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ABSTRACT. An m X n ideal matrix is a periodic m x n binary
matrix which satisfies the following two conditions: (1) each
column of this matrix contains precisely one 1 and (2) if it is
visualized as a dot pattern (with each dot representing a 1),
then the number of overlapping dots at all actual shifts are 1 or
0. Let s(n) denote the smallest integer m such that an m x n
ideal matrix exists. In this paper, we reduce the upper bound
of s(n) which was found by Fung, Siu and Ma. Also we list an
upper bound of s(n) for 14 < n < 100.

1 Introduction

A periodic m x n binary array is an infinite matrix A = (a(i, 7)), 4,5 €
Z, a(i,j) = 0 or 1 such that a(i,j) = a(i + m,j) = a(i,j +n) for any
i,j € Z. Since the mxn matrix A = (a(3,5)),0<i<m-1,0<j <n-1
can generate the infinite matrix A, therefore we may identify A and A. A
periodic n x n binary array A = (a(4,5)) is called an ideal matriz if it
satisfies the following two constraints:

1) each column of A contains precisely one 1,

2) its binary periodic autocorrelation function

BP(r,s)= Y > ali,j)a(i+7,j+5) <1 for (r,5) # (0,0) in Zn X Zy
i€Z, JEZ,

An ideal matrix has a direct application to frequency-hopping multiple-
access communication systems [4].
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It can be shown that BP(0,0) = n, BP(r,0) = 0 for r # 0 (mod n), and
BP(r,s) =1 for s # 0 (mod =) [5].

If the arrays A (the infinite array defined above) and A are visualized as
dot patterns (with each dot representing a 1) then these patterns have the
following property. We move A around on A. For certain periodic shifts,
when the patterns coincide, n dots will overlap. For purely vertical shifts
(i-e., along the columns) from these positions, no dots will overlap and for
any other shift exactly one pair of dots will overlap.

Up to now no n x n ideal matrix is found except n is an odd prime [5].
Ganley, Kumar, Fung, Siu and Ma [1, 2, 3, 5, 6] obtained some nonexistence
results of n x n ideal matrix. We summarize as follows:

Theorem 1.1. Suppose n is composite.
(1) (Ganley [3], Fung [2]) An n x n ideal matrix exists only if n is odd.

(2) (Fung, Siu and Ma [1], Fung [2]) An n x n ideal matrix exists only if
n is square-free.

(3) (Fung [2), Kumar [5]) Let n be square-free. If for some prime factor
g and some proper factor m of n with (q,m) =1, there exists h € Z
such that ¢" = —1 (mod m), then no n x n ideal matrix exists.

(4) (Ma [6]) If n = pq where p and q are distinct primes then non x n
ideal matrix exists.

Thus by using a PC under conditions above, Ma [6] got the following
proposition:

Proposition 1.2. Except for the four undecided cases n = 15655, 29523, 35855,
and 42627, there is no ideal matrix if n is a composite and n < 50000.

In the following we relax the condition on square ideal matrix, but retain
the condition that there be exacly one 1 per column and BP(r,s) <1 for

(r,s) #(0,0).

2 Some known results of non-square ideal matrices

An m x n matrix A = (a(4,7)) is called an ideal matriz if it is a periodic
m X n binary array and satisfies the following two constraints:

1) each column of A contains precisely one 1,

2) its binary periodic autocorrelation function

BP(r,s)= Y > a(i,j)a(i+7,5+8) <1 for (r,5) # (0,0) in Zp X Zn

1€Zm JELn
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Clearly m > n. It is not hard to convince that an m x n ideal matrix
corresponds to a function f : Z, — Z,, for which f,(j) = f(5 + €) — f(5)
gives an injection for each £ € Z,\{0}. Such function is called a planar
function [6] and fy, 1 < £ < n—1, is called an induced function of f.
Theorem 2.1. A function f : Z, — Z,, is a planar function if and only
if the imilucj'ed functions f(3) = f(F + €) — f(j) are injective functions for
1<e<|3).

Proof: It suffices to show that f; is injective if and only if f,—_, is injective.
It follows from the fact

— fa—t(k + €) = fo(k) for each k € Z,,

immediately. a

Fung, Siu and Ma [1] found that when m = n(n — 1), an m x n ideal
matrix exists by defining f(5) = 17(j + 1). Note that the formula of f; in
[1] is incorrect. It must be

) = Jt+ 3e(e+1) ifo<j<n-1-¢
T j€—n)+ (€ —n)(€—n+1) otherwise ’

where 1 <2< |2].

Let s(n) denote the smallest m such that an m x n ideal matrix exists.
Hence s(n) < n(n — 1). It is known that s(p) = p when p is an odd prime
and s(p — 1) = p when p is a prime [1, 2]. s(n) is known when 2 <7 <13
by computer search [1, 2]. Namely s(8) = 12 and s(9) = 12. Up to now we
only know that 22 < s(14) by computer search.

3 The upper bound of s(n)

In this section we shall show that the upper bound of s(n) can be reduced
by about a quarter of the original one given in [1]. From now on we fix n
and Z, = {0,1,2,...,n—1}. Let t = [ 3].

Lemma 38.1. Let f : Z, — Z,, and f4(5) = f(§ + €) — f(§). Then for
1 <€<n-—1 we have

£2—-1
(1) feli) =D _f(i +k) (in Zm) for each j € Zn and

k=0

n—1
2) Y _felG) =0 (in Zm).

