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ABSTRACT. Several unbiased tournament schedules for round
robin doubles tennis are presented, in a form which can be
useful to the urban league tournament director. The unbiased
tournament affords less restriction than does the usual spouse-
avoiding tournament (see [7]). As gender considerations are not
necessary, it is most often the tournament of choice.

1 Introduction

Complex mathematical problems arise from a wide variety of sources in
everyday life. A case in point is a recent study of scheduling for a bridge club
by application of discrete optimization algorithms [1]. In this paper concern
is directed to unbiased scheduling for the gender-unspecific round robin
doubles tennis tournament. Such tournaments are less restrictive, hence
occur more often in urban league tennis than does the spouse-avoiding,
mixed-doubles round robin tournament, as defined in [7]. Unfortunately,
one criticism of [7] as to style is that designs shown to exist are not then
explicitly spelled out in a manner accessible to the non-specialist urban
league tournament director. Thus, one objective of the present paper is to
afford such utility, albeit for a different class of tournament.

The author’s concern with the optimal scheduling problem arose from
the frustrations of repeated pairings with weak opponents in urban league
doubles tennis, where assurances by the tournament director that such oc-
currences are a law of nature became suspect. However, what first appeared
as lackadaisical pairings in a tournament of twenty players competing on
five courts, on closer scrutiny reveals a challenging problem in combinatorial
design, whose solution by the non-specialist can be difficult.
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The Scheduling Dilemma In mixed doubles parlance, a match is a si-
multaneous interaction (customarily four games) between a quadruple of
four players. The two teams in a quadruple switch sides of the court af-
ter two games, retaining the same partner. Draws are avoided by certain
win or loss on the point which succeeds 40, and for the match each per-
son receives the score (0-4) earned by his team. Assuming v = 4C players
and a C-court facility, a round consists of C simultaneous matches, with a
tournament consisting of R rounds.

The tournament directors dilemma is the following: What is the maxi-
mum number of rounds, and what choice of match pairings, will assure an
unbiased tournament, in the sense that (i) each player completes one match
in every round, and (ii) over the course of the tournament no two players
interact together in a matched quadruple more than once? Thus, the tour-
nament is unbiased if and only if no pair of players have a simultaneous
court appearance more than once, outside of competing together as either
partners or opponents (but not both) in some particular match.

It would be tempting to call the tournament unbiased if after several
rounds of unbiased play as previously defined, pair repeats are allowed so
long as over the course of the tournament each player experiences an equal
number of such occurrences. However, this is a mathematical complication
which will not be fully investigated here.

P-Optimal Versus K-Optimal Tournaments Given v = 4C players,
a tournament design which possesses the maximum possible number, P,
of unbiased rounds is defined as a P-optimal tournament. On the other
hand, it is K-optimal if the designer has only discovered a K-round unbiased
design, for which he may be unaware it can be continued one or more rounds
without introducing pair repeats. It is DK-optimal (a dead-end design) if
it is impossible by any means to continue the current design for another
round without introducing pair repeats. In such a case, one must either
prove his design is P-optimal, or else attempt a completely new design.

It may be remarked that a P-optimal tournament can become the build-
ing block for a tournament design which is unbiased in the sense that each
player has the same number of pair repeats: A tournament of NP rounds
may be achieved simply by multiple repetition of the P-schedule. For ex-
ample, by also alternating partners in a fixed quadruple, a 3P round tour-
nament results, in which no person has had the same match partner twice,
yet has played against each of his opponents three times, and no better
design of 3P rounds is possible.

Consider now the deeper question of unbiased tournament design: How
is it possible to determine P, the exponent of optimality? When is a DK-
optimal design also P-optimal? For a fixed number of players, the work of
Brouwer [4] makes it possible to find an upper bound on P, and sometimes
such a bound can be proven sharp, by the simple expedient of counting
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pairs used. For C = 4, it is shown here that P = 5 is sharp. It is also
shown that for C = 5, P > 5, whereas from Brouwer [4], P < 6.
Classification (Resolvable, Sometimes Balanced, Incomplete Block
Design) The tournament scheduling problem concerns block design of a
peculiar sort: depending upon the number of courts, C, a balanced incom-
plete block design (BIB) which is resolvable [5] may emerge, where every
possible pair of players has been matched exactly once in a P-optimal tour-
nament. For another C value, a balanced design may not be possible, due to
competition for match opponents becoming stalled by a shortage of such.
In this case the tournament possibly may be P-optimal, yet it must end
with each participant having matched N < 4C persons.

