices. According to [7], we denote
the three inequivalent weighing matrices of order 12 and weight 7 by A;,
As and As. Let C;,C3 and Cs be doubly-even codes which are obtained
from A, A3 and Ag by Corollary 2.5, respectively.
Since it holds that

_J) for A, 3)
pe = 0, for Asz and Asg,

the minimum weight of C; is 4 and C3 and Cg are extremal doubly-even

[24,12,8] codes. Since there exists a unique doubly-even [24,12,8] code up

to equivalence, C3 and Cg must be equivalent to the extended Golay code.
Thus we have the following proposition.
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Proposition 4.2 Two inequivalent doubly-even codes are derived from all
weighing matrices of order 12 and weight 7. One of them is the extended
Golay (24,12, 8] code and the other is the doubly-even [24,12,4] code.

It is impossible to construct an extremal doubly-even code from weighing
matrices of order 12 except W(12,7)’s and W(12,11)’s. Next we shall
consider doubly-even codes dbtained from weighing matrices of order 12
and weight 11. There exists the intersection number pjg with p1g > 0 for
any weighing matrix of order 12 and weight 11. By Theorem 4.1, the code
which is obtained from any matrix of weight 11 is a doubly-even [24,12,4]
code. Therefore weighing matrices of order 12 which generate the extended
Golay [24,12,8] code are only two weighing matrices of weight 7 Az and Asg.

Now we shall consider extremal singly-even codes using weighing matrices
of order 12. The largest possible minimum weight of singly-even codes of
length 24 is 6 [2]. It is sufficient to consider singly-even self-dual codes from
weighing matrices of weight 5 and 9.

Since it holds that pg = 3 for any weighing matrix of order 12 and weight
9 [7] and p4 > 1 for any weighing matrices of weight 5 [1]. Thus all singly-
even codes which is obtained from all weighing matrices of order 12 are
singly-even [24,12,4] codes.

We now consider extremal codes from weighing matrices of order 13 and
weight 9.

Recently Ohmori [8] has completed the classification of such weighing
matrices. There are exactly eight inequivalent matrices. Let W;*(1 < i < 8)
be the inequivalent matrices as shown in Fig.5 [8].

Proposition 4.3 Every self-dual code from weighing matrices of order 13
and weight 9 is an eztremal singly-even [26,13,6] code. Moreover all self-
dual codes derived from all weighing matrices of order 13 and weight 9 are
equivalent to each other.

Proof: Let Ci3; be the self-dual code generated by [ I, o(W;*) ]. It holds
that the intersection pattern pg = 0 for each W;* [8].

By Theorem 4.1, C)3; is an extremal singly-even [26,13,6] code for each
i (1 < i < 8). Moreover there is a unique extremal singly-even [26,13,6]
code, up to equivalence [2]. Thus each C}3,; must be equivalent to f% in [2).
This completes a proof. a
Remark It is obvious that o(W;*) is an incidence matrix of a symmetric
2-(13,9,6) design for any ¢ (1 <: < 8).

4.3 New Extremal Singly-Even Codes of Length 40

Here we investigate new extremal singly-even codes derived from weighing
matrices of order 20. Examples of seven weighing matrices of weight 9
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are given in [1]. We denote the circulant W(20,9) by Wy and No.i four-
circulants W(20,9)’s by W; (i = 1, - - - , 6) after [1]. Let C; be the singly-even
code whose the generator matrix is [ I, ¢(W;) | for 0 <n < 6.

Extremal singly-even [40,20,8] codes have the following weight enumera-
tor [2] :

W =1+ (125 + 168)y® + (1664 — 648)y'° + (10720 + 328)y"?
+ (44160 +1928)y™ + -+ -, (4)

where g is an undetermined parameter. In [2], extremal singly-even [40,20,8]
codes were constructed corresponding to 8 =0 and 10.

By a computer calculation, Cp, C> and C3 are extremal singly-even
[40,20,8] codes and these codes have the weight distributions with § = 10.
Moreover we discuss the equivalence of these extremal codes. We definded
K-matrices in [5] in order to check the equivalence of extremal self-dual
codes. The author and Kimura [5] mentioned the following relation be-
tween the inequivalence of extremal codes and their K-matrices.

Proposition 4.4 (Harada and Kimura [5]) Let C and C’ be eztremal
singly-even codes of length n. Let K and K’ be K-matrices for C and C’,
respectively. If C is equivalent to C’, then it holds that K = K'.

We compare K-matrices for our three codes with the known code in
[2]. Such extremal codes have all distinct K-matrices of degree 10. By
Proposition 4.4, we get the following proposition.

Proposition 4.5 Extremal singly-even [40,20,8] codes corresponding to
B = 10 can be constructed from certain weighing matrices of order 20 and
weight 9. Moreover these ertremal codes and the known extremal singly-
even [40, 20, 8] code are inequivalent to each other.

Remark Since the weight enumerator of any self-dual code must have
non-negative integral coefficients, it holds that 0 < 8 < 26 for any extremal
singly-even code of length 40. Recently the author [4] has constructed
extremal singly-even [40,20,8] codes corresponding to 8 =1 and 2. But it is
not known whether extremal singly-even [40,20,8] codes with 8 # 0,1,2,10
exist or not.
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