=0
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n—1

Proof: (1) follows from the definition. Obviously, E f1(4) = 0 and hence

j=0
(2) follows. o
Lemma 3.2. Define gy : Z, — Z by
N_J 3 fj#n-1
91(7)’{ (n—t)t ifj=n—1

£—1
and define g; : Z, — Z by g:(3) = Zgl(j +k), 1 <¢<t (the value of

k=0

j+k is taken in {0,1,2,... ,n —1}). Then g, is an injection.

Proof: Obviously, g; is a strictly increasing function. Therefore, ge is
strictly increasing on 0 < j < n — £ and is strictly decreasingon n — £ <
7 < n—1. Hence g¢ has a global maximum at n—£€for 1 < £ <t¢. It suffices
to show the proposition “ge(n—1) > g¢(n—€—1)" holds for 1 < £ < t. We
shall prove it by reduction on £.

For £ = t, we have

t—-1

g(n—-1)—g(n—t-1) = giln-1)+Y gi(n—1+k)
k=1

-1
=Y oln—t-1+k)
k=0
t—1 t—1
= (a-tt+) ak-1)-) giln—t-1+k)
k=1 k=0

t—1 t—1

= (n-t)t+ (k=1)-Y (n—t-1+k)=1.
Thus when £ = ¢ the proposition holds. Assume the proposition holds when
£=u+1,wherel <u <t—1,thatis, gut1(n—1) > gut1(n—(u+1)-1) =
gu+1(n — u — 2). This implies that

u u—1
gl(n—u—2)+zgl(n—u—2+k)<Zgl(n—1+k)+gl(n—1+u)
k=1 k=0
u—1
=) gin-1+k)+ga(u-1)
k=0
and
u u—1
(n—u—2)+zgl(n—u—2+k) <Zg1(n—1+k)+(u—1).
k=1 k=0
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Sincet<%(n+1) andl1 <u<t—1, n—u—2>u—1. Hence we have
gu(n—=1) > gy(n —u—1). m]

Theorem 38.3. There exists an m x n ideal matrix, where
m=3in-1)(n-2)+(n—t)tandt=|3].

Proof: Define f : Z, — Zn by f(j) = %j(j —1). Let f; be the induced
function of f. It is easy to see that g1(j) = fi(j) (mod m), 0<j<n-—2.
Also we have

fi(n-1) = f(0)—f(n—1) = —5(n-1)(n—2) = (n—t)t = g1(n—1)(mod m).

Hence g; = fi (mod m). By the definition of g, and Lemma 3.1 we have
n—1

ge= fe(modm) for1 < €<t Forl < €<, since Zgl(j) =m > gs(3)
=0

for each ¢ and g, are injections, fe are injections. (]
n—-1

Remark 3.4: Suppose fi : Zn — Zx and »_ f1(j) = 0 (mod k). Then we
=0

can construct a function f : Z, — Zi with specified value f(0) such that
fe, 1 < €< n—1, are the induced functions of f.

When a k x n exists, it does not guarantee the existence of a (k+1) xn
ideal matrix. For example, a 7 x 7 ideal matrix exists, but by computer
search there is no 8 x 7 ideal matrix.

Proposition 3.5. Let m be defined in Theorem 3.3. Then there is an
(m + k) x n ideal matrix for k > 0.

m-t)t+k ifj=n-1"
the same proofs of Lemma 3.2, Theorem 3.3 and Remark 3.4, we get the
proposition. a

Proof: Deﬁnegl:Z’,,,—-»Zbygl(j)z{J ifj#n-1 By

4 Some computer search results

Let f : Z, — Zi defined by f(j) = 14(j — 1). We check that whether f
represent an ideal matrix or not. If not we increase k by 1 each time until
an ideal matrix exists. Hence we shall get an upper bound of s(n). Also we
can use another function, for example f(j) = %j (7 + 1), to find an upper
bound of s(n). We list an upper bound of s(r) for 14 < n < 100 as follows:
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n H 14 15 20 21 24 25 26 27

s(m)< || 38" | 53F | 1162 | 1252 | 140% | 212' | 176° | 2178

n 32 33 34 35 38 39 4 45
s(m)< || 291° | 283° | 292° | 3347 | 370° | 485! | 6515 | 583%

n ]| 48 9 50 51 54 55 56 57
s(m)< || 6317 | 975'° | 822" | 838 | 838° | 1069T | 6057 | 106573

n_ || 62 63 64 65 68 69 74 75
s(n)< || 12682 | 13525 | 12957 | 14647 | 219117 | 16881 | 1902 | 16917

n 76 77 80 81 82 85 86 87
s(n)< || 1985° | 287617 | 1823° | 3280'F | 23367 | 360317 | 2340° | 27347

n ) 91 92 93 94 95 98 99
s(n)< || 2354° | 43367 | 435117 | 45021 | 446811 | 32231 | 3002° | 513877

The number indicates which of the following functions is used to find an
upper bound.
L fG) = §5G+1; 2 fG) =46~ 1i 3 J6) =46~ 1) -2
4. f(§) = ¥(J 2)(G-3); 5. f(J)—?(J 3)(7 —4);
6. f()=350-DGE-5); 7 f(G)=30G—-5)G-6)
8. f(h) = (J 6)G—7); 9. f(h) = (J 7)(.7 8);
10. f(J)—zb—ll)(J-l?), 11. fO)—20—12)(J—13)
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