As some pairings have not been made, it is now difficult to establish
P-optimality on the basis of pairs used. However, by defining two asso-
ciate classes as (i) - two persons have played each other, or (ii) they have
not played each other, perhaps this design class could be investigated as
a partially balanced, incomplete block design (PBIB) having two
associate classes [6)].

2 A Tournament With Sixteen Players

The case of a C = 4 court facility leads to solving a C2-Kirkman problem,
whose solutions classically have been obtained by heuristic methods which
rely upon geometric intuition [2,3]. It is instructive to solve the problem
analytically, by an approach which is applicable to both PBIB and BIB
designs. The approach is similar to Raghavarao’s [8] method of symmetric
differences, but for PBIB designs the differences clearly can not be sym-
metric.

Consider the cyclic group Z = {1,2,..., M}, whose group operation is
addition modulo M. For a specific n-tuple Xo = (z1,z2,...,2,) whose
components z; € Z are ordered by increasing magnitude, a permutation
mapping, T, is introduced, which is pair dispersive over a cycle of length
M. To be a cycle of length M , the M-th iterate is at most a permutation
of Xo. {T,Xo} is defined as pair dispersive of order Q if and only if the
group of successive n-tuples

{T, Xo} = {T*(Xo) : k=0,1,...,Q - 1} 1)

have no repeated pairs. In the language of dynamical systems, Xj is a
vector of initial state. It is desired to determine the maximum value for Q
such that the set of state vectors {T, Xo} which are T-reachable from X
are free of pair repeats.

For present purposes, for 3 < n < M define the mapping, T(y), where y
is an n-tuple from Z, as follows:

T(y)=wi+1, Mod M 2
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The pair dispersive character of {T, X} is determined by a characteristic
difference table formed from the components {z; : ¢ = 1,2,...,n} of the
initial vector:

Ayj=z5—1;, Mod M:i,j=12,...,n (3)

Sample difference tables for {M = 15,n = 4} are given in Table 1:

112|41]8
1115111317
(a)n=4,M =15 2]14}15[ 2] 6
4112113 |15 4
8| 8|9 |11]15
5]110])15

5115] 5 | 10
10{10]15] 5
15| 5 | 10| 15

(b)n=3,M=15

Table 1: Characteristic Difference Tables

Theorem 1: Pair Dispersiveness of {T, Xo}?.

(i) The full cycle of (Q = M) reachable states will have no pair repeats if
and only if there are no off-diagonal pair repeats in the characteristic
difference table for Xo;

(ii) If 7 is the smallest table difference which is repeated, the set of reach-
able states will have no pair repeats before T states are generated.

Proof: Proposition (i) follows from the fact that the characteristic differ-
ence table associated with a state vector is invariant under the mapping T.
Clarifying further, a pair repeat can arise only in the following ways: The
initial state satisfies

(a) z; + A=z;, and z; + A = z;, with A= M/2, M even, or
(b) zi—zj=zr—zi = A, or

(€) zi—zj=zk—T1=A, 00

(d) The only repeat is on the diagonal: A; = M.

In each case there is a pair repeat after A iterations, and only after such
an occurrence; proposition (i) follows. Addressing proposition (ii), even
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if there are several difference repeats of classes (a-c), the presence of a
specific repeated difference A causes no pair repeat until A iterations have
occurred. Proposition (ii) follows;

Corollary. If {T, Xo}™ and {T, Yo}, with K < M, possess characteristic
difference tables whose entries have no common pair repeats smaller than
M, with each set of reachable states being pair dispersive, then the union
of the two sets of reachable states has no pair repeats.

For an example where the theorem is useful, see Table 1, with M =
15, K = 5. In this case, Table 1-a permits a block design consisting of a
set of 15 quadruples having no repeated pairs, while Table 1-b permits a
set of 5 triplets having no repeated pairs. The union has no repeated pairs,
and uses up all 105 distinct pairs generated by the integers {1,2,...,15}.
By adjoining to each triplet the number 16, the joint collection of quadru-
ples has no pair repeats, and uses all 120 pairs which can be generated
from the integers {1,2,...,16}. This twenty-block design is resolvable: By
appropriate rearrangment there is obtained the P = 5 round balanced, in-
complete 5-optimal block-cyclic design whose first 4z4 matrix block is given
in Table 2,

5 10 15 16
1 2 4 8
6 7 9 13
11 12 14 3
6 11 1 16
2 3 5§ 9
7 8 10 14
12 13 156 4
7 12 2 16
3 4 6 10
8 9 11 15
13 14 1 5
8 13 3 16
4 5 7 11
9 10 12 1
14 15 2 6
9 14 4 16
5 6 8 12
10 11 13 2
15 1 3 7

Table 2: A Block-Cyclic, P=5 Optimal, BIB Design For Sixteen Players
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and whose succeeding matrix blocks are T™*-iterates of the first block, where
the *-mapping operates as does T, with the exception of having a fixed point
at sixteen.

38 A Tournament With Twenty Players

How many unbiased rounds can be played, assuming twenty players com-
pete on a five-court facility? According to the design below, at least five
unbiased rounds can be played (P > 5). Brouwer’s [4] results indicate
P < 6. On round six, four courts can be assigned without bias, whereas all
players on court five previously have been assigned together.

5 10 15 20
1 2 4 8
6 7 9 13
11 12 14 18
16 17 19 3
6 11 16 1
2 3 5 9
7 8 10 14
12 13 15 19
17 18 20 4
7 12 17 2
3 4 6 10
8 9 11 15
13 14 16 20
18 19 1 5
8 13 18 3
4 5 7 1
9 10 12 16
14 15 17 1
19 20 2 6
9 14 19 4
5 6 8 12
10 11 13 17
15 16 18 2
20 1 3 7

Table 3: A Block-Cyclic PBIB Design For Twenty Players

The method of Section 2 readily produces an unbiased, five round tourna-
ment schedule classed as a resolvable, unbalanced, incomplete block design.
It is not known how to prove P = 5 is optimal. This design consists of the
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block-cyclic group of matrices {T(Ax) : k = 0,1,2,3,4}, where the first
matrix appears in the first block of Table 3.
Here, the mapping T'

T(as;**!) = ai* +1, Mod 20 (4)

which now has no fixed points, maps each block of Table 3 into its successor,
Mod 5, and the group operation is the composition induced by combining
powers of T in the usual way.

The author has discovered a further four design methods which yield
distinct DK-optimal, five-round, unbiased tournament schedules. In each
case an additional unbiased round is impossible, as it can be proven that
any sixth round, at best, must exhibit one pair repetition for every member
of one match quadruple, with no pair repetition in the other four matches.

Of the four, that method whose requirements are most elementary will
be presented. Let

A=[ai)bi:cisdi ) i=1:2:314v5] (5)

be the matrix whose rows specify the first round match assignments, where
in future the elements ay, b;, ¢;, d; of any fixed row must never be assigned
together.

Solution By A Cylinder Method The idea of the solution is to ”bend”
the matrix array so as to form a cylinder, with the elements a;;i = 1, 2,3,4,5
appearing on a ring which is a generator of the cylinder (so likewise, for
the bi, ci,di). The persons assigned to a fixed initial match now appear
parallel to each other, but on distinct rings of the cylinder. To generate a
next round with distinct pairs, holding the a-ring fixed, one simply rotates,
(either clockwise or) counter-clockwise, the b-ring by one, the c-ring by two,
and the d-ring by three positions. It is fairly easy to convince oneself (see
Conclusions) that this can be repeated four times, each time producing a
new round such that no pair from any round has been previously assigned
together. Mathematically, one way to describe such a process is

AP = [aiv bi+p) Ci4-2p, di+3p; i= la 2: 3, 41 5] (6)

where p = 0,1,2, 3,4. Here, p = 0 represents the initial round, and index
values such as i + jp are evaluated with modulo 5 arithmetic. Again, a
cyclic group of matrices has been produced.

A Dead-End, DK-optimal Design The tournament of the present de-
sign has the property that each person from the a-group has after 5 cycles
(p=0,1,2,3,4) been assigned to match exactly once with each member of
the b-group, c-group, and d-group. Likewise, each member of any particular
letter-designated group has been assigned to match exactly once with each
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member of every other letter-designated group, yet has not been assigned
with anyone having the same letter designation. Consequently, on cycle six
of the assignment process any four members of a letter-designated group
can be assigned together without pair repetition: one person necessarily
must be assigned with other persons he has matched during the first five
cycles.

Thus, on cycle six only four matches can be scheduled without pair rep-
etition; all members of match group five of necessity have interacted within
the first five rounds. This is the proof that a DK-optimal design with K = 5
has been obtained. This design is conjectured to be P = 5-optimal. The
conjecture is supported by a result for the 5 x 5 Kirkman problem which
appears in the sequel.

It is remarked that the 5-round design is a group divisible design; and
it is readily established that a 6-round group divisible design having no
repeated pairs is impossible. Moreover, it is impossible for a BIB design
having no repeated pairs to exist, for C = 5. Thus, over the design class of
BIB and/or group divisible designs, this design is p-optimal with p = 5.

4 More General Resolvable Design Problems

The cylinder approach of section 3 can be firmly established by the Race-
Track Proposition:

Suppose four greyhounds are to race on (cylinder stacked) parallel circular
tracks with unit markers at the angular intervals jQ:5=0,1,...,C -1,
where Q = 27 /C. Their successive speeds are {0, 1,2, 3} angular increments
per unit time, where the angular unit is Q radians. If all positive integers
k < 3 are relatively prime to C, then there will not be a time T smaller than
that time taken by hound #2 (the slowest moving hound) to traverse the
track, for which a faster hound overtakes a slower one, exactly in coincidence
with one of the integer angular unit markers.

Proof: The locations at which a faster hound overtakes a slower one are
given by ©,x = jC/(k — 1)Q2, where j > 1 is the cycle index, and {k =
2, 3,4}. Thus, for consonance not to occur at an angular unit marker during
the first cycle (j = 1), it is necessary that C and all positive k& < 3 be
relatively prime.

Referring to the cylinder method of the section 3, for C > 4 the cylinder
argument can be extended to obtain C-round optimal schedules for the
arbitrary 4C court facility, provided C and all positive integers k < 3 are
relatively prime. The argument is as follows: By analogy with the racing
hounds result, it is seen that an arbitrary pair which is together during the
first cycle of design, by virtue of being members of a match quadruple, can
not again be paired during the first cycle of parallel rotation of cylinder
rings. Here, for any quadruple which is produced by rotation of cylinder
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rings, the racing hounds proposition shows no pair repeat can occur during
a cycle measured relative to this quadruple, and certainly not in whatever
fraction of the first cycle there remains to be generated.

The amusing thing is that all hounds are in coincidence with the slowest
one, exactly as the slowest returns to the starting marker, after traversing
the track any number of times.

5 A 7-Court, 28-Player BIB Design

The race track proposition of Section 4 guarantees existence of a seven-
round unbiased design for this case. However, the Brouwer result [4] points
to a possibility of a nine-round design. Indeed, such a design is possible [8],
by employing symmetric differences on four symbols with the Galois field
GF(3%) as base module, where also a fixed point is involved. By using a
homeo-morphism to decode a design given in Raghavarao [8], one arrives
at the following results:

1 2 12 15
7 5 17 13
10 11 21 24
16 14 26 22
19 20 3 6

25 23 8 4

0 9 18 27

2 0 13 16
8 38 15 14
1 9 22 25
17 12 24 23
20 18 4 7
26 21 6 5
1 10 19 27

0 1 14 17
6 4 16 12
9 10 23 26
15 13 25 21
18 19 5 8

24 22 7 3

2 11 20 27

Table 4: A Seven Court BIB Design, Rounds 1,2,3
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6 Conclusions

There has been obtained optimal schedules for unbiased round robin dou-
bles tennis tournaments on physical facilities of four, five and seven courts,
respectively. However, the method of differences used in obtaining the four
court schedule experiences difficulty when six courts (24 players) is consid-
ered. It is expected that there is some tie-in between this problem and that
of finding six-by-six orthogonal latin squares, which are known not to exist.
Fortunately, the cylinder method of design permits some extension.

As a note of historical interest, we see that the general C2-Kirkman prob-
lem is solvable, for C a prime integer, using the cylinder method and the
race-track argument with C hounds, whereby one obtains C days of walk-
ing. Moreover, the classically expected additional one day walk (one more
unbiased covering) is now obtainable, through use of the matrix transpose
operation. As the matrix transpose operation is unfruitful for quadru-
ples and a 5 x 4 array, this explains why one less unbiased covering than
Brouwer’s results [4] seem to predict is actually realizable, in a resolvable
5-court design.

It is unknown to the author whether this Kirkman-type result, or this
approach to its proof, has previously appeared.

Finally, it may be concluded by a similar argument that the generalized
Kirkman problem, on any set of size N x K with K < N, permits and
N-day resolvable design for unbiased walking about in K-tuplets, provided
N and all positive integers k < K — 1 are relatively prime. In particular,
this is always true if N is prime.
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